
Encodages

Karën Fort

karen.fort@univ-lorraine.fr / https://members.loria.fr/KFort

1 / 97

https://members.loria.fr/KFort

Le langage de l’ordinateur

Normes

Désigner une langue

Conclusion

Pour finir

2 / 97

La langue de l’ordinateur

▶ Le texte n’existe pas en informatique

▶ Quelle langue ≪ parle ≫ l’ordinateur ? Quels sont ses mots ?

▶ Matériellement, un ordinateur ne comprend que le langage binaire, c’est-à-dire une
suite de 0 et de 1
Pour faire simple : du courant, pas de courant

▶ On appelle bit (BInary digiT) cette unité élémentaire d’information, qui peut
prendre comme valeur 0 ou 1

3 / 97

La langue de l’ordinateur

▶ Le texte n’existe pas en informatique

▶ Quelle langue ≪ parle ≫ l’ordinateur ? Quels sont ses mots ?

▶ Matériellement, un ordinateur ne comprend que le langage binaire, c’est-à-dire une
suite de 0 et de 1
Pour faire simple : du courant, pas de courant

▶ On appelle bit (BInary digiT) cette unité élémentaire d’information, qui peut
prendre comme valeur 0 ou 1

4 / 97

La langue de l’ordinateur

▶ Le texte n’existe pas en informatique

▶ Quelle langue ≪ parle ≫ l’ordinateur ? Quels sont ses mots ?

▶ Matériellement, un ordinateur ne comprend que le langage binaire, c’est-à-dire une
suite de 0 et de 1
Pour faire simple : du courant, pas de courant

▶ On appelle bit (BInary digiT) cette unité élémentaire d’information, qui peut
prendre comme valeur 0 ou 1

5 / 97

La langue de l’ordinateur

▶ Le texte n’existe pas en informatique

▶ Quelle langue ≪ parle ≫ l’ordinateur ? Quels sont ses mots ?

▶ Matériellement, un ordinateur ne comprend que le langage binaire, c’est-à-dire une
suite de 0 et de 1
Pour faire simple : du courant, pas de courant

▶ On appelle bit (BInary digiT) cette unité élémentaire d’information, qui peut
prendre comme valeur 0 ou 1

6 / 97

Allez, hop tous en combinaison (wooclap)

Exercice

Combien existe-t’il de possibilités de combiner 2 bits ?

7 / 97

Petite parenthèse : ça ne vous rappelle rien ?

(c) DVD Les shadoks, édition intégrale

Compter

8 / 97

https://www.youtube.com/watch?v=lP9PaDs2xgQ

Un peu plus loin dans les bases

▶ En fait, un processeur manipule plutôt des paquets de bits de taille fixe

▶ Les premiers processeurs fixèrent la taille de ces paquets à huit bits, soit un octet

▶ De huit bits (processeur 8086), les processeurs sont passés à 32 bits (Pentium 4),
pour arriver aujourd’hui à 64. Ces paquets correspondent en fait à la capacité de
transport (dans ses bus) et de traitement de la machine (taille des registres)

À noter

1 octet = 8 bits = 1 byte (en anglais)

9 / 97

Dites ≪ A ≫ !

▶ ≪ A ≫ est en fait une entité abstraite dont le nom est ≪ a majuscule ≫ et dont le
glyphe ressemble à un triangle dont on aurait raccourci et remonté le côté bas
[dessin]

▶ Comment dit-on ≪ A ≫ à un ordinateur ?

▶ 01000001

10 / 97

Dites ≪ A ≫ !

▶ ≪ A ≫ est en fait une entité abstraite dont le nom est ≪ a majuscule ≫ et dont le
glyphe ressemble à un triangle dont on aurait raccourci et remonté le côté bas
[dessin]

▶ Comment dit-on ≪ A ≫ à un ordinateur ?

▶ 01000001

11 / 97

Dites ≪ A ≫ !

▶ ≪ A ≫ est en fait une entité abstraite dont le nom est ≪ a majuscule ≫ et dont le
glyphe ressemble à un triangle dont on aurait raccourci et remonté le côté bas
[dessin]

▶ Comment dit-on ≪ A ≫ à un ordinateur ?

▶ 01000001

12 / 97

Dites ≪ A ≫ !

▶ ≪ A ≫ est en fait une entité abstraite dont le nom est ≪ a majuscule ≫ et dont le
glyphe ressemble à un triangle dont on aurait raccourci et remonté le côté bas
[dessin]

▶ Comment dit-on ≪ A ≫ à un ordinateur ?

▶ 01000001

À noter

1 caractère = 1 octet (attention, simplification !)

