
The humanoid robot motion
planning problem

Karim Bouyarmane

What I will talk about

• The path planning problem
• Some algorithms

• The robot motion planning problem as a path planning problem
• Some more algorithms

• The humanoid robot motion planning problem as a multi-modal
(path/motion planning) problem
• An algorithm

• The humanoid robot control problem
• A universal controller

The path planning problem

Formulation of the problem

• How to go from point A to point B?

Formulation of the problem

• How to go from point A to point B?

• Intuitively : Launch Google maps

Formulation of the problem

• How to go from point A to point B?

• Intuitively : Launch Google maps

• Algorithm
• get a map (download it)

• encode relevant information your map (paths) in a graph-like structure (roadmap)

• run your favorite graph search algorithm (Dijkstra, best-first, A*, D*, etc)

• done

Formulation of the problem

• How to go from point A to point B?

• Intuitively : Launch Google maps

• Algorithm
• get a map (download it)

• encode relevant information your map (paths) in a graph-like structure (roadmap)

• run your favorite graph search algorithm (Dijkstra, best-first, A*, D*, etc)

• done

• Let’s call this the “Google maps meta-algorithm”

Formulation of the problem

• How to go from point A to point B?

• Can we generalize the problem in a sound mathematical formulation?

Formulation of the problem

• How to go from point A to point B?

• What is “go”?

• what are “points” A and B?

• “what” needs to go (subject of the verb)?

Formulation of the problem

• How to go from point A to point B?

• What is “go”? → (Google maps) a path along the map

• what are “points” A and B? → (Google maps) 2D points in the map

• “what” needs to go (subject of the verb)? → (Google maps) a 2D point
constrained to move along the edges of the graph

Formulation of the problem

• Let’s consider that the subject of the motion is a “point”. Points are in
the ideal mathematical sense, elements of a set, not in the physical
point mass sense : no volume, no mass, no physics.

• how to make a point “move” from point A to point B in some set
endowed with a notion of “continuity” and a notion of “path” ⇒
necessity of operating in a topological space

• The notion of motion is therefore associated with the notion of
continuity and of topology

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

𝐴

𝐵

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• Question: is there such path? (existence)

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• Question: is there such path? (existence)

• Answer: property of connectedness of the space

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• Question: is there such path? (existence)

• Answer: property of connectedness of the space?
• Definition : a space is connected if it cannot be written as a union of two

disjoint open sets/two disjoint closed sets

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• Question: is there such path? (existence)

• Answer: property of connectedness of the space

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• Question: is there such path? (existence)

• Answer: property of path-connectedness of the space

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• path-connected ⇒ connected, converse not true in general
• counter example : the topologist’s sine curve

𝑥, 𝑦 | 𝑥 = 0 𝑜𝑟 𝑦 = sin
1

𝑥

connected but not path connected

Formulation of the problem

• Let 𝑋 be some arbitrary topological space and 𝐴 and 𝐵 two points in
𝑋. A path between 𝐴 and 𝐵 is some continuous function 𝑓 from
[0,1] to 𝑋 such that 𝑓(0) = 𝐴 and 𝑓(1) = 𝐵.

• path-connected ⇒ connected, converse not true in general
• counter example : the topologist’s sine curve

𝑥, 𝑦 | 𝑥 = 0 𝑜𝑟 𝑦 = sin
1

𝑥

connected but not path connected

Formulation of the problem

• For convenience, we will consider additional structure on our space
𝑋: 𝑋 is a manifold of fixed dimension 𝑛 (subset of ℝ𝑚 locally
homeomorphic in each of its points to ℝ𝑛)

• In this case: connected ⇔ path-connected

• Additional interesting properties worth studying in our context for the
space 𝑋:
• simply connected or multiply connected

• Homotopy classes of paths (can a path be continuously deformed into
another path) ?

