
Improving the Accuracy of Skeleton-Based Vectorization

Xavier HILAIRE1;2 and Karl TOMBRE1

1 LORIA, B.P. 239, 54506 Vand�uvre-ls-Nancy, France
2 FS2i, 8 impasse de Toulouse, 78000 Versailles, France

June 21, 2001

Abstract

In this paper, we present a method for correcting a skeleton-based vectorization.

The method robustly segments the skeleton of an image into basic features, and uses

these features to reconstruct analytically all the junctions. It corrects some of the

topological errors usually brought by polygonal approximation methods, and improves

the precision of the junction points detection.

We �rst give some reminders on vectorization and explain what a good vector-

ization is supposed to be. We also explain the advantages and drawbacks of using

skeletons. We then explain in detail our correction method, and show results on cases

known to be problematic.

1 Introduction

Vectorization is the process which automatically converts a raster image to a set of graph-
ical primitives such as vectors and arcs. These primitives are assumed to be those which
made up the drawing when it was drafted; therefore, vectorization can be considered as
some kind of \reverse engineering" process.

An \ideal" vectorization system should therefore be able to yield vectorial data as close
to the \original" as possible, in number as well as in position. Unfortunately, this is not
always the case, for three main reasons:

1. the images are often disturbed (printing defects, folds, smears, etc.) and noisy
(scanning as well as binarization noise), and have sometimes visible distortions due
to the mechanical scanning process, or to skew;

2. there is not necessarily a unique vectorial solution for the input data: two di�erent
sets of vectors may generate the same set of pixels;

3. all known vectorization processes have some imperfections of their own, which means
that errors are introduced by the process.

At GREC'99, we discussed some qualitative elements which should be taken into ac-
count when choosing the di�erent steps of one's vectorization method [6]. We emphasized
the problem of being able to position both the line segments and the junctions between
them with suÆcient precision. We pointed out that despite its weaknesses, we still consid-
er skeletonization of a binary image to be the best compromise; indeed, it is a widely used
technique for vectorization. However, it may introduce topological as well as numerical
distortions. For the topology, the number of detected junction points may be too low
(Fig. 1,b1) or too high (Fig. 1,b2).

a1 b1

a2 b2

Figure 1: Topological errors of the skeletonization. a1, a2: original vectors (without their
thickness); b1, b2: skeletons of bitmaps obtained from these vectors (with their thickness).

P

J

P

J

e

e

Figure 2: Distortions introduced by skeletonization. Expected points: P . Points yielded
by skeletonization: J .

There may also be numerical distortions in the areas where the geometrical features
cover each other; one consequence is that the detected junction points are not located
where they are expected to be. In the two most common cases, those of L and T junctions,
the distortion is parabolic, and it is easy to demonstrate (Fig. 2) that the distance between
the actual position and the expected position increases with the thickness e of the line:

d(P; J) = 1

8
e for a T junction, and d(P; J) =

�
3
p
2

2
� 2

�
e for a L junction.

2 Our method

The points raised in the previous section have led us to propose a vectorization method
which is still based on the skeleton, but which is able to correct the errors introduced by
polygonal approximation and to improve the precision of the junction points.

The basic point is that the skeleton is a good descriptor of the median axis for elon-
gated and isolated shapes, but is a poor descriptor for their intersections. The idea is
therefore not to take into consideration those parts of the skeleton which are included in
the overlapping between two or more shapes. Once these parts are eliminated, we perform
an analytical reconstruction of each junction from the remaining parts of the skeleton. In
summary, our method has the following steps:

1. Layer separation|Separate the graphical drawing into homogeneous thickness lay-
ers.

2. Skeletonization|Compute the skeleton of the binary image.

3. Segmentation|Segment the skeleton into straight segments and circular arcs, and
eliminate the geometric primitives which are shorter than the thickness e of the
processed layer. Build a graph G whose edges are the primitives and whose nodes ei
are the connection points between them.

4. Instantiation|De�ne the support equation for each primitive, through linear regres-
sion, with the associated uncertainty domain.

