

Evaluating Manual Annotation Quality

Karën Fort

karen.fort@loria.fr / https://members.loria.fr/KFort/

École thématique d'été "Annotations" - June 2nd, 2022

Qual Program

http://annotations-2022.llf-paris.fr/?fichier=programme

- ► Qual1: done
- ► Qual2: now
- Qual3: crowdsourcing

Some sources of inspiration

Reference articles:

- Inter-Coder Agreement for Computational Linguistics [Artstein and Poesio, 2008]
- The Unified and Holistic Method Gamma for Inter-Annotator Agreement Measure and Alignment [Mathet et al., 2015]
- Presentation from Massimo Poesio at LREC on the subject (with his approval)
- Gemma Boleda and Stefan Evert's course on the subject (with their approval) at ESSLLI 2009
- Yann Mathet

Introduction Motivations Metrics of|with reference

About agreements

CoefficientS

About the meaning of the coefficients

Annotating: back on chance

To finish

Fundamental question: are the annotations correct?

- ► systems learn errors from the human annotators (noise ≠ bias [Reidsma and Carletta, 2008])
- evaluation can be erroneous
- results from linguistic analyses or symbolic systems may be flawn and inconclusive

Reminder: consensus is at the heart of annotation "agree to measure" ("convenir pour mesurer") [Desrosières, 2008]

Annotation is about quantifying

Measuring vs quantifying [Desrosières, 2008] :

- measuring: implies some measurable form (e.g. the height of Mont Blanc)
- quantifying: implies establishing preliminary conventions of equivalence

The consensus needs to be equipped:

- annotation guidelines (12 p. for football)
- meetings with the annotators and the campaign manager

evaluate the consensus (consistency)

▶ we are interested in the validity of manual annotation

▶ we are interested in the validity of manual annotation

▶ *i.e.* if the annotated categories are correct

▶ we are interested in the **validity** of manual annotation

• *i.e.* if the annotated categories are correct

But there is no "ground truth"

we are interested in the validity of manual annotation

• *i.e.* if the annotated categories are correct

But there is no "ground truth"

linguistic categories are determined by human judgments

we are interested in the validity of manual annotation

- *i.e.* if the annotated categories are correct
- But there is no "ground truth"
 - linguistic categories are determined by human judgments
 - consequences: it is impossible to measure directly if a category is correct or not

- we are interested in the validity of manual annotation
 - *i.e.* if the annotated categories are correct
- But there is no "ground truth"
 - linguistic categories are determined by human judgments
 - consequences: it is impossible to measure directly if a category is correct or not
- we can only measure the reliability of the annotation

- we are interested in the validity of manual annotation
 - *i.e.* if the annotated categories are correct
- But there is no "ground truth"
 - linguistic categories are determined by human judgments
 - consequences: it is impossible to measure directly if a category is correct or not
- we can only measure the reliability of the annotation
 - i.e. if the human annotators make the same decisions in a consistent way ⇒ they have internalized the annotation schema

- we are interested in the validity of manual annotation
 - *i.e.* if the annotated categories are correct
- But there is no "ground truth"
 - linguistic categories are determined by human judgments
 - consequences: it is impossible to measure directly if a category is correct or not
- we can only measure the reliability of the annotation
 - i.e. if the human annotators make the same decisions in a consistent way ⇒ they have internalized the annotation schema
 - underlying hypothesis: high reliability implies validity of the annotation

- we are interested in the validity of manual annotation
 - *i.e.* if the annotated categories are correct
- But there is no "ground truth"
 - linguistic categories are determined by human judgments
 - consequences: it is impossible to measure directly if a category is correct or not
- we can only measure the reliability of the annotation
 - i.e. if the human annotators make the same decisions in a consistent way ⇒ they have internalized the annotation schema
 - underlying hypothesis: high reliability implies validity of the annotation
- How to evaluate this reliability?

Measuring the reliability (consistency) of the annotation

- ► each item is annotated by one annotator, with random checks (≈ second annotation)
- some items are annotated by two or more annotators
- each item is annotated by two or more annotators followed by a conciliation phase
- each item is annotated by two or more annotators followed by a final decision finale made by a superannotator (expert)

In all cases, the metric used to measure reliability is an (inter-annotator) agreement coefficient

In some cases (rare and often artificial), there is a "reference": le corpus a été annoté, au moins partiellement, et cette annotation est considérée comme "parfaite", une référence [Fort and Sagot, 2010].

In these cases, another, additionnal metric can be used:

which one?

