Improving Automated Symbolic Analysis of Ballot Secrecy for E-voting Protocols:
A Method Based on Sufficient Conditions

Euro S\&P 2019

Lucca Hirschi \& Cas Cremers

June 19th, 2019

Extremely complex setting

- insecure network
- active attacker
- parties running concurrently

Formal methods

- mathematical \& exhaustive analysis
- formal guarantees
- automated \& mechanised

Symbolic Model

Cryptographic primitives assumed perfect

- primitives modelled as function symbols \& equational theory
- e.g. \because, \bigodot en $(\cdot, \cdot), \operatorname{dec}(\cdot, \cdot) \& \operatorname{dec}(\operatorname{enc}(m, k), k)=m$

Security protocols

- each party \longmapsto process in a process algebra

Attacker = network (worst case scenario)

- eavesdrop: he learns all protocol outputs
- injections: he chooses all protocol inputs

Symbolic Model

Cryptographic primitives assumed perfect

- primitives modelled as function symbols \& equational theory
- e.g. $\because, C \operatorname{enc}(\cdot, \cdot), \operatorname{dec}(\cdot, \cdot) \& \operatorname{dec}(\operatorname{enc}(m, k), k)=m$

Security protocols

- each party \longmapsto process in a process algebra

Attacker = network (worst case scenario)

- eavesdrop: he learns all protocol outputs
- injections: he chooses all protocol inputs

Security properties encoded as:

- reachability statements (e.g. for secrecy)
- or behavioral equivalence statements (e.g. for privacy)

Benefit: high level of automation and tool support!

Symbolic Model

Cryptographic primitives assumed perfect

- primitives modelled as function symbols \& equational theory
- e.g. $\because, C \operatorname{enc}(\cdot, \cdot), \operatorname{dec}(\cdot, \cdot) \& \operatorname{dec}(\operatorname{enc}(m, k), k)=m$

- or behavioral equivalence statements (e.g. for privacy)

Benefit: high level of automation and tool support!

Symbolic Verification of E-Voting Protocols

Remote E-Voting Protocols:

- actually used: Estonia, Australia, Switzerland, many smaller elections
- 2 crucial properties: verifiability (of the election) and privacy (of the votes)
- hard to get right + extremely strong threat model

Symbolic Verification of E-Voting Protocols

Symbolic Verification of E-Voting Protocols

Remote E-Voting Protocols:

- actually used: Estonia, Australia, Switzerland, many smaller elections
- 2 crucial properties: verifiability (of the election) and privacy (of the votes)
- hard to get right + extremely strong threat model

This Work: Improve ballot privacy verification technique

- new verification technique based on sufficient conditions
- extends the scope + more efficient

Introduction

| State-of-the-Art \& Limitations
II Our Approach: Sufficient Conditions for Privacy
III Conclusion

Applied π-Calculus

Model of messages: function symbols \& equational theory
Model of protocols: Process algebra

- Process:

$$
\begin{aligned}
P, Q & := \\
& \operatorname{in}(c, x) \cdot P \\
& \mid \\
& \operatorname{out}(c, m) \cdot P \\
& i: P
\end{aligned}
$$

input
output
phase (can be executed >= phase i)

Applied π-Calculus

Model of messages: function symbols \& equational theory
Model of protocols: Process algebra

- Process:

input
output
phase (can be executed >= phase i)
parallel
replication
conditional
creation of name
null

Applied π-Calculus

Model of messages: function symbols \& equational theory
Model of protocols: Process algebra

- Process:

P, Q	$:=\operatorname{in}(c, x) \cdot P$	input
	$\|$$\operatorname{out}(c, m) \cdot P$ output $i: P$ phase (can be executed $>=$ phase i) $P \mid Q$ $\mid P$ parallel if Test then P else Q	replication
	new $X \cdot P$	conditional
	0	creation of name
		null

- Frame (ϕ) : the set of messages revealed to
(*) sknowledge)
- Configuration: $A=(\mathcal{P} ; \phi ; j)$
(\mathcal{P} multiset of processes, $j \in \mathbb{N}$)

E-Voting and Privacy

E-Voting Protocol (simplified)

- Roles as processes: Voter: $V(\mathbb{Q})$ and authorities: $A \in \mathcal{R}$
- Tally as a function Tally over frames
- Honest Trace: a fixed, full, honest execution of $\{V(\sqrt{6}, \checkmark)\} \cup \mathcal{R}$