• Fundamental group (How many topologically different (non homotopic) ways
to go from a point to another)

Obstacles and Free Space

• Obstacles are compact subsets of 𝑋: 𝑋𝑜𝑏𝑠

• The space 𝑋 will be partitioned in two sub sets: 𝑋 = 𝑋𝑜𝑏𝑠 ∪ 𝑋𝑓𝑟𝑒𝑒

• Path planning algorithms will operate in 𝑋𝑓𝑟𝑒𝑒, avoiding 𝑋𝑜𝑏𝑠

• 𝑋𝑓𝑟𝑒𝑒 is an open set ⇒ no “optimal” path in general, we are not
allowed to “touch” the obstacles

Formulation of the problem

𝑋𝑜𝑏𝑠
𝑋𝑓𝑟𝑒𝑒

𝑋𝑜𝑏𝑠
𝑋𝑜𝑏𝑠

𝑋𝑜𝑏𝑠

𝑋𝑓𝑟𝑒𝑒
𝑋𝑓𝑟𝑒𝑒

𝑋𝑓𝑟𝑒𝑒

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Formulation of the problem

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Formulation of the problem

?

First algorithms

First algorithms

• Intuitive ideas:
• The bug algorithm

• Potential fields

• Potential fields with occasional random walks

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Bug algorithm

Bug algorithm

• Easy to find instances that “confuse the bug”

• We can add “memory” to the bug so that it circumvent all the
obstacle before committing to leave it at best possible point
• bug1 algorithm

• Add so-called m-line (straight line between initial and goal point
through obstacles) as preferred direction to follow when leaving
obstacle
• bug2 algorithm

• “Cheating” → we allow ourselves to touch obstacles

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Potential field

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Potential field

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Potential field

Potential field

• Algorithm:
• Charge particle and obstacles with given sign charge

• Charge goal with opposite sign charge

• Simulate the system and let it flow

• Problem: difficult to calibrate correctly the charges, the forces, etc, to
avoid local minima in combined field (parameter tuning)

• Improvement : couple it with occasional local random walks when
trapped in local minima

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Google map meta algorithm

• Can the Google maps meta-algorithm work here?

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Google map meta algorithm

• Can the Google maps meta-algorithm work here?
• Yes if we can build a “roadmap”

• that is: a discrete structure (graph) encoding
the connectedness of the free space

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Google map meta algorithm

• Example algorithms for roadmap building:
• Extended voronoi diagrams

• Visibility roadmap

• Cell decomposition

• Exact cell decompositions

• vertical cell decomposition

• cylindrical cell decomposisition

• Approximate cell decomposition

• fixed resolution

• adaptive resolution

Extended Voronoi diagrams

Extended Voronoi diagrams

* very approximate drawing

Extended Voronoi diagrams

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Extended Voronoi diagrams

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Extended Voronoi diagrams

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Reduced visibility roadmaps

• Find reflex
vertices (vertices
where interior
polygon angle are
less than 𝜋

Reduced visibility roadmaps

• Connect:
• consecutive reflex

vertices on given
polygon

• bitangeant edges
(edges between
two reflex vertices
on different
polygons such
that both
polygons are on
the same side)

Reduced visibility roadmaps

• Connect intial
and goal points
to all visible
reflex vertices

Reduced visibility roadmaps

• run favorite graph
search algorithm

Cell decomposition

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Approximate cell decomposition

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Approximate cell decomposition

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Approximate cell decomposition

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Approximate cell decomposition

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

Vertical cell decomposition

Illustrations from F. Lamiraux

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Vertical cell decomposition

Triangulation

Triangulation

Triangulation

𝑞𝑖𝑛𝑖𝑡

𝑞𝑔𝑜𝑎𝑙

From path planning to motion
planning

What if our subjet is not a point?

What if our subjet is not a point?

Towards motion planning

Rectangular subject that can only translate in
2D

Illustrations from F. Lamiraux

Rectangular subject that can only translate in
2D

Rectangular subject that can only translate in
2D

Replace subject
with a point,
and obstacles
with Minkowski
difference
between
obstacles and
subject

Rectangular subject that can only translate in
2D

Replace subject
with a point,
and obstacles
with Minkowski
difference
between
obstacles and
subject

The motion planning problem as
a path planning problem

Motion planning problem

Motion planning problem

How to go from point A to point B?