13 / 97

Le byte et ses bits (wooclap)

Exercice

Combien de valeurs peut-on coder sur un octet ?

14 / 97

Quelques exemples

Caractère Code Binaire Description

A 01000001 Caractère ≪ A ≫

a 01100001 Caractère ≪ a ≫

T 01010100 Caractère ≪ T ≫

t 01110100 Caractère ≪ t ≫

3 00110011 Caractère ≪ 3 ≫

$ 00100100 Caractère ≪ $ ≫

BEL 00000111 Bip

À noter

▶ pour passer de la majuscule à la minuscule, il suffit de mettre le troisième bit à 1

▶ les caractères chiffres ont leur propre code

▶ il n’existe qu’un ≪ A ≫, qui s’affiche différemment selon les polices ou le style (voir
Définitions)

15 / 97

Dites ≪ Bonjour ≫ à la dame (wooclap)

Exercice

Combien de bits dans ≪ Bonjour ≫ ?

16 / 97

Donc, l’ordinateur cause octet, so what ?

Il faut un traducteur pour que notre texte soit ≪ codé ≫ et ≪ décodé ≫ proprement, de
manière standardisée

C’est là qu’interviennent les tables de conversion, ou les encodages

17 / 97

Récapitulons

▶ un ordinateur ne comprend que le langage binaire, c’est-à-dire une suite de 0 et de
1

▶ l’objet qui prend comme valeur 0 ou 1 est appelé bit

▶ en simplifiant : 1 caractère = 1 octet = 8 bits

18 / 97

Le langage de l’ordinateur

Normes
ASCII
ISO
Unicode
Limitations d’Unicode

Désigner une langue

Conclusion

Pour finir

19 / 97

Da ASCII code

▶ Au début de l’informatique, on estimait que coder les caractères sur 7 bits, ça
suffisait bien, puisque ça permet de représenter 27=128 caractères différents.
≪ A ≫ est donc codé 1000001

▶ C’est ainsi que fut créée la table ASCII (American Standard Code for Information
Interchange), publiée en 1968

▶ Très longtemps ce fut LA table de référence en informatique, à tel point qu’elle
devint une norme : ISO-646

20 / 97

Table ASCII : ça suffit, non ?

Non, ça ne suffit pas

21 / 97

Big Blue invente l’ASCII étendu

▶ 1981, IBM sort son premier PC et ajoute un bit à l’ASCII

▶ L’ASCII étendu OEM ((Original Equipment Manufacturer) permet donc de coder
256 caractères (28) et certains sont contents de pouvoir fêter Noël

▶ Ce code ASCII étendu n’est pas unique et dépend fortement de la plate-forme
utilisée

22 / 97

Table ASCII étendu OEM

On imagine la tête de ceux qui ont besoin d’écrire водка. . .

23 / 97

La famille ISO

. . .d’où l’idée de créer différents jeux de caractères au gré des besoins de chaque langue

▶ À partir de 1987 la table ASCII étendue fut déclinée en de multiples variations
(toujours codées sur un octet)

▶ Les 128 premiers caractères de tous les jeux ISO 8859 correspondent aux
caractères ASCII

▶ La norme ISO 8859 contient aujourd’hui 16 tables, numérotées de 1 à 16 :1 pour
les langues dites occidentales, 2 pour les langues d’Europe centrale/de l’Est, 5
pour le cyrillique, 6 pour l’arabe, 7 pour le grec, 8 pour l’hébreu, etc

24 / 97

Exemple : ISO-8859-1

La table ISO-8859-1 définit ce qu’elle appelle l’alphabet latin numéro 1 ou latin-1 : 191
caractères de l’alphabet latin

25 / 97

Exemple : ISO-8859-5

Remarquez les 128 premiers caractères. . .

26 / 97

Exemple : ISO-8859-15

Aussi connue sous le nom de Latin-9 (?), c’est une extension directe d’ISO 1 (mais
plus tardive), à l’exception de 8 caractères

Différences ISO 8859-1 / ISO 8859-15 :

27 / 97

Vous en aviez assez ?

Évidemment, parmi les encodages les plus courants se trouve des encodages
≪ maison ≫ :

▶ Microsoft : Windows1252 et al.

▶ Apple : MacRoman

28 / 97

Limitations

▶ Problèmes d’incomplétude ou d’affichage pour certaines langues

▶ Impossible d’écrire du russe et du français (hors ASCII) dans un seul et même
fichier

▶ Problèmes d’erreurs dues à la quasi-superposition de certains encodages ($ se
transformant en £, par exemple)

▶ Et le milliard de Chinois ?