5. Dual correction|For all nodes ei of G do

(a) Build the set E0 of primitives stemming from ei

(b) If there is another node than ei in G

� Let ej be the node closest to ei (Euclidean distance)

� Add to E0 all the primitives stemming from ej

(c) Build the successive subsets E1; E2; :::; En�1, using the following algorithm,
starting with u = 0:

i. Construct F as the biggest subset of Eu for which all primitives do intersect.
Let e0u be the intersection node.

ii. If F 6= Eu then

� Set Eu+1 to Eu r F

� Set Eu to F

� Increment u and loop at 5(c)i

(d) For u = 0; : : : ; n � 1, replace the extremity of each primitive of Eu stemming
from ei or ej by e

0
u

(e) Connect all the e0u

6. Repeat step 5 as long as the global topology is modi�ed by the process.

We will now describe each of these steps in detail.

2.1 Layer separation

This is an important step for the method we propose, as we need to work on image layers
with lines of homogeneous thickness. Simple mathematical morphology methods can be
used to get these di�erent layers, as we have explained in previous papers [5].

2.2 Skeletonization

As we explained in detail at the last GREC, we use Sanniti di Baja's skeletonization algo-
rithm, based on the 3{4 distance transform, to compute the skeleton [1]. The extracted
skeleton is chained using the algorithm described in [6].

2.3 Segmentation

The �rst di�erence with the method we have used until now in our group [6] is that we do
not perform a polygonal approximation immediately after the skeletonization. The various
polygonal approximation methods can of course convert a chain of pixels to a curve in a
very eÆcient way, but they disturb the analytical junction reconstruction algorithm we
propose. The method proposed by Rosin and West [4] yields an excellent approximation
of the original curve, but is very sensitive to noise and to the choice of starting points, as
illustrated by Fig. 3: if the starting points are A and D, the splitting phase introduces a
cutting point R which leads to splitting [BC] into two segments. If A is displaced towards
A0, the cutting point R becomes close to a point R0 which is neighbor of C, and the
decomposition of [BC] is thus much better, but a new problem may be introduced on
[CD].

D

C
R’

RB

A’

A

Figure 3: Sensitivity to noise of the cutting point in the Rosin and West approximation.

The method proposed by Wall and Danielsson [8] does not have this drawback, but
it is not very scalable, which makes circular arcs detection, among others, diÆcult: for a
circle, the angle � from the center of the �rst cutting point, with respect to the starting
point, is dependent on the radius R of the circle, as the polygonal approximation uses a
�xed threshold K, and we have the relation R(1 � sin�

2�
) = K. Thus, a small circle will

be approximated by fewer segments than a bigger circle, and vector-based circle detection
methods, such as the one developed in our group [2], will be less successful.

We therefore segment the skeleton using another method. First, we note that the
anchor points1 are good cutting points for separating primitives, as they correspond to
their meeting points. These anchor points are located in the zones where the skeleton
is \distorted", and not in the \useful" parts of the skeleton, which de�ne the primitives.
We can therefore make an initial segmentation of the skeleton at these anchor points, and
thereafter only process one branch at a time.

Each branch is then segmented using a robust sampling method close to RANSAC [3].
The segmentation algorithm has the following steps:

1. Select the best candidate segment S?

2. Select the best candidate circular arc C?

3. Extract the best of these two primitives S? and C? from the chain of points

4. If the remaining length of the chain is smaller than e, end the process, else go back
to step 1

Let us now give some details for these steps.

2.3.1 Selection of the best candidate segment

We �rst choose two random points I0 and J0 from the chain to be processed (Fig. 4),
and we instantiate a line model S passing through these points. We then enlarge the
domain [I0; J0] by \decrementing" I0 and \incrementing" J0 as long as these points verify
d(I0;S) � " and d(J0;S) � ". This gives a new segment [I; J], which is the longest
segment contained in the initial [I0; J0] segment without having more outliers.

This step is repeated k times, and we keep the model S? for which the number of
points contained in [I; J] is maximum. The number of trials k can be estimated so that

1Meeting points for at least three branches of the skeleton.