What is “go”?
what are “points” A and B?
“what” needs to go (subject of the verb)?

Motion planning problem

How to go from point A to point B?

What is “go”? -> move the whole robot ?
what are “points” A and B? -> points of the 3D space ?
“what” needs to go (subject of the verb)? -> point on the
robot ?

Motion planning problem

How to go from point A to point B?

What is “go”? -> move the whole robot ?
what are “points” A and B? -> points of the 3D space ?
“what” needs to go (subject of the verb)? -> point on the
robot ?

Motion planning problem

How to go from point A to point B?

What is “go”? -> move the whole robot ?
what are “points” A and B? -> points of the 3D space ?
“what” needs to go (subject of the verb)? -> point on the
robot ?

Motion planning problem

How to go from point A to point B?

What is “go”? -> move the whole robot ?
what are “points” A and B? -> points of the 3D space ?
“what” needs to go (subject of the verb)? -> point on the
robot ?

Motion planning problem

How to go from point A to point B?

What is “go”? -> move the whole robot ?
what are “points” A and B? -> points of the 3D space ?
“what” needs to go (subject of the verb)? -> point on the
robot ?

Definitely not a path planning problem from A to B

?

Motion planning problem

𝛼

𝛽

Motion planning problem

0

2𝜋

2𝜋

Motion planning problem

0

2𝜋

2𝜋

Motion planning problem

0

2𝜋

2𝜋

Motion planning problem

0

2𝜋

2𝜋
Motion planning problem

Path planning problem

Motion planning problem

Motion planning problem
Path planning problem

0

2𝜋

2𝜋

Configuration space 𝒞

• point in ℝ𝑛: ℝ𝑛

• solid shape in 2D: 𝑆𝐸 2 = ℝ2 × 𝑆𝑂(2) = ℝ2 × 𝕊1

• revolute joint: 𝕊1 (circle)

• spherical joint: 𝑆𝑂 3 = ℝℙ3(real projective space)
= unit quaternion hemisphere with antipodal identification

• solid shape in 3D: 𝑆𝐸 3 = ℝ3 × 𝑆𝑂 3

• 𝑛-joint arm: 𝕋𝑛 = 𝕊1
𝑛

(torus)

Formulation of the motion planning problem
(aka the piano mover problem)
• A physical world 𝒲 = ℝ2 or ℝ3

• A robot 𝒜 ⊂𝒲 as a collection of links with joint configuration 𝑞 ∈
𝒞, where 𝒞 is a 𝑛-dimensional manifold

• a mapping 𝑔: 𝒞 → 2𝒲(forward kinematics mapping) that puts the
robot in a given configuration, for simplicity we denote 𝑔 𝑞 as 𝒜 𝑞

• A compact obstacle region 𝒪 ⊂ 𝒲

• The motion planning problem for 𝒜 in 𝒲 amounts to a path planning
problem in 𝐶𝑓𝑟𝑒𝑒 = 𝐶 ∖ 𝐶𝑜𝑏𝑠 where 𝐶𝑜𝑏𝑠 = 𝑞 𝒜 𝑞 ∩ 𝒪 ≠ ∅

Computational algebraic geometry solution to
the problem
• Lemma: If we suppose that 𝒜 and 𝒪 are defined as semi-algebraic

subsets of 𝒲 (ie defined using finite unions and intersections of
regions delimited by polynomial equations with rational coefficients,
including polygons/polyhedra, circles/spheres, ellipses/ellipsoids,
etc), then it is possible to demonstrate that 𝒞𝑜𝑏𝑠 and 𝒞𝑓𝑟𝑒𝑒 are also
semi-algebraic subsets of ℝ𝑛 for all types of robots with configuration
spaces defined as finite Cartesian products of the previously listed
manifolds.

• Example: polyhedral robots in polyhedral worlds

Computational algebraic geometry solution to
the problem
• Semi-algebraic regions are defined as Tarski sentences (logical

predicates on polynomial expressions on manifold coordinates with
quantifiers and free variables).