In some cases (rare and often artificial), there is a "reference": le corpus a été annoté, au moins partiellement, et cette annotation est considérée comme "parfaite", une référence [Fort and Sagot, 2010].

In these cases, another, additionnal metric can be used:

F-measure

19/74

Recall: measures the quantity of found annotations

 $\mathsf{Recall} = \frac{\mathsf{Nb \ of \ correct \ found \ annotations}}{\mathsf{Nb \ of \ expected \ correct \ annotations}}$

Recall: measures the quantity of found annotations

 $\mathsf{Recall} = \frac{\mathsf{Nb of correct found annotations}}{\mathsf{Nb of expected correct annotations}}$

Silence: complement of recall (unfound correct annotations)
 Precision:

Recall: measures the quantity of found annotations

 $\mathsf{Recall} = \frac{\mathsf{Nb \ of \ correct \ found \ annotations}}{\mathsf{Nb \ of \ expected \ correct \ annotations}}$

Silence: complement of recall (unfound correct annotations)
 Precision: measures the quality of found annotations

 $\label{eq:Precision} \mathsf{Precision} = \frac{\mathsf{Nb} \; \mathsf{of} \; \mathsf{correct} \; \mathsf{found} \; \mathsf{annotations}}{\mathsf{Total} \; \mathsf{nb} \; \mathsf{of} \; \mathsf{found} \; \mathsf{annotations}}$

Recall: measures the quantity of found annotations

 $\mathsf{Recall} = \frac{\mathsf{Nb \ of \ correct \ found \ annotations}}{\mathsf{Nb \ of \ expected \ correct \ annotations}}$

Silence: complement of recall (unfound correct annotations)
 Precision: measures the quality of found annotations

$$Precision = \frac{Nb \text{ of correct found annotations}}{\text{Total nb of found annotations}}$$

Noise: complement of precision (found incorrect annotations)

F-measure: back to basics (Wikipedia)

Harmonic mean of the precision and recall or balanced F-score

 $F = 2x \frac{\text{precision } x \text{ recall}}{\text{precision} + \text{recall}}$

... or the F1 measure, recall and precision having similar weights.

A specific cas of $F\beta$ measure:

$$Feta=(1+eta^2)xrac{ extsf{precision xrecall}}{eta^2 extsf{xprecision + rappel}}$$

The value of β allows to favor:

• precision ($\beta = 0.5$)

"Gold-standard"?

- rare that a reference already exists
- ▶ can it be "perfect"? [Fort and Sagot, 2010]
- \rightarrow can we use the F-measure in other cases? See [Hripcsak and Rothschild, 2005]
- \Rightarrow Back to inter-annotator coefficients

Sources

Introduction

About agreements Observed agreement Expected agreement

CoefficientS

About the meaning of the coefficients

Annotating: back on chance

To finish

Example

Validation of semantic annotations (content/container):

Sentence	А	В	Agree?
Put tea in a heat-resistant jug and add the boiling	1	1	1
water.			
Where are the batteries kept in a phone?	×	1	×
Vinegar's usefulness doesn't stop inside the house.	×	×	1
How do I recognize a room that contains radioactive	1	1	1
materials?			
A letterbox is a plastic, screw-top bottle that con-	1	×	×
tains a small notebook and a unique rubber stamp.			

 \rightarrow Inter-annotator agreement?

Synthetic representation

	A			
		1	×	Total
	1	4	2	6
В	×	2	2	4
	Total	6	4	10

Observed agreement (A_o)

proportion of answers on which the annotators agree.

Here:

Synthetic representation

			A	A
		1	×	Total
	1	4	2	6
В	×	2	2	4
	Total	6	4	10

Observed agreement (A_o)

proportion of answers on which the annotators agree.

Here:
$$A_o = \frac{4+2}{10} = 0.6$$

... part of the agreement was due to **chance**: in our example, which agreement proportion can be due to chance?

What if...

... part of the agreement was due to chance:

- Two annotators annotating randomly will agree half of the time (0.5).
- Chance agreement varies according to the annotation schema and the annotated data.

The significant agreement is what is above chance. \rightarrow similar to the concept of *baseline*.

What if?

Practice

- each unit must be annotated
- ▶ 2 categories 🛸 and ∻
- ▶ 3 annotators: A_1 , A_2 and A_3

What are the different possibilities of annotating one unit (by the 3 annotators)?