29 / 97

Parenthèse sur le chinois

▶ Il existe deux jeux d’écriture du (des) chinois : le simplifié, utilisé dans la
République Populaire de Chine et à Singapour et le traditionnel, plus répandu
dans la diaspora, à Täıwan Hong Kong, Macao.

▶ A chaque type d’écriture son encodage, en particulier : GB 2312-80 (ou Guobiao)
pour le chinois simplifié, avec 6 763 caractères seulement (! !), et Big5 pour le
traditionnel, avec 13 053 caractères.

▶ 13 053 caractères ? ! Mais ils les mettent où ?

▶ Les Chinois ont tout simplement plus de bits pour coder leurs jeux de caractères :
16 exactement (soit 2 octets)

30 / 97

Parenthèse sur le chinois

▶ Il existe deux jeux d’écriture du (des) chinois : le simplifié, utilisé dans la
République Populaire de Chine et à Singapour et le traditionnel, plus répandu
dans la diaspora, à Täıwan Hong Kong, Macao.

▶ A chaque type d’écriture son encodage, en particulier : GB 2312-80 (ou Guobiao)
pour le chinois simplifié, avec 6 763 caractères seulement (! !), et Big5 pour le
traditionnel, avec 13 053 caractères.

▶ 13 053 caractères ? ! Mais ils les mettent où ?

▶ Les Chinois ont tout simplement plus de bits pour coder leurs jeux de caractères :
16 exactement (soit 2 octets)

31 / 97

Parenthèse sur le chinois

▶ Il existe deux jeux d’écriture du (des) chinois : le simplifié, utilisé dans la
République Populaire de Chine et à Singapour et le traditionnel, plus répandu
dans la diaspora, à Täıwan Hong Kong, Macao.

▶ A chaque type d’écriture son encodage, en particulier : GB 2312-80 (ou Guobiao)
pour le chinois simplifié, avec 6 763 caractères seulement (! !), et Big5 pour le
traditionnel, avec 13 053 caractères.

▶ 13 053 caractères ? ! Mais ils les mettent où ?

▶ Les Chinois ont tout simplement plus de bits pour coder leurs jeux de caractères :
16 exactement (soit 2 octets)

32 / 97

Parenthèse sur le chinois

▶ Il existe deux jeux d’écriture du (des) chinois : le simplifié, utilisé dans la
République Populaire de Chine et à Singapour et le traditionnel, plus répandu
dans la diaspora, à Täıwan Hong Kong, Macao.

▶ A chaque type d’écriture son encodage, en particulier : GB 2312-80 (ou Guobiao)
pour le chinois simplifié, avec 6 763 caractères seulement (! !), et Big5 pour le
traditionnel, avec 13 053 caractères.

▶ 13 053 caractères ? ! Mais ils les mettent où ?

▶ Les Chinois ont tout simplement plus de bits pour coder leurs jeux de caractères :
16 exactement (soit 2 octets)

33 / 97

Les éléphants d’Asie

Exercice

Combien de valeurs peut-on représenter sur 16 bits ?

34 / 97

Les éléphants d’Asie

Exercice

Combien de valeurs peut-on représenter sur 16 bits ?
→ 2x2x2x2x2x2x2x2x2x2x2x2x2x2x2x2=216=65 536
→ Ça suffit donc pour le chinois, même traditionnel. D’ailleurs, même 14 bits auraient
suffi. . .(214=16 384)
Alors pourquoi 16 ?
→ Parce que c’est incomparablement plus pratique, étant donné que l’ordinateur gère
des octets

35 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

36 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

37 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка

▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

38 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€

▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

39 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

40 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

41 / 97

Récapitulons

▶ 1968 - ASCII (7 bits) : c’est pas Noël !

▶ 1981 - ASCII étendu (8 bits) : c’est Noël sans la водка
▶ 1987 - Les ISO (8 bits) : Noël avec водка à part, mais toujours pas d’€
▶ 1997 - ISO-8859-15 (8 bits) : mise à jour d’ISO-8859-1, on passe à l’€ !

▶ En parallèle, des encodages ≪ maison ≫ (8 bits) : mêmes défauts qu’ISO. Ne sont
pas reconnus comme normes

▶ On en reste à 8 bits = 256 caractères possibles, or le chinois en compte beaucoup
plus !

42 / 97

Le projet Unicode

En 1988 (?) est élaboré un projet un peu fou : recenser tous les caractères de toutes
les langues écrites existantes ou ayant existé et mettre au point une table de référence
universelle capable de coder tout ça

L’entreprise colossale est aussitôt baptisée projet Unicode

Unicode se veut :

▶ universel : toutes les langues doivent être couvertes (même les plus rares)

▶ efficace : simple à analyser

▶ uniforme : nombre fixe de bits

▶ non-ambigu : une valeur = un seul caractère (une fois codé, éternel !)

