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Very few systemic approaches to the problem

I [Lefeuvre et al., 2015] (in French): a consequentialist grid for an ethical
assessment of researches and applications

I [Fort and Amblard, 2018] (in French): a deontological, systemic view on ethics in
NLP

I [Bender et al., 2021]: the dangers of large language models (impact on people a
posteriori)
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”Overselling” research results

vs [Bender and Koller, 2020]
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Carbon footprint

[Strubell et al., 2019]

Note: this concerns only 1 source out of four [Bannour et al., 2021] ⇒ largely
under-estimated
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Models trained once and for all?
from a presentation of [Bender et al., 2021]

[Bender et al., 2021]
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Water consumption
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BigTech’s presence in NLP [Abdalla et al., 2023]
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Why it’s important!
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Personal Data

https://gdpr-info.eu/art-4-gdpr/
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Sensitive Data
specifically protected ?

https://gdpr-info.eu/art-9-gdpr/
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Sensitive Data: exceptions

https://gdpr-info.eu/art-9-gdpr/
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Sensitive Data: exceptions again

https://gdpr-info.eu/art-9-gdpr/
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Sensitive Data: exceptions again again again

https://gdpr-info.eu/art-9-gdpr/
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von Kempelen’s ”Mechanical Turc”

A mechanical chess player created by J. W. von Kempelen in 1770:
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von Kempelen’s ”Mechanical Turc”

In fact, a chess master was hidden in the machine:

26 / 72



von Kempelen’s ”Mechanical Turc”

it’s artificial artificial intelligence!
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Amazon Mechanical Turk

Amazon created for its own needs a

microworking crowdsourcing platform
and opens it to all in 2005 (taking X% of the transactions)
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Amazon Mechanical Turk

MTurk
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Amazon Mechanical Turk

MTurk is a crowdsourcing platform: the work is outsourced via the Web and done by
numerous persons (the crowd), here the Turkers workers
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Amazon Mechanical Turk

MTurk is a crowdsourcing platform allowing to perform microwork: tasks are split into
subtasks (HITs) and their execution is payed for by the Requesters
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Amazon Mechanical Turk

MTurk is a crowdsourcing platform allowing to perform microwork: payed for.
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Amazon Mechanical Turk

MTurk is a crowdsourcing platform allowing to perform microwork: payed for.
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Some characteristics of AMT

Remuneration:

I by the task (illegal in France except some (rares) exceptions): less than $2/h

I no explicit relationship between the workers and the Requesters

Tasks:

I traditionally performed by salaried employees: transcription, translation (LDC,
ELDA), etc
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Typical HITs on AMT

https://www.mturk.com/worker
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AMT: a dream come true?

[Snow et al., 2008]
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AMT: a dream come true?

[Snow et al., 2008]

It’s cheap, fast, good

and it’s a hobby for the workers!
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AMT allows to reduce the annotation costs

Very (very) low remuneration ⇒ low costs? Yes, but. . .

I costs of putting in place the interface

I costs of creating protections against spammers

I costs of validating and post-processing data

+ some tasks (for ex, translation from Pashto to English) generate costs which are
similar to the usual translation costs, because of the lack of qualified
workers [Novotney and Callison-Burch, 2010].

38 / 72



When Amazon takes its toll. . .

[Wall Street Journal blog, June 23, 2015]
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AMT allows to produce quality resources?

I allows to produce quality resources in some specific cases (for example, simple
transcription)

I but:
I the quality is insufficient when the task is complex (for example,

summarization [Gillick and Liu, 2010])
I the interface can generate some problems [Tratz and Hovy, 2010]
I the workers can generate problems (cheaters, spammers)
I by the task remuneration in itself generate problems [Kochhar et al., 2010]

I for some tasks, NLP tools now produce better results
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HITs (Human Intelligence Task): simplified tasks

Impossible to train oneself on a task on AMT:

⇒ Simplification of tasks:
I a real textual entailment task (entailment, neutral, contradiction) gets reduced to 2

sentences and a question:
”Would most people say that if the first sentence is true, then the second sentence
must be true?” [Bowman et al., 2015]
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AMT: a hobby for the workers?