2ε

I
° J

°
I

J

Figure 4: Segmentation through sampling.

the probability p that at least one of the couples of initial points (I0; J0) is good, is greater
than a given value � . A couple of initial points (I0; J0) is considered as good when I0 and
J0 are simultaneously inlier points and belong to the same primitive. If L is the length
(in number of points) of the chain to be segmented, e is the length (in number of points)
of the smallest primitive which can be extracted from the chain, and � is the ratio total
number of inlier points / L, the worst case (when all primitives are of length e), is:

p = 1�
�
1� �2

e

L

�k
We can therefore choose k such that p � � , which gives

k �
log (1� �)

log
�
1� �2 e

L

� (1)

2.3.2 Selection of the best candidate circular arc

The method is similar to the previous one, but we must now choose three points instead
of two, and the expressions for p and k change:

p = 1�

�
1� �3

� e
L

�2�k

k �
log (1� �)

log
�
1� �3

�
e
L

�2� (2)

2.3.3 Segmentation graph

At the end of this segmentation step, we build a topological representation of the segmen-
tation, with a structure close to a planar map. We build a graph G whose nodes are the
connection points of the primitives, and whose edges are the primitives themselves. Each
edge contains two pointers to the nodes forming its extremities, and a pointer to the set of
points associated with the primitive. Each node contains pointers to the list of primitives
to which they are connected, and the label of the connected component in which it is to
be found.

All this information is used in the junction reconstruction phase, as explained in the
next section. A �rst transformation of graph G is performed to eliminate all chain cycles
whose total length is smaller than e, as suggested in [1]. When an edge of G disappears,
the graph is updated accordingly.

This correction may still not be suÆcient to represent the drawing, as the initial
topology is computed from the skeleton, which is not necessarily correct, as we have seen

in Fig. 1. Therefore, additional corrections are needed. We must also compute the actual
position of each node. This is the objective of the following steps.

2.4 Instantiation of the primitives

This step aims at de�ning the support equations of the primitives, and their associated
uncertainty domains, and from there, to compute the initial positions to give to each
node. The instantiation consists in �nding the support equation F (x; y) = 0 for each
primitive. In our case, this may be line equations Fd(x; y) = x cos � � y sin � + C = 0 or
circle equations Fc(x; y) = (x��)2+ (y��)2� r2 = 0. These equations can be obtained:

� From the I0; J0 pair of points of the best model found during the sampling step,

� or by another robust technique, or through linear regression (e.g. algebraic least
squares).

Even if it has the potential to yield a good �nal precision, linear regression must be
handled with care: unknown shapes, such as quadrics, will usually be vectorized as chains
of small segments, and linear regression may introduce large distortions in the intersections
of all these segments. When a recognition step for such shapes is foreseen in a later phase,
linear regression must therefore be avoided.

To each primitive pi with its equation Fi(x; y) = 0, we also associate an uncertainty
domain �(pi), which is the space delineated by the two curves distant of " from Fi(x; y) =
0, on both sides, where " is a constant dependent on the global noise in the image|we
usually set " t 1. This domain is used to solve possible topological ambiguities which may
appear during the last correction step, which we will now describe.

2.5 Dual correction

This last step consists in changing the topology and the estimated positions of the junction
points. These two changes are performed simultaneously. We will describe the method by
distinguishing the general case, where N � 3 primitives intersect, and the speci�c case of
the intersection of N = 2 primitives.

2.5.1 General case: N � 3

We illustrate this with Fig. 5, which corresponds to N � 3 primitives. Here, the skele-
tonization yields two distinct junction points J1 and J2, which are represented in the
graph by nodes e1 et e2. This is not correct, as the 4 primitives have been constructed to
intersect at a unique point. The correction we propose relies on two remarks. First, if the
position of junction points J1 and J2 are obtained by skeletonization with a poor precision,
the analytical computation of their position, through the segment pairs to which they are
connected, will yield two points J 01 and J

0
2 with a better precision. Then, if J 01 and J

0
2 are

close enough, we can suppose that the primitives they connect do also intersect, whereas
they must be considered as non intersecting if d(J 01; J

0
2) > e. The reader should note that

this is only a hypothesis{we have no formal proof that this is always true, but practice
has shown it is reasonable to assume so.