43 / 97

La couverture d’Unicode

▶ Les 255 premiers caractères de la table Unicode sont ceux de la table ISO-5589-1

▶ Première étape : les 63 586 caractères les plus utilisés sont réunis dans le Plan
Multilingue de Base (PMB ou BMP en anglais)

▶ Première publication de la norme Unicode, en 1991 : 65 536 caractères sont
recensés et encodés

▶ Aujourd’hui, Unicode version 17.0 (sept. 2025) contient 159 801 caractères

44 / 97

La couverture d’Unicode

▶ Les 255 premiers caractères de la table Unicode sont ceux de la table ISO-5589-1

▶ Première étape : les 63 586 caractères les plus utilisés sont réunis dans le Plan
Multilingue de Base (PMB ou BMP en anglais)

▶ Première publication de la norme Unicode, en 1991 : 65 536 caractères sont
recensés et encodés

▶ Aujourd’hui, Unicode version 17.0 (sept. 2025) contient 159 801 caractères

45 / 97

La couverture d’Unicode

▶ Les 255 premiers caractères de la table Unicode sont ceux de la table ISO-5589-1

▶ Première étape : les 63 586 caractères les plus utilisés sont réunis dans le Plan
Multilingue de Base (PMB ou BMP en anglais)

▶ Première publication de la norme Unicode, en 1991 : 65 536 caractères sont
recensés et encodés

▶ Aujourd’hui, Unicode version 17.0 (sept. 2025) contient 159 801 caractères

46 / 97

La couverture d’Unicode

▶ Les 255 premiers caractères de la table Unicode sont ceux de la table ISO-5589-1

▶ Première étape : les 63 586 caractères les plus utilisés sont réunis dans le Plan
Multilingue de Base (PMB ou BMP en anglais)

▶ Première publication de la norme Unicode, en 1991 : 65 536 caractères sont
recensés et encodés

▶ Aujourd’hui, Unicode version 17.0 (sept. 2025) contient 159 801 caractères

47 / 97

Ce qu’il y a dans Unicode
https ://tonsky.me/blog/unicode/

48 / 97

Le point de code Unicode

▶ En Unicode, une lettre correspond à quelque chose appelé un point de code qui
n’est qu’un concept théorique

▶ Toute les lettres de tous les alphabets se sont vues attribuer un point de code par
le consortium Unicode

▶ Ce point de code s’écrit : U+XXXX. Le U+ signifie ≪ Unicode ≫, et les X derrière
sont en héxadécimal. U+FEC9 est la lettre arabe Ain. La lettre ≪ A ≫ correspond
à U+0041

▶ Exemple : ≪ Bonjour ≫

U+0042 U+006F U+006E U+006A U+006F U+0075 U+0072

49 / 97

Exercice

Que représente U+1F4A9 ?

50 / 97

C’est bien beau tout ça, mais l’ordinateur il en fait quoi ?

▶ Le consortium Unicode a prévu trois principaux formats ≪ transformés ≫ pour
l’encodage des point de code en binaire. Ces formats de transformation sont
baptisés UTF(Unicode Transformation Format)

▶ UTF-32, UTF-16, UTF-8

▶ Le principe intangible derrière ces transformations étant que tout point de code
Unicode doit pouvoir être retrouvé sans ambigüıté à partir de sa version
transformée

51 / 97

Le gros simplet : UTF-32

▶ En UTF-32 (ou UCS-4), tout point de code Unicode est directement codé en sa
valeur binaire, sur un nombre fixe de bits (32) l’encodage revenant alors à une
simple conversion vers le binaire

▶ En contrepartie, ce format se révèle également le plus gourmand en ressources
puisque chaque caractère, qu’il soit un ≪ e ≫ universel ou un idéogramme
sud-indonésien, nécessitera quatre octets pour être codé

▶ UTF-32 est donc assez peu utilisé

52 / 97

L’indécis : UTF-16

▶ UTF-16 décompose les caractère Unicode en seizets binaires, soit 2 octets

▶ Ces 2 octets suffisent largement pour coder les caractères du PMB (partie
correspondant à UCS-2)

▶ On utilise 2 seizets pour coder les autres. Ces seizets sont appelés seizets
d’indirection (surrogate pair en anglais)

▶ UTF-16 est donc un encodage de longueur variable, en 16 ou 32 bits

53 / 97

L’économe : UTF-8

▶ Le format UTF-8 est, encore plus qu’UTF-16, un procédé d’encodage à ≪ taille
variable ≫

▶ En UTF-8, chaque point de code de 0 à 127 (ASCII) est stocké sur un seul octet

▶ Les points de code à partir de 128 et au delà sont stockés en utilisant 2, 3, et
jusqu’à 4 octets (6 en principe) !