In this case, it is impossible to get a null agreement (per pair of annotators):

A_1	A_2	A_3	Nb of agreeing pairs
*	*	*	?
-	*	~	?
*	~ ~	~ ~	?
~	~	~ ~	?
~	~	*	?
~	*	*	?
~	*	~	?
-	~	*	?

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
-	*	~	?
*	<i>~</i> >	~ ~	?
de tra	<i>~</i> >	~ ~	?
de tra	<i>~</i> >	*	?
de tra	*	*	?
÷	*	~	?
-	<i>~</i>	*	?
*	*	*	?

/	41	A_2	A ₃	Nb of agreeing pairs
	\$	*	*	3
•	1	*	~	1
		~ *	~ *	?
6	-	~	~	?
6		~	*	?
6		*	*	?
6		*	~	?
•	1	~	*	?
•	1	<i>~</i> ~	*	?

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
*	*	~	1
*	🦑	~	1
~	~	~	?
~	~	-	?
~	*	-	?
~	*	~	?
*	~	*	?

1	A_2	A ₃	Nb of agreeing pairs
	*	*	3
	*	~	1
	~	~	1
÷	~	~	3
÷	~	-	?
÷	*	*	?
÷	*	~	?
	~	*	?

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
*	*	~	1
-	~	~	1
æ	~	~	3
æ	~	-	1
de tra	*	-	?
æ	*	~	?
*	~~	*	?

A	1	A_2	A ₃	Nb of agreeing pairs
1		*	*	3
1		*	~	1
1		~	~	1
ų	÷	~	~	3
ų	÷	~	-	1
ų	÷	-	-	1
ų	÷	-	~	?
1		~	*	?

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
*	*	~	1
*	~	~	1
~	~	~	3
~	~	-	1
~	*	-	1
~	*	~	1
*	~	-	?

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
-	*	~	1
- 🛸	~	~	1
÷	~	~	3
÷	~	-	1
÷	*	-	1
÷	*	~	1
*	🦑	*	1

A_1	A_2	A ₃	Nb of agreeing pairs
*	*	*	3
*	*	~	1
-	~	~	1
÷	~	~	3
æ	~	*	1
æ	*	*	1
æ	*	~	1
*	~ >	*	1

In the worse case scenario, we would get 8x1/8x3 = 0.333

What if?

Practice (follow up)

- each unit must be annotated
- ► 2 categories
- 3 2 annotators

What are the different possibilities of annotating one unit?

Scales of agreement coefficients

The inter-annotator agreement is not computed on the same scale depending on cases:

Scales of agreement coefficients

The inter-annotator agreement is not computed on the same scale depending on cases:

 \rightarrow need for a certain correction of the observed results to be able to interpret the results

Taking Chance into Account

Expected Agreement (A_e)

expected value of observed agreement.

Amount of agreement above chance: $A_o - A_e$ Maximum possible agreement above chance: $1 - A_e$

Proportion of agreement above chance attained: $\frac{A_o - A_e}{1 - A_e}$

Perfect agreement: $\frac{1-A_e}{1-A_e}$ Perfect disagreement: $\frac{-A_e}{1-A_e}$ Expected Agreement

How to compute the amount of agreement expected by chance (A_e) ?

Sources

Introduction

About agreements

CoefficientS S Coefficient π Coefficient κ Coefficient

About the meaning of the coefficients

Annotating: back on chance

To finish

S [Bennett et al., 1954]

S

Same chance for all annotators and categories.

Number of category labels: qProbability of one annotator picking a particular category q_a : $\frac{1}{q}$ Probability of both annotators picking a particular category q_a : $(\frac{1}{q})^2$

Probability of both annotators picking the same category:

$$A_e^S = q.(\frac{1}{q})^2 = \frac{1}{q}$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

$$A_{o} = \frac{20+20}{50} = 0.8$$
$$A_{e}^{S} = \frac{1}{2} = 0.5$$
$$S = \frac{0.8-0.5}{1-0.5} = 0.6$$

	Yes	No	Total			
Yes	20	5	25			
No	5	20	25			
Total	25	25	50			
$A_o = \frac{20+2}{50}$	$\frac{20}{20} = 0$.8				
$A_o = rac{20+20}{50} = 0.8$ $A_e^S = rac{1}{2} = 0.5$						
$S = \frac{0.8 - 0}{1 - 0.8}$	$\frac{.5}{5} = 0$.6				

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

$$A_o = \frac{20+20}{50} = 0.8$$

$$A_e^S = \frac{1}{2} = 0.5$$

$$S = \frac{0.8-0.5}{1-0.5} = 0.6$$

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = \frac{20+20}{50} = 0.8$$

$$A_e^S = \frac{1}{4} = 0.25$$

$$S = \frac{0.8-0.25}{1-0.25} = 0.73$$

π [Scott, 1955]

 π

Different chance for different categories.

