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Abstract— We propose a reduced-model-based analytic ap-
proach to active shock absorption by a falling humanoid robot
at impact. We model the segment between the contact point
at impact and the impacting limb extremity attached to the
torso or waist of the humanoid robot as a one degree-of-
freedom linear mass-spring-damper system. By mapping the
joint angle limits and torque limits of the joints in the impacting
limb to a corresponding position limit and force limit in the
reduced model, we formulate a nonlinear optimization problem
to find an admissible pair of parameters of the reduced model
(stiffness, damping) that prevents the model from violating the
constraints before reaching a steady state rest. The nonlinear
constraints are analytically derived using symbolic computation
tools and then numerically solved with off-the-shelf nonlinear
optimization solver. The reduced model trajectories are then
mapped back on the full body of the humanoid robot and
illustrated on the HRP-4 robot in simulation.

I. INTRODUCTION

Reduced-dynamics models, such as the center-of-mass
(CoM) and multi-dimensional mass-spring-dampers, proved
to be extremely efficient in capturing the dominant behavior
of complex dynamical systems, among which humanoid
robots. For example, the CoM and related centroidal dynam-
ics are used to design various strategies for dynamic walking,
see [1], [2]. The linear inverted pendulum (LIP) model can
be cited as one of the most popular in the humanoid robotics
research community since many years [3]. The CoM model
enhanced by a spring along the massless CoM/Center of
Pressure point system (spring-loaded inverted pendulum, or
SLIP) is used to generate behaviors beyond walking, e.g.
jumping and running [4], [5], [6]. Reduced CoM models
were extended to generate multi-contact motions, e.g. [7],
[8]. Mass-spring-damper models have also been used as nom-
inal desired impedance or admittance at the contact space [9].
There are of course many other variants of reduced-dynamics
models and their usages in robotics.

In our previous work, we have addressed humanoid falling
using locally linearized control to comply with post-impact
dynamics using task-space quadratic programming (QP) con-
trol formalism [10], [11]. The idea [12] is to reshape the
humanoid posture so as to meet the impacts at contact
positions that maximize compliance by active change of
the actuators Proportional-Derivative (PD) gains. Recently
in [13], we showed that the actuator gain parameters can
also be integrated as decision variables in the QP controller,
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and can thus be computed together with the state acceleration
and contact forces. However, a problem that still needed to
be solved was the computation of motor PD gains using a
prediction of the system over a horizon of time (preview
control) to ensure that the structural limits of the robot
(torque limits, joint limits) are not reached during the whole
post-impact phase, until the system comes to a rest.

In this paper, we propose to study a mass-spring-damper
reduced-dynamics model applied to the situation of falling
for a humanoid robot, to be used in a two-stage approach
followed by whole-body QP control, similarly to what is well
established in dynamic walking. The idea of the reduced-
dynamics model is to emulate a shock absorber on the
impacting limbs of the robot (see Fig. 1).

(a) Landing on arms. (b) Landing on legs.

Fig. 1: Shock-absorber reduced-dynamics-model representa-
tion in two different landing configurations.

To this end, we present a detailed analysis of the parameter
tuning of a one degree-of-freedom (1 dof) mass-spring-
damper system to serve as a model-preview controller for
post-impact trajectory generation of humanoid whole-body
motion. We analytically derive the constraints on the stiffness
and damping parameters of the reduced model and formulate
a nonlinear optimization problem to solve for them. Once
the parameters of the model are obtained, the corresponding
trajectory is tracked by the robot in the post-impact phase
using a whole-body controller.

The rest of the paper is organized as follows. Section II
presents the reduced model and the analytical study that
leads to the nonlinear optimization problem on its stiffness
and damping parameters. Section III shows results obtained
in simulation on full humanoid robot falling in different



Fig. 2: Mass-spring-damper system.

configurations. Finally, Section IV concludes the paper with
a discussion on limitations, possible improvement, and future
work suggestions.