54 / 97

L’économe : UTF-8

▶ Le format UTF-8 est, encore plus qu’UTF-16, un procédé d’encodage à ≪ taille
variable ≫

▶ En UTF-8, chaque point de code de 0 à 127 (ASCII) est stocké sur un seul octet

▶ Les points de code à partir de 128 et au delà sont stockés en utilisant 2, 3, et
jusqu’à 4 octets (6 en principe) !

55 / 97

L’économe : UTF-8

▶ Le format UTF-8 est, encore plus qu’UTF-16, un procédé d’encodage à ≪ taille
variable ≫

▶ En UTF-8, chaque point de code de 0 à 127 (ASCII) est stocké sur un seul octet

▶ Les points de code à partir de 128 et au delà sont stockés en utilisant 2, 3, et
jusqu’à 4 octets (6 en principe) !

56 / 97

UTF-8 : comment ça marche ?
https ://tonsky.me/blog/unicode/

57 / 97

Conclusion : machin-byte

▶ UTF-32 code toujours sur 4 octets

▶ UTF-16 est double-byte, puisqu’il utilise 2 octets (sauf pour les caractères qui
nécessite des ≪ surrogate pairs ≫)

▶ UTF-8 est lui multibyte, car il utilise entre 1 et 4 octets pour coder un caractère

58 / 97

Résumé

▶ UTF-32 : ⊔ ⊔ ⊔ ⊔

▶ UTF-16 : ⊔ ⊔ + ⊔ ⊔
▶ UTF-8 : ⊔ + ⊔ + ⊔ + ⊔

59 / 97

Résumé

▶ UTF-32 : ⊔ ⊔ ⊔ ⊔
▶ UTF-16 : ⊔ ⊔ + ⊔ ⊔

▶ UTF-8 : ⊔ + ⊔ + ⊔ + ⊔

60 / 97

Résumé

▶ UTF-32 : ⊔ ⊔ ⊔ ⊔
▶ UTF-16 : ⊔ ⊔ + ⊔ ⊔
▶ UTF-8 : ⊔ + ⊔ + ⊔ + ⊔

61 / 97

Qui c’est le meilleur ?

▶ Avantages et inconvénients de chaque UTF ?

▶ UTF-32 est de longueur fixe, dont facile à traiter, mais il prend de la place

▶ UTF-16 est parfois plus délicat à manipuler, mais il prend moins de place et
permet un bonne efficacité, même sur les caractères plus rares pour nous. C’est
l’encodage du langage de programmation Java

▶ UTF-8 est le plus optimal pour un usage occidental, mais il prend beaucoup de
place pour coder certains caractères. Il est en outre délicat à manipuler

62 / 97

Parenthèse sur les œufs durs

▶ Pour transmettre une séquence d’octets dans un flux de données, par exemple la
lettre ≪ A ≫ (U+0041), on a le choix : on peut commencer par l’octet de poids
faible puis l’octet de poids fort ([00] puis [41]) ou le contraire ([41] puis [00]),
tout dépend du processeur

▶ Par exemple, les SPARC (Solaris) étaient en big-endian alors que les Intel (PC et
Mac) étaient/sont en little-endian

▶ Comment gérer ça en Unicode ?

63 / 97

Parenthèse sur les œufs durs

▶ Pour transmettre une séquence d’octets dans un flux de données, par exemple la
lettre ≪ A ≫ (U+0041), on a le choix : on peut commencer par l’octet de poids
faible puis l’octet de poids fort ([00] puis [41]) ou le contraire ([41] puis [00]),
tout dépend du processeur

▶ Par exemple, les SPARC (Solaris) étaient en big-endian alors que les Intel (PC et
Mac) étaient/sont en little-endian

▶ Comment gérer ça en Unicode ?

64 / 97

Parenthèse sur les œufs durs

▶ Pour transmettre une séquence d’octets dans un flux de données, par exemple la
lettre ≪ A ≫ (U+0041), on a le choix : on peut commencer par l’octet de poids
faible puis l’octet de poids fort ([00] puis [41]) ou le contraire ([41] puis [00]),
tout dépend du processeur

▶ Par exemple, les SPARC (Solaris) étaient en big-endian alors que les Intel (PC et
Mac) étaient/sont en little-endian

▶ Comment gérer ça en Unicode ?