• The cylindrical algebraic decomposition (aka Collins decomposition)
used for quantifier elimination in Tarski sentences (and for deciding
satisfiability of Tarski sentences) yields in fact a cell decomposition of
𝒞𝑓𝑟𝑒𝑒 (similar to the vertical cell decomposition in the 2D polygonal
case)

• Hence it solves the motion planning problem (Schwartz and Sharir,
1990)

• Complexity doubly exponential in the dimension n

So, are path planning algorithms applicable to
the motion planning problem?
• Problem 1: many of the presented path planning algorithms make

assumptions on the nature of the obstacle region (e.g. polygons).
Eventhough we can make such assumptions on 𝒪, it is difficult to say
anything about the shape of 𝒞𝑜𝑏𝑠

• Problem 2: many of the presented path planning algorithms require
explicit computation of the obstacle region. Again, it is difficult to
compute explicitly 𝒞𝑜𝑏𝑠

• Problem 3: supposing 1 and 2 are solved, many of the presented path
planning algorithms don’t scale well beyond 2 or 3 dimensions
(typical robot arm has 6 dof)

Sampling-based approaches

Probabilistic roadmap (PRM)

Illustrations from F. Lamiraux

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Probabilistic roadmap (PRM)

Visibility-based PRM

Illustrations from F. Lamiraux

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Visibility-based PRM

Rapidly exploring Random Tree (RRT)

Illustrations from F. Lamiraux

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Rapidly exploring Random Tree (RRT)

Correctness and complexity

Complexity

• The piano mover problem is PSPACE-hard (Reif, 1979)

• Complexxity of the cylindrical cell decomposion: running time
bounded by 𝑚𝑑 𝑂 1 𝑛

𝑚 number of Polynoms, 𝑑 maximum degree
of polynoms, 𝑛 dimension of the C-space

• Canny’s algorithm : 𝑚𝑛 log 𝑑 𝑂(𝑛4)

Correctness

• Completeness
• The algorithm can find in finite time a solution or report in finite time the

absence of solution

• Resolution completeness
• If the sampling is deterministic following a dense sequence, then the

algorithm will find in finite time a solution if it exists
• The algorithm cannot report in finite time the absence of solution

• Probablistic completeness
• If a solution exists, then the probability of the algorithm of find the solution

tends to 1 as the number of samples/expansions tend to infinity
• The algorithm cannot report in finite time the absence of solution

Correctness

• Exact roadmap building and cell decomposition methods are
complete (certical cell decomposition, cylindrical cell decomposition

• Sampling-based methods (PRM, RRT)
• are probabilistically complete if random sampling is used

• are resolution complete if a deterministic dense sampling sequence is used

Path/motion planning for non
holononomic systems

Nonholonomic systems

• Nonholonomic systems involve differential constraints

• e.g. a mobile robot (car) only has two kinematic controls
• steering wheel

• gaz/brake

• but evolves in 𝑆𝐸 2 (3-d)

• Notion of admissible paths

Illustrations from F. Lamiraux

Controllability of nonholonomic systems

• Nonhonolonomic systems are locally controllable iff for any 𝑞 in 𝒞 and
any neighborhood 𝑈 of 𝑞 there exists a neighborhood 𝑉 of 𝑞
completely reachable from 𝑞 by admissible paths included in 𝑈

Controllability of nonholonomic systems

• It can be demonstrated that a nonhonolmic system is controllable iff
the dimension of the the control vector field Lie Algebra of the system
is 𝑛

• Lie brackets of control field add the missing dimensions

• E.g. for a mobile robot, or a car, the Lie bracket of the two control
vector field correspond to the parallel parking maneuver (créneau)
that makes the system move sideways (which was the missing
dimension in the control)

Reduction property

• For a locally controllable system, the existence of a collision-free path
between two points of the uncontrained system in 𝑆𝐸(2) is
equivalent to the existence of a collision free adimissible path for the
constrained nonholonomic system

Path planning for nonholonomic systems

• Path planning for nonholonomic systems is based on path planning of
unconstrained system and deformation by dichotomy of non
admisible paths applying a local steering method

Manipulation planning

Manipulation planning

• Motion planning in 𝑆𝐸 3 for a manipulated object ℳ that cannot
“move on its own”

