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Abstract. In this paper, we propose a method for recognizing architectural sym-
bols. The method is based on the description of the model through a set of con-
straints on geometrical features, and on propagating these constraints through a
network, following an idea first proposed by Messmer and Bunke. One of the ad-
vantages of this approach is the possibility to incrementally build andupdate the
model, when new symbols have to be taken into account.

1 Introduction

Our team has been working for more than two years on the analysis of architectural
drawings. The ultimate aim is to reconstruct a 3D model of a building from the analy-
sis of design-phase drawings. For this purpose, we have developed two complementary
methods for reconstructing the geometric model of a level from its vectorization [1].
But both of these methods rely heavily on a correct recognition of architectural sym-
bols. These symbols are much less normalized than those which can be found in other
technical domains. We therefore need a flexible method, capable of easily integrating
new symbol models with minimal computation overhead in the recognition phase.

After explaining our two main sources of inspiration for this work (§ 2), we describe
our model (§ 3) and the way it is used for recognition (§ 4), before explaining how new
symbols can be added to the model (§ 5).

2 State of the Art

The recognition of graphical symbols is a well-known problem, for which many meth-
ods have been proposed [2]. A first family of methods has been adapted to documents
such as diagrams, basically made of symbols and connecting lines (see [9] as a re-
cent example). Other applications include cartography [7] and printed music scores [5].
But there have been few attempts at recognizing architectural symbols; one of the only
works we are aware of is that of Llad´os et al. [3], who use attributed graph matching
to recognize symbols taken from a set of known models. Their method has proven to
be efficient, even for hand-drawn drawings. But it necessarily suffers from the usual
limitations of graph matching methods.

In our quest for a good recognition method, we felt the need forflexibilityandgener-
icity. As architectural drafting is much less normalized than other technical domains, we
come upon large variations in the way basic elements such as doors or windows are rep-
resented. We thereforecannotbuild ana priori set of models and decide that these are



the only symbols we will recognize. We must be able to incrementally add new models
to the knowledge base, with minimal computational overhead during recognition.

A first system which inspired us was that of Pasternak [6]. In his ADIK kernel
system, he uses graphical specifications of the symbols, based on a number of predicates
and on constraints between parts of the same geometric composition object. Object
recognition is activated through a triggering mechanism. The whole knowledge base is
represented as a structural/geometric taxonomy.

Keeping the main idea of a constraint-based, hierarchical modelling, we turned to
another method for more efficient management of the set of models. Messmer and
Bunke [4] proposed a method which allows for model pre-compilation through the use
of a network, where all model descriptions are gathered at once; the features are the
input to this network and “trickle down” until one of the terminal nodes—i.e. one of
the model symbols—is activated. This work was based on graph isomorphism; in our
case, as we use constraint propagation, we have adapted the network concept to these
constraints.

3 Symbol Modelling

To explain our model, we will assume in this article that the vectorization of the doc-
ument image yields a set of segments. This can easily be extended to segments and
arcs. LetF be the set offeatures, i.e.n-uples of distinct segments; letP be the set of
predicates, i.e. boolean functions. The size of a feature is defined as the number of its
segments, and the size of a predicate is the number of its arguments. LetC be the set
of constraints, defined as{c ∈ 〈P pr,F fe〉|(size(fe(c)) ≥ 1) ∧ (size(fe(c)) =
size(pr(c)))}. Thus, a constraint is made of a predicate and of a feature, and it applies
to the segments of this feature. We define the size of the constraint as being the size of
its feature.

LetD be a set of descriptions. A description is defined by a feature, whose segments
represent the model symbol, and by a set of constraints. These constraints apply to the
segments of the feature, and are of two kinds: connection constraints, which describe
connection relations between segments, and simple constraints. We define the size of a
description as being the size of its feature.

For instance, we can define the description of a lozenge (Fig.1) as follows:
dsl = 〈{sd1, sd2, sd3, sd4}, {cc1, cc2, cc3, cc4, cs1, cs2, cs3, cs4}〉
cc1 = 〈(sd1, sd2), pc〉 cc2 = 〈(sd2, sd3), pc〉 pc : x× y 7→ point1(x) = point2(y)
cc3 = 〈(sd3, sd4), pc〉 cc4 = 〈(sd4, sd1), pc〉
cs1 = 〈(sd1, sd2), ps〉 cs2 = 〈(sd2, sd3), ps〉 ps : x× y 7→ length(x) = length(y)
cs3 = 〈(sd3, sd4), ps〉 cs4 = 〈(sd4, sd1), ps〉

4 Symbol Recognition

4.1 Use of a Network

Although Messmer and Bunke use a different matching mechanism, subgraph isomor-
phism, we adapted several of their ideas to our method. For instance, we use a network



to model the descriptions and thus perform the search for all possible symbols at once,
instead of trying separately to match a candidate with all possible models. For this, we
search separately for all the features verifying each constraint, and we then merge these
features to get the symbol.
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Fig. 1.Network for recognition of a lozenge.