65 / 97

Les petits et les grands Boutistes

▶ solution BE (pour Big Endian) : les octets sont transmis dans un ordre décroissant
de poids (le point de code U+0041 est donc décomposé en la séquence [00-41])

▶ solution LE (pour Little Endian) : les octets sont transmis dans un ordre croissant
de poids (le point de code U+0041 est alors décomposé en la séquence [41-00])

66 / 97

Les indéterminés

▶ solution indéterminée : on peut choisir entre l’une ou l’autre méthode à condition
d’indiquer en tout début de transmission la solution retenue, grâce à un point de
code particulier appelé BOM (Byte Order Mark) et codé U+FEFF (big-endian) ou
FFFE (little-endian)

À noter

la BOM n’est utile qu’en UTF-16 et UTF-32, mais elle est souvent ajoutée pour
marquer l’UTF-8 (mais n’est pas obligatoire).
Elle est alors encodée EF BB BF

67 / 97

En quoi ça nous concerne ?

▶ Avez-vous déjà rencontré un ı̈≫¿ en début de fichier, dans Notepad, par exemple ?

▶ C’est la représentation en ISO 1 d’une BOM et ça prouve que votre fichier est en
UTF-8

▶ Ça prouve aussi que votre éditeur est une truffe

▶ La BOM peut aussi poser des problèmes à certains programmes

68 / 97

En quoi ça nous concerne ?

▶ Avez-vous déjà rencontré un ı̈≫¿ en début de fichier, dans Notepad, par exemple ?

▶ C’est la représentation en ISO 1 d’une BOM et ça prouve que votre fichier est en
UTF-8

▶ Ça prouve aussi que votre éditeur est une truffe

▶ La BOM peut aussi poser des problèmes à certains programmes

69 / 97

En quoi ça nous concerne ?

▶ Avez-vous déjà rencontré un ı̈≫¿ en début de fichier, dans Notepad, par exemple ?

▶ C’est la représentation en ISO 1 d’une BOM et ça prouve que votre fichier est en
UTF-8

▶ Ça prouve aussi que votre éditeur est une truffe

▶ La BOM peut aussi poser des problèmes à certains programmes

70 / 97

En quoi ça nous concerne ?

▶ Avez-vous déjà rencontré un ı̈≫¿ en début de fichier, dans Notepad, par exemple ?

▶ C’est la représentation en ISO 1 d’une BOM et ça prouve que votre fichier est en
UTF-8

▶ Ça prouve aussi que votre éditeur est une truffe

▶ La BOM peut aussi poser des problèmes à certains programmes

71 / 97

Récapitulons

▶ Unicode : norme permettant de coder tous les caractères de toutes les langues du
monde de manière non ambiguë

▶ Distinction points de code et formats de transformation

▶ Les UTF (formats de transformation) : UTF-32 (4 octets), UTF-16 (2+2 octets),
UTF-8 (de 1 à 4 octets)

▶ La BOM (Byte Order Mark) : sert d’indicateur de sens pour la lecture des octets,
peut apparâıtre au début de certains fichiers utf-8 sous la forme ı̈≫¿

72 / 97

Limitations d’Unicode (1/2)

▶ Le Consortium Unicode est agité de nombreux débats, ce qui est plutôt bon signe !

▶ Exemple 1 : le Consortium Unicode et l’ISO considèrent que les caractères chinois,
coréens et japonais sont les mêmes, que seuls les glyphes diffèrent... ce qui fait
l’objet d’un débat houleux.

▶ Exemple 2 : certaines écritures africaines représentant des populations importantes
(le tifinagh par exemple) ne sont pas aussi bien représentées que des écritures
américaines bien moins utilisées (le déséret, par exemple).

73 / 97

Limitations d’Unicode (2/2)

▶ Exemple 3 : certains Bretons se plaignent de l’absence du K barré et de caractères
uniques pour représenter CH et C’H.

▶ Exemple 4 : d’aucuns reprochent à Unicode d’avoir apparemment favorisé
certaines écritures en les codant d’une façon plus simple ou plus adéquate. Le
gothique, par exemple, n’est pas codé en tant que tel et son affichage correct
nécessite l’ajout d’un protocole de niveau supérieur ou de caractères de commande
à sa translittération latine.

74 / 97

75 / 97

Le langage de l’ordinateur

Normes

Désigner une langue

Conclusion

Pour finir

76 / 97

Comment désigner une langue ?

Donner un nom a une langue est délicat. En effet, le nom des langues désignées est
défini par la langue d’usage.
ex. : allemand, deutch, German, tedesco, ... désigne la langue allemande (en français,
allemand, anglais, slovène, italien, ...)

Il est délicat de choisir une langue particulière pour faire cette désignation (ex : tout
désigner en anglais...).