• Can only move indirectly through interaction with robot ℛ or lie at
rest on environment 𝒵

Stratification and foliation of the
configuration space
• The configuration space 𝒞 = 𝒞ℛ × 𝒞ℳ is stratified in two strata:

• Set of configurations in which the robot is grasping the object
• Set of configurations in which the object is lying at rest

• Each stratum is foliated
• the foliation of the grasp stratum is induced by the relative position of the robot and

the grasp (infinitely many)
• the foliation of rest stratum is induced by the position at which the object rest

(infinitely many)

• The system can only move through a given leaf of a foliation, it cannot
freely move across foliation of the same stratum

• The only way to move from one leaf to another in the same stratum is by
going through a connecting leaf on the other stratum (respectively called
transit paths and transfer paths)

Manipulation planning

Manipulation planning

Reduction property 2

• If we consider the intersection of the two strata endowed with both
foliations (called the bottom stratum), then we can demonstrate that
the existence of an admissible manipulation path between two
configurations, that is, a finite sequence of transit and transfer paths,
reduces to the existence a collision free path that ignores the
foliation.

• Same kind of reasoning as for the nonholonomic system

Enter Humanoids (finally)

A path planning or a motion planning
problem?
• Both problems are interesting on their own

• The frontier between the two notions was already “blurred” in the case of
a mobile robot on the 2D plane: typically your vacuum cleaner robot

• Depends on the scale and level of the problem

• A humanoid wanting to go from point A to point B on Google map is an
instance of a pure path planning problem

• At a finer grain a humanoid wanting to move its foot to do one step along
the long Google maps path is an instance of a pure motion planning
problem

• There are instances that lie between the two levels, we call them multi-
contact motion planning problems

Definition of a humanoid robot

• 𝑆𝐸 3 × ℝ𝑛.

Definition of a humanoid robot

• That’s a lot of dimensions to play with
• (6 + 6) legs + (7+7) arm + 2 torso + 2 neck + 6 of 𝑆𝐸(3)

• Up to 46-d, without even accounting for dexterous fingers

• Stratified by each type of contact configuration on the space /
Foliated in each stratification

• And on top of that: The balance constraint which is a huge issue
• probability of any random configuration or any random motion to make a

manipulator arm or wheeled robot or multi-legged robot “fall down”: 0

• probability of any random configuration or any random motion to make a
bipedal humanoid robot fall down: 1

• A humanoid is a inherently unstable system, it is an inverted pendulum always
on its unstable equilibrium

Approaches to studying humanoids and make
them move
• Decoupling : upper body for manipulation / lower body for

locomotion and navigation; global planner / local planner

• Interleaving : motion planning and motion control

• Lower body controllers
• aka walking controllers

• Based on the physics of inverted pendulums (aka Zero Moment Point (ZMP) or Center of
Pressure (COP) control, Capture point control) Kajita et al 2003
• used on Honda’s Asimo

• “Stabilizers” are lower level control loop that take in charge balance one or two feet
• We can usually perform path-planning with these controllers

• Upper-body controllers
• Don’t care about balance, leave it to the stabilizer
• See robot as fancy dual arm manipulator (Pepper-like robot)

Approaches to studying humanoids and make
them move
• Our approach: multi-contact planning and whole-body control

• See the robot as whole

• Can use hands for crawling (marcher à 4 pattes), for climbing ladders,
stairscases, for walking on hands (why not), can use legs for manipulation
(pushing object lying on the floor, kicking a ball)

• It’s just a robot that leaves in its 46-d C-space and happens to have a
humanoid shape, no functional decoupling

• Our philosophy: walking should “emerge” naturally from this approach, not
be hard-encoded as a separate control

• Of course, only an ideal objective, as of now, we still encode domain-
knowledge based heuristics to prune search trees (such as “prefer
feet on ground”, “prefer hands on table”, etc)

Humanoid multi-contact planning

A multi-contact planning instance

Collision-free path planning/motion planning

Multi-contact planning

Multi-contact planning w/ path planning

Multi-contact planning w/ path planning

Multi-contact planning w/ path planning

Multi-contact planning w/ path planning

Humanoid multi-contact planning

• Induces the same stratification / foliation structure as the
manipulation planning problem