[Ross et al., 2010, Ipeirotis, 2010] show that:
I workers are mostly motivated by money (91%):

I 20% consider AMT as their primary source of income
I 50% as their secondary source of income
I the hobby aspect is important only for a (US) minority (30%)

I 20% of the workers spend more than 15h per week on AMT, and contribute to
80% of the tasks

I the average observed hourly wage is below $2 [Hara et al., 2019]

[Gupta et al., 2014]: due to the impossibility to train, an important amount of hidden
work is performed by the workers
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Who are the AMT workers?

https://demographics.mturk-tracker.com [Difallah et al., 2018]
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Is AMT ethical or even legal? [Fort et al., 2011]

Ethics:

I no identification: no official link between the Requesters and the workers or
among workers

I (almost) no possibility to unionize, to protest against the wrongdoings of
Requesters or to take legal action against them

I no minimum wage ($<2/h on average [Hara et al., 2019])

I possibility to refuse to pay the workers
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Is AMT ethical or even legal? [Fort et al., 2011]
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Is AMT ethical or even legal? [Fort et al., 2011]

Law:

I Amazon licence agreement: the workers are considered as independent workers ⇒
they are supposed to declare themselves as such and pay taxes and social benefit
charges accordingly

I illusory, considering the level of remuneration

⇒ states lose a legitimate source of income
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Depending on an external platform

Impossibility to control:

I costs

I working conditions

I selection of workers

I conditions of experiment
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Making choices

I Other types of crowdsourcing:
I Citizen Sciences: LanguageArc, a Linguistic Data Consortium (LDC)platform,

allowing to create tasks and have them performed by voluntary users
I Games With A Purpose: ESP Game [von Ahn, 2006], Phrase Detectives

[Chamberlain et al., 2008], etc

I Other solutions:
I unsupervised, semi supervised, weakly supervised approaches
I pre-annotation
I using existing resources (not well-known, forgotten)
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What Consent Means (or not), by c©Boulet
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Informed Consent

The Nuremberg Code (1947) states that consent can be voluntary only if:

I participants are able to consent

I they are free from coercion

I they comprehend the risks and benefits involved
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Art. 7 GDPR: Conditions for consent (1/2)

https://gdpr-info.eu/art-7-gdpr/
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Art. 7 GDPR: Conditions for consent (2/2)

https://gdpr-info.eu/art-7-gdpr/
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Consequences in Practice

There is no consent if no decision is made:

I opt in vs opt out

I importance of the default settings

I possibility to withdraw one’s consent at anytime

https://www.grosbill.com/
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Data and ”informed” consent
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Guidelines, guidelines everywhere!

[Hagendorff, 2020]
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Guidelines and checklists are great, but won’t fix this

”Currently, AI ethics is failing in many cases. Ethics lacks a reinforcement
mechanism. Deviations from the various codes of ethics have no consequences.
And in cases where ethics is integrated into institutions, it mainly serves as
a marketing strategy. Furthermore, empirical experiments show that reading
ethics guidelines has no significant influence on the decision-making of software
developers.” [Hagendorff, 2020]
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Beyond Guidelines

Guidelines and checklists are attractive:

I simple

I illusion of exhaustiveness

But they are far from enough:

” Neither the risk analysis informed by engineering practice, nor
the socially informed engineering practice can be replaced by the
other.” [Gurses et al., 2011]

60 / 72



Making the Most of Guidelines

1. start thinking/discussing without them

2. use them as a complement

3. do not limit your thinking because you checked all the list in the grid
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Some guidelines I recommend

1. AI HLEG Ethics guidelines for trustworthy AI (EN or FR or . . . )

2. The consequentialist grid of analysis [Lefeuvre et al., 2015] (FR)

3. CERNA Machine learning ethics report (FR and EN)

4. CCNE Chatbots ethics report (FR)
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I data is everywhere in NLP

I data lifecycle and ethical hotspots

I consent, consent, consent
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Reading List
Please participate!

ACL ethics committee reading list
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Éthique et traitement automatique des langues.
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