Thus, in order to detect lozenges of descriptiondsl (§ 3) among the segments of an
image, we can use an 8-node network (Fig. 1). By using the various predicates (pNM2,
pNC3, pNM4 . . . ), we get the constraints which describe the lozenge. Thus, the features
which end up inNF8 represent lozenges.

4.2 Generalization of the Network

The search for symbols works through propagation of the segments (yielded by vector-
ization) through a network. This network is made of four kinds of nodes : NNSegment,
NNMerge, NNCondition and NNFinal. These nodes are connected through father–son
links; eachnode can have at most two fathers, but can have several sons. Each node
tests some constraints, and can thus be seen as a “filter”, which only transmits to its
sons the features (sets of segments) which verify the tested constraints. These features,
created only once by eachnode, can be used by all the sons of the node. At the end,
the segments of the features which have “trickled” down to the terminal nodes of the
network represent the corresponding symbols.

For each network, there is only oneNNSegmentnode, which corresponds to the
root of the network. This node initializes the recognition process, creates a one-segment
feature for each segment, and sends it to all its sons (Alg.1). ANNCondition node has
only one father. It tests the constraint on the features sent to it by its father. If the
constraint is satisfied, the NNCondition node propagates the feature to its sons (Alg. 2).
A NNMerge node has two father nodes, and gathers the features sent by its fathers, if
they verify a connection constraint. The resulting feature, if any, is sent to the sons of
the NNMerge node (Alg. 3). Note that in order to allow the NNMerge nodes to gather
all their fathers’ features, eachnode in the network has to keep a local storage of the
features it is transmitting. TheNNFinal nodes are the terminal nodes; they have one
father and no sons. Each of these nodes corresponds to one of the symbols which have
to be recognized. When a feature reaches such anode, it has went through a number of



NNMerge and NNCondition nodes and has verified their constraints. To get the actual
symbol, it is therefore sufficient to get the set of features stored in the NNFinal node.

Alg. 1 NNSeg.transmission(image I)
for all segments s of Ido

newFea← create a feature from s
myFeatures.add (newFea)
for all my sons ndo

n.transmission (newFea, me)
end for

end for
Alg. 2 NNCond.transmission(F f, N p)

if f verifies myPredicatethen
myFeatures.add (f)
for all my sons ndo

n.transmission (f, me)
end for

end if

Alg. 3 NNMerge.transmission(F f, N p)
for all features g disjoint of f and sent
by my other father (not p)do

if p = myFather1then
newFea←merge (f, g)

else
newFea←merge (g, f)

end if
if newFea verifies myPredicatethen

myFeatures.add (newFea)
for all my sons ndo

n.transmission (newFea, me)
end for

end if
end for

4.3 Use of the Network

Two kinds of features can be extracted by low-level techniques: segments and arcs. As
vectorization and arc recognition methods are always noisy, the resulting set of graphi-
cal entities may contain extraneous segments, especially at the junctions of thick lines.
Actually, we are looking for symbols such as windows and doors, which are always rep-
resented with thin lines; we therefore separate thick lines from thin lines, using simple
mathematical morphology. The thin lines image is vectorized independently of the thick
lines image (Fig. 2(b)) [8]. This reduces the number of artefacts in the set of vectors.

(a) A drawing. (b) Thin lines. (c) Symbols.

Fig. 2.Result for a simple drawing (1700×1600) vectorized in about 300 segments and arcs.



We have tested our network on eleven architectural drawings such as the one rep-
resented in Fig. 2(a), with nine descriptions of doors and windows. With a computation
time of 5 to 30 seconds on a SUN Sparc Ultra 1, the network recognizes most of the
represented symbols (Fig. 2(c)). In the following table, we give for each drawing the
number of symbols to be recognized (S), the number of symbols recognized by the
system (R) and the number of false hits (F). Most of the latter stem from redundant
recognition (e.g. double doors being also recognized as two simple doors).

A B C D E F G H I J K
S 14 11 15 12 12 15 14 14 16 14 15
R 13 11 14 11 10 15 14 14 14 13 14
F 1 0 3 2 0 0 1 4 1 4 2

5 Building the Network

For a set of descriptions, it is of course possible to build several networks, each relative
to one description. But as we want to accelerate the symbol recognition process, our
aim is to factorize as much as possible the constraints which are common to several
symbols, and to find the most efficient ordering in a common network. For this, we use
several heuristics. After constructing the root node NNSegment, we proceed incremen-
tally and sequentially: the descriptions are ordered by increasing number of constraints,
and added to the network one after the other. For each new symbol, we only addnodes
for constraints which are not already tested in the network.