Total number of judgments: NProbability of one annotator picking a particular category q_a : $\frac{n_{q_a}}{N}$ Probability of both annotators picking a particular category q_a : $(\frac{n_{q_a}}{N})^2$

Probability of both annotators picking the same category:

$$\mathcal{A}^{\pi}_e = \sum_q (rac{n_q}{N})^2 = rac{1}{N^2} \sum_q n_q^2$$

Comparing ${\it S}$ and π

		Yes	No	Total	
	Yes	20	5	25	
	No	5	20	25	
	Total	25	25	50	
A.	o = 0.8				1
	= 0.6				- 1
-					

	Yes	No	С	D	Total	
Yes	20	5	0	0	25	
No	5	20	0	0	25	
С	0	0	0	0	0	
D	0	0	0	0	0	
Total	25	25	0	0	50	
	I					
$A_o = 0.8$						
S = 0.73						
5 - 0.15						

Comparing ${\it S}$ and π

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = 0.8$$

$$S = 0.6$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

 $A_o = 0.8$ S = 0.73

Comparing ${\it S}$ and π

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = 0.8$$

$$S = 0.6$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$A_o = 0.8$$

$$S = 0.73$$

$$A_e^{\pi} = \frac{\left(\frac{(25+25}{2})^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

κ [Cohen, 1960]

 κ

Different annotators have different interpretations of the instructions (bias/prejudice). κ takes individual bias into account.

```
Total number of items: i

Probability of one annotator A_x picking a particular category q_a:

\frac{n_{A_xq_a}}{i}

Probability of both annotators picking a particular category q_a:

\frac{n_{A_1q_a}}{i}. \frac{n_{A_2q_a}}{i}
```

Probability of both annotators picking the same category:

$$A_{e}^{\kappa} = \sum_{q} \frac{n_{A_{1}q}}{i} \cdot \frac{n_{A_{2}q}}{i} = \frac{1}{i^{2}} \sum_{q} n_{A_{1}q} n_{A_{2}q}$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8-0.5}{1-0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{50} = 0.5\\ \kappa &= \frac{0.8-0.5}{1-0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$A_e^{\kappa} = \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{50} = 0.5$$

$$\kappa = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{50} = 0.5\\ \kappa &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.68$$

$$A_e^{\pi} = \frac{\left(\frac{(\frac{38+32}{2})^2 + \left(\frac{32+38}{2}\right)^2\right)}{70^2}}{\pi} = 0.5$$

$$\pi = \frac{0.68 - 0.5}{1 - 0.5} = 0.36$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{50} = 0.5\\ \kappa &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.68$$

$$A_e^{\pi} = \frac{\left(\frac{38+32}{2}\right)^2 + \left(\frac{32+38}{2}\right)^2\right)}{70^2} = 0.5$$

$$\pi = \frac{0.68 - 0.5}{1 - 0.5} = 0.36$$

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8-0.5}{1-0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{50} = 0.5\\ \kappa &= \frac{0.8-0.5}{1-0.5} = \mathbf{0.6} \end{aligned}$$

$$\begin{aligned} A_o &= 0.68\\ A_e^{\pi} &= \frac{((\frac{38+32}{2})^2 + (\frac{32+38}{2})^2)}{70^2} = 0.5\\ \pi &= \frac{0.68 - 0.5}{1 - 0.5} = 0.36\\ A_e^{\kappa} &= \frac{(\frac{38\times32}{70}) + (\frac{32\times38}{70})}{70} = 0.49\\ \kappa &= \frac{0.68 - 0.49}{1 - 0.49} = 0.37 \end{aligned}$$

S, π and κ

For any sample:

$$\begin{array}{ll} A_e^{\pi} \geqslant A_e^{\mathcal{S}} & \pi \leqslant \mathcal{S} \\ A_e^{\pi} \geqslant A_e^{\kappa} & \pi \leqslant \kappa \end{array}$$

What is a "good" κ (or π or S)?

