
Text/Graphics Separation Revisited

Karl Tombre, Salvatore Tabbone, Loïc Pélissier, Bart Lamiroy, and Philippe
Dosch

LORIA, B.P. 239, 54506 Vandœuvre-lès-Nancy, France

Abstract. Text/graphics separation aims at segmenting the document
into two layers: a layer assumed to contain text and a layer containing
graphical objects. In this paper, we present a consolidation of a method
proposed by Fletcher and Kasturi, with a number of improvements to
make it more suitable for graphics-rich documents. We discuss the right
choice of thresholds for this method, and their stability. We also pro-
pose a post-processing step for retrieving text components touching the
graphics, through local segmentation of the distance skeleton.

1 Introduction

In document image analysis, the text/graphics separation process aims at seg-
menting the document into two layers: a layer assumed to contain text—characters
and annotations—and a layer containing graphical objects. As the recognition
tasks to be performed are quite different between these two layers, most au-
thors perform this separation very early in the document analysis chain, which
means that it is usually performed through image processing tools, with limited
knowledge about the presence of higher-level objects.
Many methods have been proposed for extracting text from cluttered back-

ground and segmenting the document image. One of the best known method is
that of Wong, Casey and Wahl [20], with its many adaptations and improve-
ments [12]. However, whereas RLSA filtering has proved its efficiency in seg-
menting textual documents, its use in graphics-rich documents is less frequent;
one of the few methods we are aware of is that of Lu [13]. Other methods used for
text-rich documents include those based on white streams [18] and the top-down
methods using some kind of X–Y decomposition of the document [1, 16].
In the special case of forms, text often touches the graphics, but the latter

are mainly horizontal and vertical lines, which gives the possibility to explicitely
look for these kinds of lines, with techniques such as the Hough transform, for
instance [10].
But in the general case of graphical documents, lines are more complex and

all these approaches are not very efficient. In this case, we are aware of three
basic families of methods for separating text and graphics:

– Some authors perform directional morphological filtering to locate all linear
shapes and thus separate them from the other shapes, which are considered
to be text. This works especially well for simple maps [14, 15], although it

remains to be seen how scalable the approach is when the complexity of the
drawing grows.

– Similarly, other authors look for the lines, either on the distance trans-
form [11], or on a vectorization of the document image [7].

– A third approach, used by many people, is based on the analysis of the con-
nected components, which are filtered through a set of rules for determining
to which layer they belong. One of the best known algorithms for performing
this was proposed by Fletcher and Kasturi [9]. This method has proved to
scale remarkably well with increasingly complex documents, although it is
of course not able to directly separate text which is touching the graphics.

In this paper, we present a consolidation of the method proposed by Fletcher
and Kasturi, with a number of improvements to make it more suitable for
graphics-rich documents, with discussion about the choice of thresholds, and
we propose a post-processing step for retrieving text components touching the
graphics.

2 Separation through Analysis of Connected Components

Because of the scalability of the Fletcher & Kasturi method, we have chosen to
base our own text/graphics separation on it, as we work with many kinds of
complex graphics documents [8]. As Fletcher and Kasturi designed their method
for mixed text–graphics documents, whereas we work with engineering drawings,
maps, etc. we felt the need for adding an absolute constraint on the length and
width of a text component; however, this does not add a new parameter to the
method, as this constraint is set to

√
T1 (see below).

The method yields good results, but there is still a problem with dashes and
other elongated shapes. It is impossible to clearly discriminate, only on image
features, a « I »or « l »character from a dash, for instance. We therefore propose
to separate size filtering from shape filtering. As a consequence, we now have three
layers at the end of the process, instead of two: small components, assumed to be
text, large components, assumed to be graphics, and small elongated components,
which are added to a specific layer and used at later stages both by dashed lines
detection and by character string extraction.
Of course, another problem remains, that of text touching the graphics;

we will come back to this in sections 3 and 4. The modified algorithm is the
following—changes to the original Fletcher and Kasturi method are emphasized :