E-Voting and Privacy

E-Voting Protocol (simplified)

- Roles as processes: Voter: $V(\mathbb{Q})$ and authorities: $A \in \mathcal{R}$
- Tally as a function Tally over frames
- Honest Trace: a fixed, full, honest execution of $\{V(\underset{)}{ }, \checkmark)\} \cup \mathcal{R}$

Ballot Privacy (simplified)

Where \approx is a behavioral equivalence:
cannot establish meaningful link between a voter and his vote"

E-Voting and Privacy

E-Voting Protocol (simplified)

- Roles as processes: Voter: $V(\mathbb{Q})$ and authorities: $A \in \mathcal{R}$
- Tally as a function Tally over frames
- Honest Trace: a fixed, full, honest execution of $\{V(\backsim, \checkmark)\} \cup \mathcal{R}$

Ballot Privacy (simplified)

Where \approx is a behavioral equivalence:

cannot tell both sides apart.

Trivial Example:

$$
V(\sqrt{9}):=1: \operatorname{out}(c, 9) \cdot \operatorname{out}(c, \text {, })
$$

E-Voting and Privacy

E-Voting Protocol (simplified)

- Roles as processes: Voter: $V(\mathbb{Q})$ and authorities: $A \in \mathcal{R}$
- Tally as a function Tally over frames
- Honest Trace: a fixed, full, honest execution of $\{V(\mathcal{B}, \checkmark)\} \cup \mathcal{R}$

Ballot Privacy (simplified)

Where \approx is a behavioral equivalence: cannot tell both sides apart.

E-Voting and Privacy

E-Voting Protocol (simplified)

- Roles as processes: Voter: $V(\mathbb{Q})$ and authorities: $A \in \mathcal{R}$
- Tally as a function Tally over frames
- Honest Trace: a fixed, full, honest execution of $\{V(\mathcal{B}), \checkmark \cup \mathcal{R}$

Ballot Privacy (simplified)

Where \approx is a behavioral equivalence: cannot tell both sides apart.

\sim has to let both and reach phase 2 before getting any

Problem

State-of-the-art: \approx approximated by "diff-equivalence" (when ∞ sessions) Ballot privacy: $V(\stackrel{A}{(1)}, \sqrt{ })|V(\times)|!\mathcal{A} \approx V(\times)|V(\sqrt{\infty})|!\mathcal{A}$

Problem

State-of-the-art: \approx approximated by "diff-equivalence" (when ∞ sessions) Ballot privacy: $V(\underset{\sim}{\infty}, \operatorname{diff}[\checkmark, \times])|V(\operatorname{diff}[\times, \checkmark])|!\mathcal{A}$

Problem

State-of-the-art: \approx approximated by "diff-equivalence"

```
diff-equivalence = " }\approx\mathrm{ for who knows internal structure of processes"
```

Implications:

- knows when actions are triggered by the same process/agent

Structural links given to vs. ballot privacy=absence of certain links:
\sim systematic false attacks on ballot secrecy
\sim ad hoc work-arounds with limited applicability e.g. swaps of processes

Our hybrid approach: privacy via sufficient conditions

Methodology:

- focus on some class of protocols and some privacy goal
- identify conditions (inspired by generic classes of attacks)
- that are sufficient (soundness),
- fundamentally simpler and easier to check (checkability), and
- met by (secure) protocols (tightness)

Our hybrid approach: privacy via sufficient conditions

Methodology:

- focus on some class of protocols and some privacy goal
- identify conditions (inspired by generic classes of attacks)
- that are sufficient (soundness),
- fundamentally simpler and easier to check (checkability), and
- met by (secure) protocols (tightness)

Goal: More precise \& efficient verification techniques + extends the scope.
First developed for untraceability:
L.H., D. Bælde, and S. Delaune. "A method for unbounded verification of privacy-type properties". Journal JCS'19 and conference S\&P'16.