• Each leaf of a stratum corresponds to a stance 𝜎

• a stance 𝜎 is a set of contacts

• a contact 𝑐 is defined as an element of 𝐸 = ℕ4 × 𝑆𝐸 2

• the set of all stances is denoted Σ ⊂ 2𝐸

• Two stances 𝜎 and 𝜎′are adjacent if they differ by exactly one contact
∃𝑐 ∈ E 𝜎 = 𝜎′ ∪ 𝑐 or 𝜎′ = 𝜎 ∪ {𝑐}

Humanoid multi-contact planning

• each configuration of the robot 𝑞 is mapped to a unique stance 𝜎
through a forward kinematics function 𝜎 = 𝛾 𝑞

• conversely with each sigma is associated a submanifold of the C-space
𝒬𝜎 = 𝛾−1 {𝜎}

• We are interested in a subset ℱ𝜎 ⊂ 𝒬𝜎 made of physically admissible
configurations (existence of admissible contact forces at the contacts
of the stance)

• An admissible sequence of stances (“path” in Σ) is a sequence
𝜎𝑖 𝑖∈{1,…,𝑘} such that ∀𝑖 ∈ 1,… , 𝑘 − 1 𝜎𝑖 is adjacent to 𝜎𝑖+1 and
ℱ𝜎𝑖 ∩ ℱ𝜎𝑖+1 ≠ ∅

Humanoid motion planning and
control framework

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙

a stance 𝜎 = a set of contacts = a contact state

Stances set

C-space

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙

a stance 𝜎 = a set of contacts = a contact state

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙

a stance 𝜎 = a set of contacts = a contact state

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙𝜎1 𝜎2 𝜎𝑛
∪ 𝑐1 ∪ 𝑐𝑛∖ 𝑐2

a stance 𝜎 = a set of contacts = a contact state

Contacts planner

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙𝜎1 𝜎2 𝜎𝑛
∪ 𝑐1 ∪ 𝑐𝑛∖ 𝑐2

a stance 𝜎 = a set of contacts = a contact state

𝑞1 𝑞2 𝑞𝑛

Contacts planner

Inverse kinematics
and statics solver

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

Contacts planner

𝜎𝑖𝑛𝑖𝑡 𝜎𝑔𝑜𝑎𝑙𝜎1 𝜎2 𝜎𝑛
∪ 𝑐1 ∪ 𝑐𝑛∖ 𝑐2

a stance 𝜎 = a set of contacts = a contact state

Inverse kinematics
and statics solver

𝑞1 𝑞2 𝑞𝑛

QP controller

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

Contacts planner

Inverse kinematics
and statics solver

𝑞1 𝑞2 𝑞𝑛

QP controller

Overview of the Framework
Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙

𝑞𝑖𝑛𝑖𝑡 𝑞𝑔𝑜𝑎𝑙

Contacts planner

Inverse kinematics
and statics solver

𝑞1 𝑞2 𝑞𝑛

QP controller

Overview of the Framework

Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙 Contacts planner

Inverse kinematics
and statics solver

QP controller

Overview of the Framework

Inverse kinematics
and statics solver

Inverse kinematics and statics solver

min
𝑞,𝑓

s.t. ቊ
ℎ1 𝑞,𝑓 =0

ℎ2(𝑞,𝑓)≤0

𝑐(𝑞, 𝑓)

• 𝑐(𝑞, 𝑓) distance of 𝑞 to a reference nominal posture 𝑞𝑟𝑒𝑓 + norm of 𝑓

• ℎ1 𝑞, 𝑓 = 0 fixed contacts positions, static equilibrium equation (free-flyer part)
• ℎ2 𝑞, 𝑓 ≤ 0 floating contacts positions, joint limits, static equilibrium equation