– compute connected components of the image, and the histogram of the sizes
of the bounding boxes for all black components;

– find most populated area in this histogram, Amp being the number of com-
ponents in this area;

– compute average of histogram and let Aavg be the number of components
having this average size;

– set a size threshold for bounding boxes, T1 = n × max(Amp, Aavg), and a
maximum elongation threshold for the bounding boxes, T2;

– filter the black connected components, adding to the text layer all those
having an area lower than T1, a

height
width ratio in the range [1

T2
, T2], and both

height and width lower than
√

T1, the other components being added to the
graphics layer;

– compute best enclosing rectangle1 of each component labeled as text by
previous step;

– set a density threshold T3 and an elongation threshold T4;
– Compute density of each “text” component with respect to its best enclosing
rectangle and the elongation ratio of this rectangle—if the density is greater
than T3 and the elongation is greater than T4, reclassify the component as
“small elongated component”, i.e. add it to the third layer.

Figure 1 illustrates the results of the method on a drawing, with T1 = 1.5 ×
max(Amp, Aavg), T2 = 20, T3 = 0.5 and T4 = 2. The small noise components are
pruned by a simple pre-processing step.

Fig. 1. A drawing and the three layers obtained by the method.

1 And not bounding box!

In such a method, the stability of the thresholds is an important criterion
for the robustness of the algorithm. In this case, T1 is defined proportionnally
to max(Amp, Aavg), the n factor being stable provided that there is only one
character size. If the character size is very homogeneous, n can be set to 3,
but for irregular sizes a lower value may be necessary for satisfying results.
The T2 set at 20 yields good results for all the documents we have worked on.
The minimum density threshold T3 must be set around 0.5 when the character
contours are noisy. The minimal elongation factor T4 is dependent of the kinds
of dashes present in the drawing; in our case a value of 2 has proved to be
satisfactory.

3 Extracting the Character Strings

Fletcher and Kasturi’s method includes a method for grouping the characters
into strings. This classically uses the Hough Transform (HT), working on the
center of the bounding boxes of all components classified as text. The main
steps are the following:

– compute average height Havg of bounding boxes in the text layer, and set
sampling step of the HT to chdr × Havg, where chdr is a given parameter;

– look for all horizontal, vertical and diagonal alignments by voting in the
(ρ, θ) space;

– segment each alignment into words:
• compute mean height h̄ of words in the alignment,
• sort characters along main direction,
• group into a word all successive characters separated by less than µ× h̄,
where µ is a given factor.

We tested two options:
1. process first the highest votes of the HT, and do not consider characters
already grouped in a first alignment when processing lower votes;

2. give the possibility to each character to be present in more than one
word hypothesis, and wait until all votes are processed before eliminating
multiple occurrences, by keeping the longest words.

Surprisingly, as illustrated by Fig. 2, it is difficult to choose a “best” option
looking at our experimental results, whereas we expected the second option to
be better than the first!
The two parameters of the method are chdr and µ. chdr adjusts the sampling

step of the HT. It is difficult to find a stable value for it. When it is too low, the
vote space is split into too many meshes, which may over-segment the strings.
On the other hand, when the value gets too high, some separate strings may end
up being merged.

µ adjusts the maximum distance allowed between characters in the same
string. Of course, this may also over-segment or under-segment the strings. Our
default value is 2.5, and this seems to be much more stable than chdr. Figure 3
illustrates the result with µ = 2.5 and chdr = 0.4.
The method has still a number of limitations:

Fig. 2. String extraction — options 1 and 2.

Fig. 3. String extraction.

– Short strings are not reliably detected, as there are not enough “votes” to
discriminate them efficiently from artefacts.

– When there are several parallel strings, the method may find artificial di-
agonal alignments—however, this can be dealt with using heuristics on the
privileged directions in the drawing.

– Punctuation signs, points on “i” characters and other accents, are not really
aligned with the other characters in the string. To include them in the strings,
we have to relax the parameters, thus opening up for wrong segmentations
at other places.