Introduction

| State-of-the-Art \& Limitations
II Our Approach: Sufficient Conditions for Privacy
III Conclusion

Leaking Status

Take for instance: $V(\mathbb{Q}, \boldsymbol{M})=$ new $n .1$: out $(P) \cdot P . \operatorname{cout}(\mathbb{M}) . \operatorname{out}(n)$

$$
\begin{aligned}
& \mathrm{V}=1: \begin{array}{|l|l|l|l|}
\hline \operatorname{Out}(\text { IId }) & \ln (y) & \operatorname{Out}(u) \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline \operatorname{Out}(\mathbf{v}) & \operatorname{Out}(n) \\
\hline
\end{array} \\
& \begin{array}{|l|l|l}
\hline \ln (x) & \operatorname{Out}(t) & \ln (z) \\
\hline
\end{array}
\end{aligned}
$$

Leaking Status

Take for instance: $V(\mathbb{M})=$ new $n .1$: out $(\mathbb{C}) \cdot P \cdot o u t(\mathbb{M})$.out (n)

Leaking Status

Take for instance: $V(\mathbb{M})=$ new $n .1: \operatorname{out}(\mathbb{S}) \cdot P .2: \operatorname{out}(\mathbb{M}) . \operatorname{out}(n)$

Leaking Status

Take for instance: $V(\mathbb{Q}, \mathbb{M})=$ new $n .1: \operatorname{out}(P) \cdot P .2: \operatorname{out}(\mathbb{Z}) . \operatorname{out}(n)$

- At most 1 type of leak in a single phase \sim phase leaking status id-leaking phases unlinkable to vote \wedge vote-leaking phases unlinkable to id

Leaking Status

Take for instance: $V(\mathbb{Q}, \mathbb{M})=$ new $n .1: \operatorname{out}(P) \cdot P .2: \operatorname{out}(\mathbb{Z}) . \operatorname{out}(n)$

- At most 1 type of leak in a single phase \sim phase leaking status id-leaking phases unlinkable to vote \wedge vote-leaking phases unlinkable to id
- Similarly: name has at most 1 type of leak \leadsto name leaking status

1: Dishonest Condition

Idea: if a deviation from the honest execution at phase i has some impact at phase $j>i \sim$ may link phases i and j.
e.g. taint credential at phase 1 and observe it at phase 2

Dishonest Condition (Informal)

For any execution, if a voter process V at phase j is still present at the end, then it followed the honest trace up to $j-1$.

- Prevent a class of attacks
- Allow us to focus on less executions (those that meet the condition)

1: Dishonest Condition

Idea: if a deviation from the honest execution at phase i has some impact at phase $j>i \sim$ may link phases i and j.
e.g. taint credential at phase 1 and observe it at phase 2

Dishonest Condition (Informal)

For any execution, if a voter process V at phase j is still present at the end, then it followed the honest trace up to $j-1$.

- Prevent a class of attacks
- Allow us to focus on less executions (those that meet the condition)

$$
\begin{aligned}
& \mathcal{R}^{\text {id }}\left(\mathbf{n}_{A}^{\text {id }}, \mathbf{n}_{1}^{\vee}\right)=\left\{\begin{array}{l|l|l|}
\hline 1: \operatorname{Out}(\mathbf{I}) & \ln (y) & \operatorname{Out}(u) \\
& 1: \operatorname{\operatorname {ln}(x)} & \operatorname{Out}(t) \\
\ln (z) \\
\mathcal{R}^{\vee}\left(\mathbf{n}_{A}^{\text {id }}, \mathbf{n}_{1}^{\vee}\right)=\left\{\begin{array}{l|l|l|}
& \operatorname{Out}(\mathbf{I}) & \operatorname{Out}\left(n_{1}\right)
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

less structural links with "standalone phase-processes" ©

2: Relation Condition

We would like to check the absence of relation for all phase-processes. (less structural links now $)^{(\cdot)}$

$$
\operatorname{diff}\left[n_{\checkmark}^{\vee}, n_{x}^{\vee}\right] \text { in id-leaking phase-processes }
$$

Defined as the diff-equivalence of:

$$
\begin{aligned}
\mathcal{B}= & \left\{\mathcal{R}^{\text {id }}\left(\mathbf{n}_{\overparen{@}}^{\text {id }}, \operatorname{diff}\left[\mathbf{n}_{\checkmark}^{v}, \mathbf{n}_{\times}^{\mathrm{v}}\right]\right),\right. \\
& \mathcal{R}^{\text {id }}\left(\mathbf{n}_{\mathbb{C}}^{\text {id }}, \operatorname{diff}\left[\mathbf{n}_{\times}^{\mathrm{v}}, \mathbf{n}_{\checkmark}^{\mathrm{v}}\right]\right) \\
& \} \biguplus!\mathcal{R}
\end{aligned}
$$