5.1 Constraints Which Are Already Tested

One of the strengths of this approach is the ability to use constraints common to several
descriptions. When a new description is added to the network, we look for constraints
in this description which the network can already test.

For this, we input the segmentssd1, . . . , sdt of the description to the network (t
being the size of the description). When they propagate through the network, these
segments will be checked by all the constraints already available there, and this yields
features which correspond to one of the constraints of the description. This can be done
by slightly modified versions of the algorithms used in the recognition phase: Alg. 4, 5
and 6 are very similar to the previous Alg. 1, 2 and 3.

After this propagation, the network contains several features, localized in all the
nodes through which the segments verifying the description have been propagated. For
instance, let us look at the followingdnew description:
dnew = 〈{sd1, sd2, sd3, sd4}, {cc1, cc2, cc3, cs1}〉
cc1 = 〈(sd1, sd2), pc : x× y 7→ point1(x) = point2(y)〉
cc2 = 〈(sd2, sd3), pc : x× y 7→ point1(x) = point2(y)〉
cc3 = 〈(sd1, sd4), pc : x× y 7→ point1(x) = point2(y)〉
cs1 = 〈(sd1), pcs1 : x 7→ length(x) ≤ 20〉
which we want to add to an existing network (Fig. 3(a)), where:
pNC2 : x 7→ length(x) ≤ 20
pNM3 : x× y 7→ point1(x) = point2(y)
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Fig. 3. Looking for constraints already tested by the network.

pNM4 : x× y × z 7→ point1(y) = point2(z)

After transmission of the model segments in the network, using the previously described
algorithms, the network contains seven features (Fig.3(b)).

Alg. 4 NNSeg.transD(D d)
for k← 1 to size (d)do

feat← create one feature fromsdk

myFeatures.add (feat)
for all my sons ndo

n.transD (feat, me, d)
end for

end for
Alg. 5 NNCond.transD(F f, N p,D d)

c2← create one constraint from f and
myPredicate
if there is a constraint c of d such that c2
is an extension of c (§ 5.5) then

myFeatures.add (f)
for all my sons ndo

n.transD (f, me, d)
end for

end if

Alg. 6 NNMerge.transD(F f, N p,D d )
for all features g disjoint of f and fil-
tered by my other father (not p)do

if p = myFather1then
newFeat←merge (f, g)

else
newFeat←merge (g, f)

end if
c2 ← create one constraint from
newFeat and myPredicate
if there is a constraint c of d such that
c2 is an extension of c (§ 5.5) then

myFeatures.add (newFeat)
for all my sons ndo

n.transD (newFeat, me, d)
end for

end if
end for



5.2 Disjoint Features Set

Among the features present in the network after propagation (§ 5.1), let us choose a
set of disjoint features, i.e. a set such that each segment of the model is present in one
and only one feature. Generally, several choices are possible for such a set. All these
choices are valid for the incrementation of the network. But it is better to choose the set
which yields the most compact network. We therefore try to maximize the number of
constraints already tested by the traversed nodes.

In the previous example withdnew, it is possible to create four disjoint features sets
(Fig. 3(c), 3(d), 3(e) and 3(f)), but we choose the last set, for which two constraints are
already tested by the network.

5.3 Adding Simple Constraints

After having chosen a set of disjoint features, we have to decide how to add the new
nodes to the network. This depends on the order in which the remaining constraints have
entered the network (Fig. 4). We decided to process the simple constraints sequentially,
starting with those of smallest size (e.g. a constraint on only one segment will be pro-
cessed before a constraint on several segments). This relies on the fact that the smallest
constraints are supposed to have most discriminating power, and thus it is interesting to
find them at an early stage in the network.
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Fig. 4.Two choices when adding the remaining constraints ofdnew, starting from Fig. 3(f).

Before we create the node which will check the simple constraint, we must group
the corresponding segments into a common feature. If they are not already grouped, i.e.
if they are spread into different features, we use themergeFeatures function (§ 5.4)
to create the appropriate NNMerge nodes. When all segments concerned by the simple
constraint are grouped, the corresponding NNCondition node can be added to the sons
of the node where the last feature is found. The feature can then be removed from the



latter node and added to the newly created node. Every time a new simple constraint is
added to the network, we also check whether this new constraint can be used to verify
other untested constraints of the description, to minimize the size of the network and
improve its performances.