II. ANALYTICAL RESOLUTION

Let us consider the system in Fig. 2. The analytical
solution for the motion of this system comes from the
standard resolution of the well-studied second order linear
differential equation:

mz̈(t)−Ke(t)−Bė(t) +mg = 0 ,

⇔ mz̈(t)−K(zref − z(t))−B(żref − ż(t)) +mg = 0 ,
(1)

where m is the mass of the system, z(t) is the position of
the mass at time t, g the gravity and K, B the gains that
we want to compute to satisfy the constraints that will be
mapped from the torque limit and joint angle limits of the
full system. This equation can also be interpreted as a PD
controller of a linear motor supporting a mass m under the
gravity g. In such case, zref is the desired position which
is set to the position just before impact q-(0) and żref is
always 0.

It is well known that when solving for z(t), three cases
are distinguished. An under-damped solution occurs if B2 <
4mK. The system keeps oscillating at its natural frequency.
The critically damped solution occurs when B2 = 4mK. It is
the fastest way to reach the zref position without oscillating.
The last solution is the over-damped one when B2 > 4mK.
This also leads to reaching zref without oscillating, but over
a longer time.

Fig. 3: Phases of landing and impact of the reduced model.
The left figure represents the system just before impact at
time t = 0−, the velocity of the base is v− and the joint
velocity is 0 (velocity of the mass relative to the base). The
middle figure represents the system just after impact at t =
0+. The right figure represents the system at the time of
maximum amplitude t = tma.

Given a solution of Eq. (1) that depends on the parameters
K and B, our objective is to find admissible values of these
parameters such that:

• joint limit constraint: a position limit constraint is
satisfied on z(t) (e.g. preventing the mass from col-
liding with the ground after the impact, or equivalently
reaching a maximum compression limit),

• torque limit constraint: a force limit constraint is
satisfied on K(zref − z(t)) +B(żref − ż(t)) (the impact
force generated by the spring recoil should be kept
below a safety threshold when possible),

• the system converges to zero velocity.

The above constraints capture in the reduced model the
full-body constraints on both joints angle and torques limits.

Based on these constraints, we choose to search for over-
damped solutions. The reasons behind this choice are that:
1) we want to avoid unnecessary oscillations of the reduced
model which, if mapped to the whole-body, will reproduce
an undesired shaking behavior of the system after impact;
and 2) We are not interested in critically converging to zref,
as long as we reach a rest steady state over time. Hence,
we solve Eq. (1) assuming B2 > 4mK. We will see later
that this is not a limiting assumption in terms of finding a
solution whenever the solution set is nonempty.

Note that we do not consider an explicit velocity constraint
in the formulation, as during the entire post-impact phase,
the system is only decelerating (slowing down) due to the
dissipation of energy through the damping, so the constraint
would only be effective if written on the initial velocity.
However, the latter is an input to the problem over which
we have no direct control. Therefore, the post-impact initial
velocity might or might not cross the velocity limit if it was
to be set. For these reasons, we do not explicitly formulate
a velocity constraint.

Solving the differential equation Eq. (1) for z as a function
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Fig. 4: Evolution of the position z for a given set (K ∈
[0..50], B ∈ [0..25]). The red axis is the stiffness K in N.m-1,
the green axis is the damping B in N.s.m-1 and the blue axis
is the position z in m.



of t, with K and B as parameters, leads to:

z(t,K,B) =
e- 1

2m (B−√γ)t(Bg + 2Kż(0) +
√
γg)m

2
√
γK

−e- 1
2m (B+

√
γ)t(Bg − 2Kż(0)−√γg)m

2
√
γK

+
Kz(0)−mg

K
,

(2)

with γ = B2 − 4Km.
In the following, for the sake of readability and in order

to reduce the size of the symbolic expressions, but without
loss of generality, we set example numerical values to the
initial conditions and to the mass of the system (all the
developments can be kept with their symbolic expressions):

m = 1 ,

g = 9.81 ,

z(0) = 0 ,

ż(0) = -5 .

(3)

The derivations and reasoning to follow are still valid for any
other numerical values corresponding to the specific robot
and falling conditions at hand. Initializing the velocity to a
value different from zero simulates a falling system state just
after an impact. Suppose the system is impacting with a net
velocity v− = -0.5ms-1 (external floating-base velocity) and
ż−(0) = 0ms-1 (internal joint velocity) and that the impact
is inelastic (no bounce), the remaining velocity in the joint
post-impact is then ż+(0) = -5ms-1, see Fig. 3.