These two observations lead us to the following correction method. We �rst look for
the two closest nodes ei and ej of G, belonging to the same connected component, and
we build the set E0 of primitives connected to these nodes, except the primitive (ei; ej)

2.
2This can be extended without loss of generality to the case when G contains only one node ei. The

primitives stemming from ei are grouped in the same way and we just write ej = ei.

S3

S4

S1 S2

J1

J2

Figure 5: Intersection of N � 3 primitives.

Segment Si extracted
from primitive pi

Frontier of ∆(pi)

S1 S2

S3

S4

P19

P1

P11

P14 ∈∆(S1) ∩ ∆(S2)
∩ ∆(S3) ∩ ∆(S4) ≠ ∅

Figure 6: Intersection of uncertainty domains.

We include the condition that they must belong to the same connected component of
the image, so that we avoid connecting primitives that were disconnected in the original
drawing. The set E0 simply represents a list of primitives which may intersect at one or
more points. We must then �nd these points.

We therefore construct, from E0, the set P0 of intersection points for the borders of the
uncertainty domains �(p) associated with each primitive p of E0, as illustrated by Fig. 6.

Then, we check for each intersection point X 2 P0 that it is inside the uncertainty
domain �(p) of each primitive p 2 E0. This check can be easily performed by evaluating
the sign of Fsup(X):Finf (X), where Fsup and Finf are the equations of the borders of
�(p). When X belongs to a given domain �(p), we consider X as being also a point of
p. Then, to each candidate point X 2 P0, we associate the set U of primitives to which p
does belong, and we keep the point M which has the largest associated set U . The fact
that M exists implies that the primitives of U do intersect, so we can de�ne a new set
E1 = p 2 EO : �(p) =2 U and change the value of E0: E0 = E0 r E1. The procedure is
then repeated with E1 and so on, until there are no more primitives to group.

At the end of this step, we have n groups of primitives Ei; i = 0; :::; n � 1, each group

unified
new e’

P1

P2

P3

P4

Figure 7: Isolated primitives after computing the sets Ei.

containing a variable number of intersecting primitives. We then consider separately the
cases jEij = 1 and jEij � 2 for the following steps.

Case a: jEij = 1. This is a special case, where a single isolated primitive does not
intersect with any other, despite the estimation which had been implied by the skeleton
information. Although it is exceptional, this may happen, as illustrated by Fig. 7, where
the primitive pairs (P1; P2) and (P3; P4) cannot intersect by construction. As the pair
(P3; P4) has no intersection either, these two primitives are isolated. From a topological
point of view, these isolated primitives are left unchanged. This means that their common
node (ei or ej in the present case) is kept as it was. In the example given by Fig. 7, the two
extremities of P3 and P4 are merged and represent the same node. The resulting junction
is formed by n = 2 primitives, which constitutes a particular case described in x 2.5.2.

Case b: jEij � 2. This is the general case, where the intersection of the uncertainty
domains is non empty, so that there is a junction point M inside this intersection. We
then propose to compute the position ofM through the weighted orthogonal least squares
method. For each set Ei of primitives p1; :::, we compute the point M which minimizes
the sum

S =

jEijX
j=1

!jd
2(M;pj)

where d(M;pj) is the distance from M to primitive pj , and where each !j is set to be the
length|in number of pixels|of primitive pj. This weighting gives a better con�dence to
the �nal estimation, as the least squares error induced by a displacement of M , even a
small one, is proportional to the length of the reference primitive.

This minimization problem is linear as long as the pj are lines; thus, its solution can
be computed analytically. The linearity is lost as soon as there is a circular arc, but the
solution remains analytical as long as Ei contains only two primitives. With three or
more primitives, of which one at least is a circular arc, we must use a numerical method,
as there is no general analytical solution anymore. We do not yet take into account the
case where jEij � 3, as a numerical method may end up �nding a local minimum, and
there are probably many such minima inside the intersection domain. Also, we have until
now never met this case in the architectural drawings we have processed, as circular arcs
usually appear in the thin-line layer, where they are associated with simple segments to
represent doors, windows, etc. But in a more general framework, we must probably take
this problem into account...