Sources

Introduction

About agreements

CoefficientS

About the meaning of the coefficients Interpretations Semantics

Annotating: back on chance

To finish

Scales of interpretation of Kappa

Giving meaning to the obtained results [COLING 2012a]

Creation of a "Richter" tool which:

- takes as input a reference annotation (real or automatically generated)
- generates degradations of a certain magnitude (from 0 to 1)
- applies one or several inter-annotator agreement metrics on each set of annotations (corresponding to a magnitude of degradation)

Richter on the TCOF-POS corpus

No prevalence, but proximity between categories (is taken into account):

Magnitude

Sources

Introduction

About agreements

CoefficientS

About the meaning of the coefficients

Annotating: back on chance Annotators under influence Experts, but of what?

To finish

Well-trained annotators are less sensitive to biases:

- ▶ of pre-annotation [Fort and Sagot, 2010]
- ▶ of the annotation tool [Dandapat et al., 2009]

and annotate less "by chance"

Using annotation guidelines allows to obtain better annotations [Nédellec et al., 2006]

Expert ?

Experts:

- of the domain: annotation in microbiology (gene renaming), football, etc.
- of the task: annotation with structured named entities
- ... some contradictions and shortfalls:
 - $\rightarrow\,$ to annotate structured named entities in old press, do we need specialists in structured named entities or historians?

Sources

Introduction

About agreements

CoefficientS

About the meaning of the coefficients

Annotating: back on chance

To finish WYHTR: What You Have To Remember

- ▶ Precision, recall, F-measure
- Accuracy (exactitude)
- Observed agreement
- ► S, κ, π
- Meaning

- Artstein, R. and Poesio, M. (2008). Inter-coder agreement for computational linguistics. Computational Linguistics, 34(4):555–596.

Bennett, E. M., Alpert, R., and C.Goldstein, A. (1954). Communications through limited questioning. Public Opinion Quarterly, 18(3):303–308.

- Cohen, J. (1960).
 A coefficient of agreement for nominal scales.
 Educational and Psychological Measurement, 20(1):37–46.
- Dandapat, S., Biswas, P., Choudhury, M., and Bali, K. (2009). Complex linguistic annotation - no easy way out! a case from bangla and hindi POS labeling tasks.
 In Proceedings of the third ACL Linguistic Annotation Workshop, Singapour.
- Desrosières, A. (2008).

Pour une sociologie historique de la quantification :

L'Argument statistique.

Presses de l'école des Mines de Paris.

Fort, K. and Sagot, B. (2010).

Influence of pre-annotation on POS-tagged corpus development.

In <u>Proceedings of the Fourth ACL Linguistic Annotation</u> Workshop, pages 56–63, Uppsala, Suède.

Green, A. M. (1997).

Kappa statistics for multiple raters using categorical classifications.

In <u>Proceedings of the Twenty-Second Annual Conference of</u> <u>SAS Users Group</u>, San Diego, USA.

Hripcsak, G. and Rothschild, A. S. (2005).

Agreement, the f measure, and reliability in information retrieval.

Journal of the American Medical Informatics Association (JAMIA), 12(3):296–298.

Krippendorff, K. (1980).

Content Analysis: An Introduction to Its Methodology. Sage, Beverly Hills, CA., USA.

- Landis, J. R. and Koch, G. G. (1977).
 The measurement of observer agreement for categorical data.
 <u>Biometrics</u>, 33(1):159–174.
- Mathet, Y., Widlöcher, A., Fort, K., François, C., Galibert, O., Grouin, C., Kahn, J., Rosset, S., and Zweigenbaum, P. (2012).
 Manual corpus annotation: Evaluating the evaluation metrics. In <u>Proceedings of the International Conference on</u> <u>Computational Linguistics (COLING)</u>, pages 809–818, Mumbaï, Inde. Poster.
- Mathet, Y., Widlöcher, A., and Métivier, J.-P. (2015). The unified and holistic method gamma (γ) for inter-annotator agreement measure and alignment. <u>Computational Linguistics</u>, 41(3):437–479.

Nédellec, C., Bessières, P., Bossy, R., Kotoujansky, A., and Manine, A.-P. (2006).

Annotation guidelines for machine learning-based named entity recognition in microbiology.

In et C. Nédellec, M. H., editor, <u>Proceedings of the Data and</u> text mining in integrative biology workshop, pages 40–54, Berlin, Allemagne.

- Reidsma, D. and Carletta, J. (2008). Reliability measurement without limits. Computational Linguistics, 34(3):319–326.
 - Scott, W. A. (1955). Reliability of content analysis: The case of nominal scale coding.
 <u>Public Opinion Quaterly</u>, 19(3):321–325.