With the numerical values (3), z(t,K,B) in (2) becomes:

z(t,K,B) =
e- 12 (B−

√
γ)t(-10K + 9.81(B +

√
γ)

2
√
γK

−

e- 12 (B+
√
γ)t(10K + 9.81(B −√γ)

2
√
γK

− 9.81

K
,

(4)
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Fig. 5: Evolution of the velocity ż for a given set (K ∈
[0..50], B ∈ [0..25]). The red axis is the stiffness K in N.m-1,
the green axis is the damping B in N.s.m-1 and the blue axis
is the velocity ż in m.s-1.

with γ = B2 − 4K (we recall that γ > 0).
A 3D time-evolution representation of z as function of K

and B can be represented, this is illustrated in Fig. 4.
Taking the time-derivative of z(t,K,B) gives us the joint

velocity:

ż(t,K,B) =

(-B +
√
γ)e- 12 (B−

√
γ)t(-10K + 9.81(B +

√
γ))

4
√
γK

− (-B −√γ)e- 12 (B+
√
γ)t(10K + 9.81(B −√γ))
4
√
γK

. (5)

The 3D time-evolution of ż as a function of K and B can
also be visualized (Fig. 5).

Lastly, from z and ż, we can compute the joint force
(spring force) with respect to time and as a function of K
and B (Eq. (6) and Fig. 6).

f(t,K,B) = K(zref − z(t,K,B))−Bż(t,K,B) =

-
(2.5B2 − 5K − 4.905B + (4.905− 2.5B)

√
γ)e- 12 (B−

√
γ)t

√
γ

-
(-2.5B2 + 5K + 4.905B + (4.905− 2.5B)

√
γ)e- 12 (B+

√
γ)t

√
γ

+ 9.81 . (6)

0

10

20
30
40
50

0510152025
0

50

100

150

200

(a) t = 0ms

0

10

20
30
40
50

0510152025
0

20

40

(b) t = 50ms

0

10

20
30
40
50

0510152025
0

10

20

30

(c) t = 100ms

0

10

20
30
40
50

0510152025
0

5

10

15

20

(d) t = 150ms

0

10

20
30
40
50

0510152025
0

5

10

15

(e) t = 200ms

Fig. 6: Evolution of the force f for a given set (K ∈ [0..50],
B ∈ [0..25]). The red axis is the stiffness K in N.m-1, the
green axis is the damping B in N.s.m-1 and the blue axis is
the force f in N.

The joint limit and force limit constraints can be respec-
tively written from the expressions (4) and (6) as

∀t > 0 z ≤ z(t,K,B) ≤ z , (7)

∀t > 0 f ≤ f(t,K,B) ≤ f , (8)

where z, z, f , f are the lower and upper bounds of the re-
duced system position and force mapped from the joint limit
constraints and torque limits constraints of the considered
robot impacting limb (see Section III).



The projection of the joint limit constraint and the torque
limit constraint on the K-B plane through time is visualized
in Fig. 7. The joint limit visualization is obtained by inter-
secting the 3D time-evolution plot of z(t,K,B) with the
plane z = z, while the force limit constraint visualization
is obtained by intersecting the 3D time-evolution plot of
f(t,K,B) with the plane at f = f (the reason why only one
side of these two constraints is relevant is explained below).
By analyzing these time visualizations, we can substitute
the time-continuous constraints (7) and (8) with fixed time
constraints.

First, we can define the maximum amplitude time tma

as the time at which the velocity reaches 0. Solving for
Eq. (5) = 0 with K and B as parameters using a symbolic
computation software (e.g. Maple), we get:

tma =
ln
(

- 4905B−2500K−9623.61
1250B2−1250B√γ−2500K−4905B+4905

√
γ+9623.61

)
√
γ

.

(9)
This equation is stiffness-dependant and damping-dependant.
The joint limit constraint can then be captured by:

z ≤ z(t = tma,K,B) ≤ z. (10)

Secondly, we observe that the force limit can be reached
in three main ways: i) high damping force when having high
velocity; ii) high stiffness force when having high position
error; iii) a mix of the two. In this study, we are interested
in impacts involving a relatively short post-impact distance
traveled between initial position and the limit, and high post-
impact velocity coming from the fall. Placing ourselves in
these conditions, the force maximum value is more likely
to come from the damping of the velocity and not from
the stiffness related to the distance. And since we will only
decelerate the system, we consider that the maximum force
is reached at t = 0+ (impact force). The torque limit
constraint (here a force limit constraint) thus writes:

f ≤ f(t = 0+,K,B) ≤ f. (11)

Of course, it is necessary to confirm this latter assumption
once the t 7→ f(t) trajectory is derived with the computed
values of K and B. This is the case in Fig. 7b.
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Fig. 7: Projection of the joint limit and the force limit on the
K-B plane for different time with z = -0.3m and f = 60N.