However, despite these limitations, the results are sufficiently reliable to be
usable as a basis for further processing, and for interactive edition if necessary.

4 Finding Characters Connected to the Graphics

One of the main drawbacks of methods based on connected components analysis
is that they are unable to extract the characters wich touch the graphics, as they
belong to the same connected component. By introducing some extra a priori
knowledge, it is possible to actually perform this separation:

– If the shape of the lines is known a priori, which is the case in forms or
tables, for instance, a specific line finder can extract the lines separating the
areas in the table or the form; see for instance a vectorizer such as FAST [4].

– If the width of some of the strokes is known–typically, the width of writing
on noisy backgrounds, or the width of the graphical lines in the drawing, it
is possible to introduce some stroke modeling to retrieve one layer of strokes
having a well-known width, thus separating it from other lines and strokes.

In this work, we propose a more general approach, where there is no need for
this kind of a priori knowledge. Still, we use some assumptions:

– we assume that text is mostly present as strings, and not as isolated charac-
ters;

– we also assume that the complete strings are not touching the graphics,
but that at least some of the characters have been found by the previous
segmentation step.

4.1 Extension of the Strings

Our proposition is to start with the strings found by the previous step, and
to extend them, looking for additional characters in specific search areas. Of
course, as noted, we are aware of the fact that this strategy will not retrieve
strings where all the characters are connected with the graphics, as there would
be no “seed string” from which we could define a search area. Still, the presence
of a single character connected to graphics occurs often enough for our strategy
to increase significantly the performances of the segmentation, as we will see.

The HT gave a first idea about the direction of each string; however, as it
“votes” for cells, this is not precise enough, and the first step is to determine
more precisely the orientation of each string found, by computing the equation
of the best line passing through all the characters. If the string has more than
4 points, this can be done through robust regression (median regression); for
shorter strings we use linear regression, although we know that this is very
sensitive to outliers.
Once the direction is found, we compute the enclosing rectangle of the string,

along this direction; this gives us a much better representation of the string’s
location than the starting bounding box. From this rectangle, we compute search
areas, taking into account the mean width of the characters and the mean spacing
between characters in the string. Figure 4 illustrates the search areas defined in
this way. When the string has only one character, the search area is a circle, as
we have no specific direction for the string.

Fig. 4. Starting text layer and search areas for extending the strings.

4.2 Segmentation of the Skeleton

We first look in the third layer, that of small elongated shapes. If some of these
shapes are included in a search area, they are added to the string.
We then look for possible characters connected to graphics in these search

areas. This is done by computing the 3–4 distance skeleton in each search area,
using Sanitti di Baja’s algorithm [6]. The basic idea is then to segment the
skeleton, reconstruct each part of the skeleton independently, and retrieve those
part which are candidates to be characters to be added to the string. This is very
similar to the idea proposed by Cao and Tan [2, 3]; another possible approach
is to use Voronoi tesselations [19].
For segmenting the skeleton, we based ourselves on a method proposed by

Den Hartog [5], which identifies the points of the skeleton having multiple con-
nectivity. However, in our case, this would over-segment the skeleton; therefore,

we only segment the skeleton into subsets which are connected to the parts of
the skeleton outside the search area by one and only one multiple point2. The
multiple points found in this way are the segmentation points of the skeleton. We
do not take into account those parts of the skeleton which intersect the border
of the search area.
Each part extracted by this segmentation is reconstructed using the inverse

distance transform. Figure 5 illustrates the results of the method.

Fig. 5. Graphics layer where we segment the skeleton in the search areas defined in
figure 4, and result of the string extraction.