A
B

C D

∆(P1) ∆(P2)

Figure 8: Primitives without apparent intersection.

J

A B
C D

Figure 9: Combined e�ects of shift and small angle.

Once the intersection point M has been determined, the node to which it corresponds
is given M as its new geometrical position. The supports of the primitives stemming from
this node are then re-instantiated using the following rules:

1. the position of the other extremity remains unchanged,

2. the supports of the segments are re-instantiated by the line passing through the two
extremities,

3. the supports of the circular arcs are re-instantiated by the circle passing through
the two extremities, with the same radius, and with the center located in the same
half-plane as in the previous model3.

2.5.2 Special case N = 2

This case may generate diÆcult ambiguities, if the supports of the primitives are paral-
lel, depending on the kind of primitives. We process separately three types of possible
junctions: segment{segment, segment{arc, arc{arc.

Case a: segment{segment. The diÆcult case appears when the two supports are strictly
parallel, while being topologically connected. This is illustrated by Fig. 8, where the
borders of �(P1) and �(P2) have no point in common, whereas the primitives they de�ne
are topologically connected (the BC chain is removed as its length is smaller than the line
thickness). The problem is to �nd a way to vectorize this part of the graphics.

There may also be a numerical problem, when the value of the angle formed by two
segments is suÆciently close from � to put the intersection points of the borders outside
of the acceptable zone (Fig. 9).

We propose the following solution to this problem: using arbitrary-precision computa-
tion, we determine if [AB] and [CD] de�ne a computable intersection point J . If this is
the case, the validity of J is given by the sign of (~AB: ~BJ):(~DC: ~CJ), which must be equal
or greater than zero. If J is not computable, we disconnect the segments, and leave them
as they are.

3We are aware that this way or re-instantiating circular arcs supports is somewhat arbitrary. In fact,

we assume that the displacement induced by the new M remains small. It would certainly be more general

and robust to determine the position of M by trying to minimize the error of a model with N branches

stemming from M .

J’ J J’

J

I

I

Figure 10: False junction points.

d

A B
A B

c
ba

Figure 11: Corrections made in the most frequent cases.

Case b: segment{arc and arc{arc. There are no special robustness problems with these
two cases, except the fact that the intersection of the primitive supports may create a false
junction point J 0, in addition to J , as illustrated by Fig. 10. A simple comparison of the
lengths of the arcs IJ and IJ 0 is actually suÆcient to eliminate this false point.

2.6 Connecting the e
0
u nodes

This is probably the most critical part of the process, as we only have two pieces of
information on the nodes e0u which have been created. First, we know that they are located
in the intersection zone of a set E of primitives which are topologically connected, according
to the skeleton. Secondly, we know that they correspond to intersections of subsets of E ,
according to the uncertainty computation. We have no other a priori information which
may help us in deciding whether these points should be connected or not.

As a �rst try, we propose to connect these points pairwise, starting with the closest
pair, and ending with the pair of points whose distance is the largest.

3 Results

3.1 Usual cases (real data)

In Fig. 11, we report typical results obtained on the most frequent cases. The method
easily corrects the usual distortions on L and T junctions. The extraction of the arc and
the computation of its intersection with the segment is also correct in case c). Case d),

A B

A

B

BA

Figure 12: Corrections made in more diÆcult cases.

on the contrary, is more diÆcult. First, the result of vectorization depends on the value
given to constant " during processing. With " = 1:2, detail A shows that 2 segments are
extracted. When " comes closer to 1, a circular arc is inserted between the two segments;
actually, the binary image may be interpreted in both ways. Secondly, there is still a
problem at the intersection between the two arcs. Here, the left arc is intercepted by the
right arc, and is thus truncated. The skeleton contains a local anchor point connecting
the two chains which correspond to the arcs, and a third chain which prolongates the left
arc. The latter chain is interpreted as being a segment, and cannot be removed, as its
length is larger than the line thickness. This defect is not corrected by our method.