As only the over-damped behavior is taken into account,
a third constraint, the over-damped system constraint, is
added to the above joint limit and torque limit constraints.

4K −B2 < 0. (12)

The problem we have formulated up to this point thus
reduces to the following system of inequalities:

find K,B (13)

such that


z ≤ z(t = tma,K,B) ≤ z
f ≤ f(t = 0+,K,B) ≤ f
4K −B2 < 0

(14)

This is a system of nonlinear inequalities, as the con-
straints (10)–(12) are nonlinear inequalities in K and B, of
which we have derived the analytical expressions throughout
this section using symbolic computation tools.

To solve our system of nonlinear inequalities, we formu-
late it as the system of constraints of a nonlinear constrained
optimization problem in K and B, with an arbitrary convex
cost function, e.g. minimizing K2 +B2:

min
K,B

K2 +B2 (15)

such that


z ≤ z(t = tma,K,B) ≤ z
f ≤ f(t = 0+,K,B) ≤ f
4K −B2 < 0

that finds the minimum norm solution for (K,B) satisfying
the system of nonlinear inequality constraints.

We use the Matlab software to compute the solution of this
optimization problem (The use of other non-linear optimiza-
tion frameworks that are robotics-applications optimized,
such as [14], is possible). The result is shown in Fig. 8.
In this example, the impulse happens at the time t0 = 0
such that at t−0 the velocity is zero and at t+0 the velocity is
-5m.s-1 and z(0) = 0, z = -0.5, f = 60.
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Fig. 8: Computation of the solution region depending on
the problem constraints in the K-B domain. The blue curve
represents Eq. (12), the green curve Eq. (11) and the orange
curve Eq. (10). The set of admissible solutions of the system
of nonlinear inequalities is the white region. The red dot
is the particular solution of the the nonlinear optimization
problem.
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Fig. 9: Evolution of the different joint parameters through
time. The system reaches the joint limit without crossing it
and after around 0.5s it is completely stopped.

(a) 1-dof system simulation.

(b) 2-dof system simulation.

Fig. 10: low-dimensional systems simulations.

When the joint limit is not too close to the current position
(Fig. 8a), we are able to find a set of solutions that satisfy
all the constraints (Fig. 9). However, if the joint limit is set
to 0.3 instead of 0.5 (much closer to the current position)
as in Fig. 8b, no solution can be found, as the solution
set is empty. The latter situation can also occur in falling
conditions from which it is impossible for the robot to safely
recover (e.g. dropping from a high altitude, impacting with
very high velocity).

III. RESULTS

The accompanying video shows simulations that were
realized based on the presented approach, first with low-
dimensional systems (matching the studied model) and on
a full humanoid robot HRP-4.

Fig. 10a is a trivial application of the method on a 1-dof

Fig. 11: Effective mass computation.

system, in this case the reduced-model corresponds to the
full model.

Fig. 10b shows an application to a 2-dof system with
two prismatic joints. The maximum force f is the sum of
the maximum forces of the two linear actuators, and the
minimum position z is obtained when the two joints are put
at their position limits.

In both examples, we obtain a perfect realization of the
desired behavior in simulation, after both systems reach the
ground with an impact velocity of v− = −5ms−1.

Figs. 12 and 13 show falling motions of the HRP-4 robot,
controlled based on the reduced-model approach illustrated
in Fig. 1. The reduced-model analysis is used to generate
trajectories for the limb extremity attached to torso (arms)
or to the waist (legs), and these trajectories are tracked in
the post impact phase with a whole-body controller.