2: Relation Condition

We would like to check the absence of relation for all phase-processes. (less structural links now ©)

$$
\begin{gathered}
\operatorname{diff}\left[n_{v}^{\vee}, n_{x}^{\vee}\right] \text { in id-leaking phase-processes } \\
\operatorname{diff}\left[n_{\circlearrowleft}^{\text {id }}, n_{8}^{\text {id }}\right] \text { in vote-leaking phase-processes }
\end{gathered}
$$

Defined as the diff-equivalence of:

$$
\begin{aligned}
& \} \biguplus!\mathcal{R}
\end{aligned}
$$

2: Relation Condition

We would like to check the absence of relation for all phase-processes. (less structural links now ©)

$$
\begin{gathered}
\operatorname{diff}\left[n_{v}^{\vee}, n_{\times}^{\vee}\right] \text { in id-leaking phase-processes } \\
\operatorname{diff}\left[n_{\triangle}^{\text {id }}, n_{8}^{\text {id }}\right] \text { in vote-leaking phase-processes }
\end{gathered}
$$

Defined as the diff-equivalence of:

$$
\begin{aligned}
& \mathcal{B}=\left\{\mathcal{R}^{\text {id }}\left(\mathbf{n}_{\Theta}^{\text {id }}, \operatorname{diff}\left[\mathbf{n}_{\sqrt{v}}^{\mathrm{v}}, \mathbf{n}_{\times}^{\mathrm{v}}\right]\right), \quad \mathcal{R}^{\vee}\left(\operatorname{diff}\left[\mathbf{n}_{\Theta}^{\text {id }}, \mathbf{n}_{\underset{\circlearrowleft}{\mathrm{id}}}^{\text {id }}\right], \mathbf{n}_{\sqrt{ }}^{\mathrm{v}}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \} \biguplus!\mathcal{R}
\end{aligned}
$$

Relation Condition (Informal)

The Honest Relations Condition is satisfied if \mathcal{B} is diff-equivalent.

Our Results

Theorem (soundness)
For any $E=(V(\mathbb{M}), \mathcal{R}$, Tally), if the Dishonest, Relation, and Tally conditions hold then E satisfies ballot secrecy.
(Tally condition omitted)

- We provide an algorithm for computing models checking the conditions and heuristics to find leaking status (checkability)
- We verify some case studies + benchmarks (tightness):

Protocol	Ballot Secrecy	Our verif. time	Previous state of the art
FOO	\checkmark	0.04	0.26
Lee 1	\checkmark	0.04	46
Lee 2	\checkmark	0.05	\dagger
Lee 3	\checkmark	0.01	\dagger
Lee 4		6.64	169.94
JCJ	\checkmark	18.79	\times
Belenios	\checkmark	0.02	\times

Introduction

I Privacy via Sufficient Conditions
II Application to E-Voting
III Conclusion

Conclusion

Summary

- Three tight, sufficient conditions for ballot privacy
- Expands the class of protocols and threat models that can be verified
- More efficient verification

Future Work

- Extend our result with more precise Tally
- Combine with the new BPRIV privacy definition [S\&P'15, Euro S\&P'19]
- Provide a tool with ProVerif/Tamarin as back-end
- Reuse methodology for other contexts/privacy properties
lucca.hirschi@inria.fr

Backup Slides

Symbolic Model

Big Picture
Protocol's specification \longmapsto Protocol's model

Privacy goal $\longmapsto \approx$ between scenarios

Two Approaches for Verifying \approx Automatically

Decision for $<\infty$ sessions
$<\infty$
branching

- bound the number of sessions
- symbolic semantics
\leadsto finite description of
- exhaustive exploration of symbolic executions
- Tools: Apte, Akiss, Spec

Semi-decision for ∞ sessions

- over-approximations of \& semantics
- strong form of \approx (i.e. diff-equivalence)
- Tools: ProVerif, Tamarin, Maude-NPA

Limitation of Semi-decision Procedures

Applied π-Calculus

Model of messages: Term algebra

- Function symbols
- Equational theory $=$ E + computation relation \downarrow
$\operatorname{enc}(\cdot, \cdot), \operatorname{dec}(\cdot, \cdot)$ $\operatorname{dec}(\operatorname{enc}(x, y), y) \downarrow x$