On ne peut pas non plus choisir de désigner une langue sous son nom ”propre” (ex :
English pour anglais, français pour français,...). Cela serait délicat à écrire pour les
langues orales, et difficiles à prononcer pour les langues à système d’écriture inconnu
du lecteur...

77 / 97

Comment désigner une langue ?

Il faut donc trouver un système pour nommer une langue qui soit :

▶ simple à mettre en œuvre,

▶ facilement transportable (utilisation uniquement de caractères ASCII),

▶ compréhensible par tous (via une norme).

Il s’agit de la norme ISO-639.

78 / 97

la norme ISO-639

ISO 639 fournit trois 1 ensembles de codes de langues :

▶ ISO 639-1 (alpha-2) utilise des codes sur 2 caractères, et les associent avec les
noms en français, en anglais et dans la langue elle-même ;

▶ ISO 639-2 (alpha-3) utilise des codes sur 3 caractères et a deux codages
possibles : ISO 639-2/B (bibliographiques) et ISO 639-2/T (terminologiques) ; les
codes sont associés avec des noms en français et en anglais.

▶ ISO 639-3 complète l’ISO 639-2 avec de très nombreuses autres langues encore
manquantes ; SIL 2 en est l’auteur principal et est en charge des enregistrements
dans ce volet de la norme ; seuls les noms en anglais sont associés aux codes
ajoutés.

1. nouveau en 2007
2. www.sil.org

79 / 97

la norme ISO-639 (suite)

Ces trois ensembles ont des motivations différentes :

▶ ISO 639-1 (alpha-2) a été construit principalement pour des utilisation en
terminologie, lexicographie et linguistique ; il contient des langues répandues et
pour lesquelles il existe de nombreuses ressources terminologiques ;

▶ ISO 639-2 (alpha-3) a été construit pour des utilisations en bibliographie et
terminologie ; il contient les langages de la partie 1, ainsi que de nombreux autres
ayant une littérature abondante.

▶ ISO 639-3 vise à fournir une énumération de langues la plus complète possible, y
compris les langues vivantes, les langues mortes, les langues anciennes et les
langues construites artificiellement 3, qu’elles soient majeures ou mineures, écrites
ou orales.

3. comme l’espéranto, le volapük, le klingon, etc. il ne s’agit pas de langages artificiels
80 / 97

Présentation de la norme ISO 639-3

L’ensemble des codes :

CREATE TABLE ISO_639-3 (

Id char(3) NOT NULL,

-- The three-letter 639-3 identifier

Part2B char(3) NULL,

-- Equivalent 639-2 identifier of the bibliographic applications

-- code set, if there is one

Part2T char(3) NULL,

-- Equivalent 639-2 identifier of the terminology applications

-- code set, if there is one

Part1 char(2) NULL,

-- Equivalent 639-1 identifier, if there is one

Scope char(1) NOT NULL,

-- I(ndividual), M(acrolanguage), S(pecial)

Type char(1) NOT NULL,

-- A(ncient), C(onstructed),

-- E(xtinct), H(istorical), L(iving), S(pecial)

Ref_Name varchar(150) NOT NULL)

-- Reference language name
81 / 97

Extrait de la table des codes

Id Part2B Part2T Part1 Scope Type Ref Name
aao I L Algerian Saharan Arabic
abh I L Tajiki Arabic
ara ara ara ar M L Arabic
czh I L Huizhou Chinese
deu ger deu de I L German
epo epo epo eo I C Esperanto
fra fre fra fr I L French
frm frm frm I H Middle French (ca. 1400-1600)
fro fro fro I H Old French (842-ca. 1400)
mis mis mis S S Uncoded languages
mjy I E Mahican
mul mul mul S S Multiple languages
nut I L Nung (Viet Nam)
und und und S S Undetermined
vie vie vie vi I L Vietnamese
zho chi zho zh M L Chinese
zxx zxx zxx S S No linguistic content

82 / 97

Présentation de la norme ISO 639-3

Le mapping des ”macrolangues” :

CREATE TABLE ISO_639-3_Macrolanguages (

M_Id char(3) NOT NULL, -- The identifier for a macrolanguage

I_Id char(3) NOT NULL) -- The identifier for an individual language

-- that is a member of the macrolanguage

83 / 97

Extrait de la table des Macrolangues

M Id I Id Explication

ara aao Algerian Saharan Arabic fait partie de Arabic
ara abh Tajiki Arabic fait partie de Arabic
ara abv
zho cjy
zho cmn
zho cpx
zho czh Huizhou Chinese fait partie de Chinese

84 / 97

Autres informations en vrac

▶ il existe une table décrivant les code ayant été retirés (si vous ne trouvez pas le
votre...)