Of course, the method has some limitations:

– as previously said, the method does not retrieve a string completely con-
nected to the graphics, such as the 0.60 string, as there is no seed string;

– when the computed string orientation is not correct (which may happen for
short strings, especially, as the regression is not robust in this case), we may
miss some characters—in the figure, we fortunately retrieved the second 0
of the 1.00 string, but it might easily have been missed, as the orientation
computed for the string is not correct (see Fig. 4), so that the search area is
also wrong;

– whereas characters such as J in the string 2MJDP are retrieved inside the seed
string M DP, it is not the case for the 1 character of string Pr:100, which
intersects the search area both at the top and at the bottom.

5 Evaluation and Conclusion

We give here some quantitative measures on extracts from several drawings
(Fig. 6). The Nb. ch. column indicates the number of characters counted by an
2 This is a heuristic choice, which is based on the assumption that the character is
only connected to the graphics at one location.

operator, in each image. The T/G column shows the number of characters found
by the text/graphics separation method described in Sect. 2, and the percentage
of real characters thus found. The Retr. shows the number of characters re-
trieved by the method described in Sect. 4, out of the total number of connected
characters. The Total column shows the total number of characters found after
the retrieval step, and the corresponding percentage. The Errors column shows
the number of components errouneously labeled as being text at the end of the
whole process. It must be noted that most of these errors stem from the initial
segmentation, not from the retrieval step.

Image Nb. ch. T/G Retr. Total Errors
IMG1 63 50 (79%) 8/13 58 (92%) 7
IMG2 92 66 (72%) 5/16 71 (77%) 24
IMG3 93 78 (84%) 3/15 81 (87%) 5
IMG4 121 95 (78%) 9/26 104 (86%) 71
IMG5 31 7 (22%) 0/0 7 (22%) 1

We see that the string extension process improves the final segmentation by
5 to 10%, in general. The number of false detections in IMG2 and IMG4 stem
from the dashed lines. We also included IMG5 to illustrate an extreme case: as
previously said, when the whole strings are connected to the graphics, there are
no seeds and no gains from the method. . .
We still see room for a number of improvements:

– The statistics used in the Fletcher and Kasturi method to analyze the distri-
butions of size and elongation are quite simple, even more or less empirical.
This is especially true for threshod T1. It might be interesting to proceed
with a finer statistical analysis of the histograms.

– The elongation criterion we use (thresholds T3 and T4) works on the best
enclosing rectangle. Although this is better than using the bounding box of
the connected component, it is still a simple rectangle. . . For shapes such as
“l” or “t”, or when the boundary of the shape is noisy, the best enclosing
rectangle remains a rough feature, so that the elongation criterion is not
very efficient. By allowing more computation time at this stage, we may go
for better elongation descriptors, such as higher order moments.

– An interesting alternative to the Hough transform for extracting the char-
acter strings (Sect. 3) could be to use the algorithm based on a 3D neigh-
borhood graph of all text components, proposed by Park et al. [17].

Acknowledgments

This work was supported by a research contract with EDF R&D. We are espe-
cially thankful to Raphaël Marc for support and fruitful discussions throughout
the work on this contract.

Image Original Extracted characters

IMG1

IMG2

IMG3

IMG4

IMG5

Fig. 6. Some images and result of the segmentation.

References

[1] E. Appiani, F. Cesarini, A. M. Colla, M. Diligenti, M. Gori, S. Marinai, and
G. Soda. Automatic document classification and indexing in high-volume appli-
cations. International Journal on Document Analysis and Recognition, 4(2):69–83,
December 2001.

[2] R. Cao and C. L. Tan. Separation of Overlapping Text from Graphics. In Pro-
ceedings of 6th International Conference on Document Analysis and Recognition,
Seattle (USA), pages 44–48, September 2001.

[3] R. Cao and C. L. Tan. Text/Graphics Separation in Maps. In Proceedings of
4th IAPR International Workshop on Graphics Recognition, Kingston, Ontario
(Canada), pages 245–254, September 2001.

[4] A. K. Chhabra, V. Misra, and J. Arias. Detection of Horizontal Lines in Noisy
Run Length Encoded Images: The FAST Method. In R. Kasturi and K. Tombre,
editors, Graphics Recognition—Methods and Applications, volume 1072 of Lecture
Notes in Computer Science, pages 35–48. Springer-Verlag, May 1996.