Model of protocols: Process calculus

- Process: P, Q := 0 $\operatorname{in}(c, x) \cdot P$ out $(c, m) . P$
let $x=v$ then P else Q
$P \mid Q$
$!P$
new $n . P$
$i: P$
null
input
output conditional parallel
replication
creation of name weak phase
- Frame (ϕ) : the set of messages revealed to

$$
\phi=\{\underbrace{w_{1}}_{\text {handle }} \mapsto \underbrace{\operatorname{enc}(m, k)}_{\text {out. message }}, w_{2} \mapsto k\}
$$

- Configuration: $A=(\mathcal{P} ; \phi ; j)$

Applied- π - Semantics

- Recipes: terms built using handles

$$
\begin{array}{ll}
\text { e.g. } & R=\operatorname{dec}\left(w_{1}, w_{2}\right) \quad \text { for } \quad \phi=\left\{w_{1} \mapsto \operatorname{enc}(m, k), w_{2} \mapsto k\right\}
\end{array}
$$

"How builds messages from its knowledge"

Applied- π - Semantics

- Recipes: terms built using handles

$$
\begin{array}{ll}
\text { e.g. } & R=\operatorname{dec}\left(w_{1}, w_{2}\right) \quad \text { for } \quad \phi=\left\{w_{1} \mapsto \operatorname{enc}(m, k), w_{2} \mapsto k\right\} \\
& R \phi={ }_{\mathrm{E}} m
\end{array}
$$

"How builds messages from its knowledge"

- Protocol's output:
$(\{i: \operatorname{out}(c, u) . P\} \cup \mathcal{P} ; \phi ; i) \xrightarrow{\text { out }(c, w)}(\{i: P\} \cup \mathcal{P} ; \phi \cup\{w \mapsto u\} ; i) \quad$ if w fresh
- Protocol's input:

$$
(\{i: \operatorname{in}(c, x) . P\} \cup \mathcal{P} ; \phi ; i) \xrightarrow{\operatorname{in}(c, R)}(\{i: P\{x \mapsto R \phi\}\} \cup \mathcal{P} ; \phi ; i)
$$

- + expected rules for conditional (modulo $=_{\mathrm{E}}$) \& others

controls all the network

Applied- π - Trace Equivalence

Static Equivalence (intuitively)

$\Phi \sim \Psi$ when

- $\operatorname{dom}(\Phi)=\operatorname{dom}(\Psi)$ and
- for all tests, it holds on $\Phi \Longleftrightarrow$ it holds on Ψ

Trace Equivalence

$A \approx B$: for any $A \xrightarrow{\mathrm{t}} A^{\prime}$ there exists $B \xrightarrow{\mathrm{t}^{\prime}} B^{\prime}$ such $\Phi\left(A^{\prime}\right) \sim \Phi\left(B^{\prime}\right)$ and $\mathrm{obs}(\mathrm{t})=\mathrm{obs}\left(\mathrm{t}^{\prime}\right)$

Privacy

Unlinkability

cannot establish meaningful link between two interactions (with same Id)

Anonymity

$$
\mathcal{M} \mid \text { !new Sess. }\left(P_{x_{0}}\left(\mathrm{Id}_{0}\right) \mid P_{\infty}\left(\mathrm{Id}_{0}\right)\right) \approx ? \mathcal{M}
$$

cannot establish meaningful link between an interaction and identity Id_{0}

Ballot Secrecy

cannot establish meaningful link between a voter and his vote

Goal: Analyzing Ballot Secrecy

Often, only the core voting protocol is analyzed.

Goal: Analyzing Ballot Secrecy

Often, only the core voting protocol is analyzed.

Goal: Analyzing Ballot Secrecy

Often, only the core voting protocol is analyzed.

We would like to take into account important aspects such as:

- registration, credential delivery
- voting
- authentication
- tallying

We would like to:

- compare different threat models (no security if everything is compromised)
- identify minimal honesty assumptions

Verifying Ballot Secrecy

Diff-equivalence yields false attacks
Take:

$$
V(\boldsymbol{\text { M M }} \text {) })=1: \operatorname{out}(c, \boldsymbol{\Phi}) \cdot 2: \operatorname{out}(c, \text {, }
$$

With diff-equivalence, \qquad (resp. ©)
\sim attacker can link ${ }^{\ominus}$ and

State-of-the-Art

Weakening diff-equivalence (improving the tool):

- Swapping approach - Idea:[DRS'08], Proof+ProVerif:[BB'16], Tamarin:[DDKS'17]: allows to change biprocess pairing at sync. barriers

Hybrid approaches:

- type system [CGLM'17]
- small attack property [ACḰ16]

State-of-the-Art

Weakening diff-equivalence (improving the tool):