▶ les codes qaa à qtz sont des codes réservés à un usage local ; ils ne doivent être
transmis qu’après accord entre les parties

▶ le ISO 639-3 Registration Authority est SIL International, www.sil.org (Dallas,
Texas)

▶ la table des codes contient 7642 entrées (430 langues mortes, 4 spéciales, 63
historiques, 114 anciennes, 17 construites)

85 / 97

Autres problèmes liés au multilinguisme

▶ Right-to-left (arabe, hébreu) : ou comment insérer un système d’écriture de droite
à gauche dans un système d’écriture de gauche à droite (Texte bi-directionnel) ?
Facile, des marques de contrôle sont prévues afin de pouvoir changer le sens
d’écriture (en HTML, attribut DIR=”rtl” ou ”ltr”).

▶ Agglutinations (arabe).

86 / 97

Les retours à la ligne, ne quittez pas !

▶ Selon les plate-formes, le caractère représentant le saut de ligne n’est pas le même.

▶ Windows : CR+LF (Carriage Return Line Feed, héritage de la machine à écrire !)

▶ Monde Unix : LF

▶ Mac : CR

87 / 97

Les raccourcis ? Même pas peur !

▶ Il existe un UTF-7, utilisé pour les mails, par exemple.

▶ Des vrais chiffres peuvent être déclarés pour que l’ordinateur fasse des opérations
dessus.

▶ Il existe un troisième jeu de caractères en chinois, le nushu, utilisé uniquement par
des femmes...

88 / 97

Les raccourcis ? Même pas peur !

▶ Il existe un UTF-7, utilisé pour les mails, par exemple.

▶ Des vrais chiffres peuvent être déclarés pour que l’ordinateur fasse des opérations
dessus.

▶ Il existe un troisième jeu de caractères en chinois, le nushu, utilisé uniquement par
des femmes...

89 / 97

Les raccourcis ? Même pas peur !

▶ Il existe un UTF-7, utilisé pour les mails, par exemple.

▶ Des vrais chiffres peuvent être déclarés pour que l’ordinateur fasse des opérations
dessus.

▶ Il existe un troisième jeu de caractères en chinois, le nushu, utilisé uniquement par
des femmes...

90 / 97

Les outils qui sauvent

▶ Bon éditeur de texte brut : Notepad++ (Windows), Sublime Text (Windows,
Mac, Linux), Gedit (Linux)

▶ Editeur qui permette l’ouverture en binaire (hexa) : Visual, Eclipse (outils de dév.)

91 / 97

Définitions (Wikipedia) 1/3

▶ bit : unité de mesure désignant la quantité élémentaire d’information représentée
par un chiffre du système binaire.

▶ octet : une unité de mesure en informatique mesurant la quantité de données. Un
octet est lui-même composé de 8 bits, soit 8 chiffres binaires. Le byte, soit la plus
petite unité adressable d’un ordinateur, a presque toujours une taille d’un octet et
les deux mots sont généralement, mais abusivement, considérés comme
synonymes.

92 / 97

Définitions 2/3

▶ charset / jeu de caractères : ensemble de caractères.
Exemple : ISO Latin-1, Unicode.

▶ encodage : façon dont les caractères, dans un alphabet donné, sont convertis en
octet. L’encodage n’indique absolument pas comment ces caractères seront
affichés à l’écran ou après impression.
Exemple : iso-8859-1, UTF-8.

93 / 97

Définitions (Wikipedia) 3/3

▶ police et fonte : une fonte de caractères, en typographie, est un ensemble de
glyphes, c’est-à-dire de représentations visuelles de caractères, d’une même
famille, de même style, corps et graisse. Elle se distingue de la police d’écriture qui
regroupe tous les corps et graisses d’une même famille, dont le style est coordonné.

94 / 97

Le langage de l’ordinateur

Normes

Désigner une langue

Conclusion

Pour finir
CQFR : Ce Qu’il Faut Retenir
TD

95 / 97

▶ bit, octet

▶ ASCII, tables ISO, Unicode

▶ ISO 639

96 / 97

Exercice non noté

La fonction ord de python3 renvoie le code unicode d’un caractère. chr est la fonction
inverse.
La liste [233, 112, 97, 116, 97, 110, 116, 32, 33] correspond à la liste des codes
unicodes d’une châıne.

Laquelle ?

97 / 97

	Le langage de l'ordinateur
	Normes
	ASCII
	ISO
	Unicode
	Limitations d'Unicode

	Désigner une langue
	Conclusion
	Autres problèmes
	Retours à la ligne
	Critique

	Références
	Outils
	Définitions

	Pour finir
	CQFR : Ce Qu'il Faut Retenir
	TD