In these two cases, the limit position of the reduced model
z is obtained from forward kinematics of the limb of interest
when all the joints of that limb are put in their respective
joint limits:

z = FKlimb(qlimb
limit) , (16)

where FKlimb denotes the forward kinematics function of the
limb and qlimb

limit the configuration of the limb at its limits (here
limb ∈ {arm, leg}). However, it is only an approximation,
since FKlimb is generally a nonlinear mapping. This example
shows that obtaining the exact bounds on the reduced model
range of motion (i.e. the compression limit of the reduced
system) from the robot joint limits and the kinematics is not
trivial. We discuss other possible methods in the discussion
section (Section IV). For the limit force of the reduced
model, it can be obtained in first approximation from the
pseudo inverse of the Jacobian transpose applied on the
torque limits of the limb, or obtained exactly by using the
force polytope analysis detailed in [15], that accounts for
both torque limits in the limb and friction limits at the
contact.

As for the effective mass of the reduced model in case
of landing on the arms, we use the reasoning illustrated in
Fig. 11. Modeling the part of the robot between the knee
and the arm as an inverted pendulum rod, the effective mass
can be defined as the point mass localized at the extremity
of the rod that has the same moment around the center-of-
pressure (CoP) of the rod as the total gravity force applied
at the CoM, i.e.

Mglc cos(θ) = meffglr cos(θ), (17)



Fig. 12: Front fall screenshots from the accompanying video.

Fig. 13: Leg fall screenshots from the accompanying video.

where M is the mass of the rod (mass of the robot between
the knee and the arm), lc the distance of the CoM of the
rod from its CoP at the knee, lr the total length of the rod
(distance between the effective mass and the CoP), and θ the
angle between the rod and and ground. Therefore, we have:

meff =M
lc
lr
. (18)

The impact velocities for the arm landing and leg land-
ing falls were respectively measured at v− = −3ms−1 and
v− = −1.47ms−1. In Fig. 12, the particular posture that
the robot adopts just before it starts falling is generated by
applying the method presented in our previous work on non-
singular falls and optimal falling postures [12], [13].

IV. CONCLUSION AND DISCUSSION

We presented a study on a reduced model to capture the
dynamics of active post-impact shock absorption when a
humanoid robot falls and collides with the environment.

The analysis of the system allowed us to find the stiffness
and damping parameters (K,B) of the reduced model that
satisfy, when possible, the structural limits that are the joint
limits and torque limits mapped onto a position limit and
force limit on the reduced model. This reduced-model ap-
proach results in trajectories that are subsequently tracked by
a whole-body controller, simulating the behavior needed by
the humanoid to realize active impact compliance following
the model.

As discussed in Section III, a general exact mapping
from the limbs joint limits of a humanoid robot to the
bounds on the range of motion of the corresponding reduced
models can be difficult to obtain. A good approximation and
practical method consisted in using forward kinematics and
reachable space computation of the point corresponding to

the attachment of the mass considering the contact constraint.
This is the method we used in our examples. An alternative
method would be to represent the kinematic tree structure of
the humanoid as a deformable structure (through a rigidity
matrix [16]) with repulsive potential fields at the joint limits,
and use computer graphics animation techniques (such as a
virtual force pulling the reduced-model’s attachment point
along the gravity until equilibrium is reached) to compute
the desired bounds iteratively. This can be obtained with
very fast simple computations. We plan to investigate this
technique in future work.

Our analysis highlighted situations in which no solution
exists (when the solution set on (K,B) is empty), due to
extreme falling conditions for example (high impact velocity)
or very limiting bounds. In these situations, the proposed
approach is unsuccessful and the model appears to be no
longer valid to propose a practical damage-reduction solu-
tion. Future work will investigate what alternative models
can be used to deal with these extreme situations.

Moreover, other limiting situations in which a constant
(K,B) solution does not fit in the constraint region through-
out the time can also occur. It can be overcome in future work
by seeking for time-varying (K(t), B(t)). We can optimize
for those with trajectory optimization techniques using basis-
functions parameterization (e.g. splines).

The approach in this work was specifically designed
for position-controlled robots, and applied in simulation by
tracking the desired trajectories by a whole-body controller
with high motor PD gains. We plan in the future to combine
this work with our previous work on low-level motor PD gain
adaptation [13] to realize the tracking of the trajectories with
lower adaptive motor PD gains.

Finally, we plan to extend the analysis proposed here to
directly tune the low-level motor PD gains of the joints by
using a multi-dof system modeling the compliance with a
torsional spring-damper behavior at each joint.
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