Finally, when all simple constraints have been added, the remaining connection con-
straints, which have not already been taken into account, are added with themerge-
Features function (§ 5.4). As all segments of the description are related to each
other through constraints, and as all constraints have been inserted in the network, all
segments of the description are included in a common feature. The corresponding NN-
Final node, which represents the new symbol to be recognized, can therefore be created
and added to the sons of the node containing this feature.

5.4 Adding Connection Constraints

There are several cases where we need to merge features: to create a unique feature
when adding a simple constraint, or to add the remaining connection constraints in
a description (§ 5.3). The algorithm we use (Alg. 7) to add the nodes merging these
features takes as arguments the list of features to be merged, the network where they are
located, and the list of constraints between pairs of segments belonging to the features
to be merged. The features are merged two by two, and this results in the creation of
the corresponding NNMerge nodes. If no connection constraint is found, the node is
created with atrue predicate.

When all the features have been merged into a single final feature, the remaining
connection constraints, if any, related to two segments of this feature, are added to the
network as NNCondition nodes.

For example, the merging of the three features located in three nodes (Fig.5(a)),
through the following connection constraints:
cc1 = 〈(sd5, sd6), pcc1 : x× y 7→ (point1(x) = point2(y))〉
cc2 = 〈(sd1, sd2), pcc2 : x× y 7→ (point2(x) = point1(y))〉
cc3 = 〈(sd4, sd5), pcc3 : x× y 7→ (point2(x) = point2(y))〉
leads to the creation of a NNMerge node for thecc1 andcc2 constraints (Figs. 5(b) and
5(c)), and to the creation of a NNCondition node for thecc3 constraint (Fig. 5(d)).

Alg. 7 mergeFeatures ( list〈F〉 feat, network r, list〈C〉 const)
while size(feat)> 1 do

f1← smallest feature of feat
f2← smallest feature of feat not equal to f1, such that there is a constraint cc in
const between 2 segments from f1 and f2
if no such feature f2 existsthen

f2← smallest feature of feat not equal to f1
p← true

else
p← predicate which tests cc
remove cc from const

end if
newNode← create NNMerge from p and the nodes of r which contain f1 and f2



add newNode to r
remove f1 and f2 from r and from feat
add the feature resulting from the merge of f1 and f2 to feat and to newNode

end while
while there are constraints cc left in constdo

add cc to a new NNCondition node, as son of the last new node
end while

(sd4, sd1) (sd5) (sd2, sd6)

(a) Initial state.
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Fig. 5.Merging different features by using connection constraints.

5.5 Constraint Checking

Generally, the predicate tested by a NNMerge node or a NNCondition node is not equal
to the predicate of the corresponding constraint. This stems from the fact that we can
only check that the segments to which the constraint is related areincludedin the fea-
tures received by thenode, which can also contain other segments, or contain the right
segments in an other order than that expressed by the constraint. To take into account
these variations, we generalize the predicates which are put into the nodes when we
create the network.

Let size be the recursive function defined by:

size : n 7→

1 if n is of type NNSegment
size(father(n)) if n is of type NNFinal or NNCondition
size(father1(n)) + size(father2(n)) if n is of type NNMerge

The size of a NNMerge and NNCondition node, defined by this function, also corre-
sponds to the size of the tested predicate and that of the feature which can be sent by
the node.

Let d be the constraint that the node to be created must verify, and letm be the
feature from which we create the node. If we create a NNCondition node, it is the
feature coming from the father node of this node. If we create a NNMerge node, it
is the union of the features coming from the two fathers. By definition, this feature
m contains the segments to which constraintd refers. The predicate ofd must be a



restriction of the predicatep which we must add to the new node, modulus a change in
the order of its arguments. We say that constraintc defined by〈m, p〉 is an extension of
d form. The injectionl defined on[1, size(d)]→ [1, size(c)] by:{
∀i ∈ [1, size(d)], ni = ml(i)

∀x ∈ Ssize(c), p(x1, ..., xsize(c)) = q(xl(1), ..., xl(size(d)))

gives the order of the arguments for the two predicates, as it returns the location of the
segments ofd’s feature inc’s feature. For a featurem containing all segments of the
d’s feature, the injectionl is defined uniquely. Actually, there is only one constraint
c, havingm as its feature, for whichc is an extension ofd. For example, for the fea-
ture(sd2, sd1, sd3, sd4), c = 〈(sd2, sd1, sd3, sd4), p : x× y × z ×w 7→ length(z) =
2.length(y)〉 is an extension ofd = 〈(sd3, sd1), q : x×y 7→ length(x) = 2.length(y)〉.

6 Conclusion

We have presented an adaptation of Messmer and Bunke’s network approach to con-
straint propagation. Our first results are hopeful. We are currently working on improv-
ing the low-level processing, for a better input to the system. We also have to evaluate
the performances of our system on a larger number of drawings, with a larger set of
model symbols.
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