[5] J. E. den Hartog, T. K. ten Kate, and J. J. Gerbrands. An Alternative to Vec-
torization: Decomposition of Graphics into Primitives. In Proceedings of Third
Symposium on Document Analysis and Information Retrieval, Las Vegas, April
1994.

[6] G. Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3,4)-
Distance Transform. Journal of Visual Communication and Image Representation,
5(1):107–115, 1994.

[7] D. Dori and L. Wenyin. Vector-Based Segmentation of Text Connected to Graph-
ics in Engineering Drawings. In P. Perner, P. Wang, and A. Rosenfeld, editors,
Advances in Structural and Syntactial Pattern Recognition (Proceedings of 6th In-
ternational SSPR Workshop, Leipzig, Germany), volume 1121 of Lecture Notes in
Computer Science, pages 322–331. Springer-Verlag, August 1996.

[8] Ph. Dosch, K. Tombre, C. Ah-Soon, and G. Masini. A complete system for anal-
ysis of architectural drawings. International Journal on Document Analysis and
Recognition, 3(2):102–116, December 2000.

[9] L. A. Fletcher and R. Kasturi. A Robust Algorithm for Text String Separation
from Mixed Text/Graphics Images. IEEE Transactions on PAMI, 10(6):910–918,
1988.

[10] J. M. Gloger. Use of Hough Transform to Separate Merged Text/Graphics in
Forms. In Proceedings of 11th International Conference on Pattern Recognition,
Den Haag (The Netherlands), volume 2, pages 268–271, 1992.

[11] T. Kaneko. Line Structure Extraction from Line-Drawing Images. Pattern Recog-
nition, 25(9):963–973, 1992.

[12] D. X. Le, G. R. Thoma, and H. Wechsler. Classification of binary document images
into textual or nontextual data blocks using neural network models. Machine
Vision and Applications, 8:289–304, 1995.

[13] Z. Lu. Detection of Text Regions From Digital Engineering Drawings. IEEE
Transactions on PAMI, 20(4):431–439, April 1998.

[14] H. Luo and I. Dinstein. Using Directional Mathematical Morphology for Sep-
aration of Character Strings from Text/Graphics Image. In Shape, Structure
and Pattern Recognition (Post-proceedings of IAPR Workshop on Syntactic and
Structural Pattern Recognition, Nahariya, Israel), pages 372–381. World Scientific,
1994.

[15] Huizhu Luo and Rangachar Kasturi. Improved Directional Morphological Opera-
tions for Separation of Characters from Maps/Graphics. In K. Tombre and A. K.
Chhabra, editors, Graphics Recognition—Algorithms and Systems, volume 1389
of Lecture Notes in Computer Science, pages 35–47. Springer-Verlag, April 1998.

[16] G. Nagy and S. Seth. Hierarchical Representation of Optically Scanned Docu-
ments. In Proceedings of 7th International Conference on Pattern Recognition,
Montréal (Canada), pages 347–349, 1984.

[17] H.-C. Park, S.-Y. Ok, Y.-J. Yu, and H.-G. Cho. A word extraction algorithm for
machine-printed documents using a 3D neighborhood graph model. International
Journal on Document Analysis and Recognition, 4(2):115–130, December 2001.

[18] T. Pavlidis and J. Zhou. Page Segmentation and Classification. CVGIP: Graphical
Models and Image Processing, 54(6):484–496, November 1992.

[19] Y. Wang, I. T. Phillips, and R. Haralick. Using Area Voronoi Tessellation to
Segment Characters Connected to Graphics. In Proceedings of 4th IAPR Inter-
national Workshop on Graphics Recognition, Kingston, Ontario (Canada), pages
147–153, September 2001.

[20] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document Analysis System. IBM
Journal of Research and Development, 26(6):647–656, 1982.