3.2 DiÆcult cases (synthetic data)

Fig. 12 shows other results, obtained on synthetic data. The �rst group shows the initial
construction of junctions. The second group shows the lines thickened to a width of 15
pixels, and skeletonized. The last group shows the extracted vectors. The X junction is
processed in two steps. First, the upper and lower pairs are grouped into two junction
points J1 and J2, as suggested by the skeleton. It is only when step 5 is iterated that J1
and J2 are merged.

The Y junction is processed di�erently, and has a defect. As for the X junction, the

upper segments are grouped to yield an intersection point J . But the lower branch remains
disconnected. Initially, the chain connecting its upper extremity J 0 to the anchor point is
removed (length < 15), so there is no valid intersection with one or the other of the two
upper branches. When topology is checked in the last step of the algorithm, J and J 0 are
linked, but the �nal result is not exactly the expected one. This emphasizes a default of
the method: if the two left segments had been grouped �rst, the �nal resulting topology
would have been di�erent.

There is a similar problem with the last case: the left and right pairs of branches are
correctly grouped, but the intermediate segments are not; their lengths are shortened by
the cutting points computed during segmentation.

4 Conclusion and perspectives

The method we have presented yields good results on \classical" drawings, and has the
advantage to be simple and easily extendible. As an example, it is possible to introduce
more complicated curves, such as conics and splines, typically found in CAD drawings.
However, the method still su�ers from some drawbacks, and we think that it is necessary
to make several improvements in future work.

First of all, it is obvious that the random sampling method used to segment the skeleton
is not time eÆcient at all. From equations 1 and 2, it is easy to see that the number of trials
to be performed reaches huge values when the value of e decreases. This problem actually
happens because the method always assumes that the worst case occurs. As noted in [7],
an adaptive version of the random method may be considered. Such a method should be
able to reduce the number of trials, as well as to focus on a promising region by taking
into account the results computed at each step.

The method is also not able to extract interrupted patterns. This means, for example,
that the vectorization of two primitives, one intercepting the other, will always consist of at
best four primitives, not two. Actually, this problem requires interpretation in many cases:
are we talking about two segments locally forming an isolated X junction, for example, or
about a very long line intercepting a small arc that is a part of a door? But both situations
actually weaken the precision of the estimated position of the junction point{if, of course,
the existence of this point makes sense.

A still more complicated problem is probably the way we connect the computed junc-
tion points e0u in the last stage of the method. In fact, there are many possible connections
of those points, but the rules used to connect them should certainly not come exclusively
from the vectorization.

References

[1] G. Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-
Distance Transform. Journal of Visual Communication and Image Representation,
5(1):107{115, 1994.

[2] Ph. Dosch, G. Masini, and K. Tombre. Improving Arc Detection in Graphics Recog-
nition. In Proceedings of 15th International Conference on Pattern Recognition,

Barcelona (Spain), volume 2, pages 243{246, September 2000.

[3] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus : A Paradig-
m Model Fitting with Applications to Image Analysis and Automated Cartography.
Communications of the ACM, 24(6):381{395, 1981.

[4] P. L. Rosin and G. A. West. Segmentation of Edges into Lines and Arcs. Image and

Vision Computing, 7(2):109{114, May 1989.

[5] K. Tombre, C. Ah-Soon, Ph. Dosch, A. Habed, and G. Masini. Stable, Robust and
O�-the-Shelf Methods for Graphics Recognition. In Proceedings of 14th International

Conference on Pattern Recognition, Brisbane, Australia, pages 406{408, August 1998.

[6] K. Tombre, Ch. Ah-Soon, Ph. Dosch, G. Masini, and S. Tabbone. Stable and Robust
Vectorization: How to Make the Right Choices. In A.K. Chhabra and D. Dori, editors,
Graphics Recognition { Recent Advances, volume 1941 of Lecture Notes in Computer

Science, pages 3{18. Springer Verlag, 2000.

[7] Aimo T�orn and Antanas �Zilinskas. Global Optimization, volume 350 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1989.

[8] K. Wall and P. Danielsson. A Fast Sequential Method for Polygonal Approximation
of Digiti zed Curves. Computer Vision, Graphics and Image Processing, 28:220{227,
1984.