(actuated part, torque limits), friction cones, collision-avoidance

𝑞𝜎

Inverse kinematics and statics solver

Inverse kinematics and statics solver

Inverse kinematics and statics solver

Inverse kinematics and statics solver

Inverse kinematics and static solver

Inverse kinematics and static solver

Inverse kinematics and static solver

Locomotion Manipulation Locomotion-and-Manipulation

Inverse kinematics and statics solver

Overview of the Framework

Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙 Contacts planner

Inverse kinematics
and statics solver

QP controller

Overview of the Framework

Contacts planner

Search Algorithm
Best-First Search
• Initialize a search tree and a priority queue with the initial

stance
• Loop:

• Pop most promising stance from the priority queue
• For all present contacts in this stance

• Try to remove the contact and see if the robot keeps
balance (call the IKS)

• If so, push the new stance into the priority queue
and add it as a leaf in the tree

• For all unused bodies in this stance
• Try to add the unused body to the stance and see if

the robot can reach balance (call the IKS)
• If so, push the new stance into the priority queue

and add it as a leaf in the tree
• Until reaching the goal

Search Algorithm

Search Algorithm

Current stance

Search Algorithm

Remove one contact

Current contact state

Search Algorithm

Current stance

211

Add one contact

Current stance

Search Algorithm

Search Algorithm

Current stance

Add one contact

Search Algorithm

Search Algorithm

Search Algorithm

216

Search algorithm

Overview of the Framework

Locomotion query: 𝑞𝑖𝑛𝑖𝑡, 𝑞𝑔𝑜𝑎𝑙 Contacts planner

Inverse kinematics
and statics solver

QP controller

Overview of the Framework

QP controller

QP Control and Simulation

Basic idea: at a given 𝑞, ሶ𝑞, the dynamics equation
of motion is linear in ሷ𝑞, 𝜏, 𝑓:

𝑀 𝑞 ሷ𝑞 + 𝑁 𝑞, ሶ𝑞 = 𝑆𝜏 + 𝐽𝑇𝑓

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

ሷ𝑞

𝜏

𝑓

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

ሷ𝑞 ሶ𝑞 𝑞
∫ ∫

• Position control
• Simulation

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

𝜏

Torque command
• to real robot
• to physics simulator

QP Control and Simulation

 Online collision avoidance linear constraint based on
velocity-damper formulation (Kanehiro et al, RSS 2008)

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

ሷ𝑞

𝜏

𝑓

QP Control and Simulation

min
ሷ𝑞,𝑓,𝜏

𝑀 𝑞 ሷ𝑞+𝑁 𝑞, ሶ𝑞 =𝑆𝜏+𝐽𝑇𝑓

𝐽 ሷ𝑞+ ሶ𝐽 ሶ𝑞=0
𝐾𝑓≥0

𝜏 ≤𝜏𝑚𝑎𝑥

෍

𝑘

𝑤𝑘 ሷ𝑔𝑘 − ሷ𝑔𝑘
𝑑 2

ሷ𝑞

𝜏

𝑓

Finite state machine
Stances, static postures sequence

QP Control

• QP control has become golden standard in humanoid robotics
• All DARPA Robotics Challenge teams used a version of QP control on their

robots

QP Control

QP Control

QP Control

What’s next

Many topics we didn’t cover

• Perception
• Humanoid mult-contact visual SLAM (Simultaneous Localization and Mapping)

• Stability of the control

• Robustness to modelling uncertainties

• Middleware control architectures

• Hardware

What’s next in humanoid motion planning
and control?
• Exciting new software developments, leveraging ML techniques, deep RL techniques, and

evolutionary algorithms
• Google Deepmind “Emergence of Locomotion Behaviours in Rich Environments”
• Uber AI labs “Welcoming the Era of Deep Neuroevolution”

• We are currently working in our team on applying trial and error learning techniques based on evolutionary
CMA-ES optimization in multi-contact QP control (Spitz et al, Humanoids 2017)

• Exciting new hardware developments
• Hardware has always been a big limitation
• Boston Dynamics’ backflip!
• New hardware paradigms based on series elastic actuators, artificial muscles, highly resilient hardware

capable of sustaining more extreme motion
• Highly dynamic motions ahead

Deep Reinforcement Learning

Super hardware

Thank you for your attention