- Swapping approach - Idea:[DRS'08], Proof+ProVerif:[BB’16], Tamarin:[DDKS'17]: allows to change biprocess pairing at sync. barriers Limitations:
- no swap/phase under replication \sim
- no honest authority present in \neq phases
- no threat model with no dishonest voters
- introduction of new internal communication \sim
- false attacks in presence of fresh data going through phases (1 : new $n .2: \operatorname{out}(c,(v, n)$)

Hybrid approaches:

- type system [CGLM'17]
- small attack property [ACK16]

State-of-the-Art

Weakening diff-equivalence (improving the tool):

- Swapping approach - Idea:[DRS'08], Proof+ProVerif:[BB'16], Tamarin:[DDKS'17]: allows to change biprocess pairing at sync. barriers Limitations:
- no swap/phase under replication \sim
- no honest authority present in \neq phases
- no threat model with no dishonest voters
- introduction of new internal communication \sim
- false attacks in presence of fresh data going through phases (1 : new $n .2: \operatorname{out}(c,(v, n)$)

Hybrid approaches:

- type system [CGLM'17] but pairing is as rigid as diff-equivalence, standard primitives only
- small attack property [ACK'16] but only 1 phase, performance issues

In practice, interesting threat models and modeling of e.g. Lee, JCJ, Belenios are out of the scope

Our contribution - Big Picture

We develop a privacy via sufficient conditions approach for ballot secrecy and a large class of e-voting protocols (soundness, checkability, tightness).

We apply our technique on FOO, Lee, JCJ and Belenios (with registration):

- false attacks using previous techniques
- much better performance
(e.g. JCJ, Belenios)
(e.g. $* 10^{2}$, termination for LEE)

Our contribution - Big Picture

We develop a privacy via sufficient conditions approach for ballot secrecy and a large class of e-voting protocols (soundness, checkability, tightness).

We apply our technique on FOO, Lee, JCJ and Belenios (with registration):

- false attacks using previous techniques
- much better performance
(e.g. $* 10^{2}$, termination for LEE)

Main Limitation:

- Tallier is too unrealistic: no revote policy, homomorphic tallying

Class of e-voting protocols

(Honest) Roles:

- Voter: $V(\mathbb{M})=i$: new $\vec{n} . V^{\prime}$ such that V^{\prime} has no !, | or new
- $A \in \mathcal{R}$ authority session, same format $+(?)$ voters
- Some role $A_{c} \in \mathcal{R}$ is the bulletin box and $A_{b} \ni \operatorname{out}\left(c_{b}, t\right)$

Tally:

- Made of a public term Ψ_{b} (correct form?) and private term Extract (check validity and extract vote)
- "Tally" $=!i_{f}: \operatorname{in}(c, x)$.let $\left(_, v\right)=\left(\Psi_{b}[x]\right.$, Extract $\left.[x]\right)$ in out (c, v)

Honest Trace: (symbolic) trace th s.t. $\left(\mathcal{R} \cup\{V(\varnothing, \checkmark)\} ; \phi_{0} ; 1\right) \xrightarrow{\text { th }}\left(\varnothing ; \phi ; i_{f}\right)$

Class of e-voting protocols

(Honest) Roles:

- Voter: $V(\mathbb{M})=i$: new $\vec{n} . V^{\prime}$ such that V^{\prime} has no !, | or new
- $A \in \mathcal{R}$ authority session, same format $+(?)$ voters
- Some role $A_{c} \in \mathcal{R}$ is the bulletin box and $A_{b} \ni \operatorname{out}\left(c_{b}, t\right)$

Tally:

- Made of a public term Ψ_{b} (correct form?) and private term Extract (check validity and extract vote)
- "Tally" $=!i_{f}: \operatorname{in}(c, x)$.let $\left(_, v\right)=\left(\Psi_{b}[x]\right.$, Extract $\left.[x]\right)$ in out (c, v)

Honest Trace: (symbolic) trace th s.t. $\left(\mathcal{R} \cup\{V(\Theta, \checkmark)\} ; \phi_{0} ; 1\right) \xrightarrow{\text { th }}\left(\varnothing ; \phi ; i_{f}\right)$

E-Voting Protocol:

$$
\left(\mathcal{V} ; \phi_{0} ; V(\mathbb{\Theta}, \underline{M}), \mathcal{R},\left(\Psi_{b}, \text { Extract }\right)\right)
$$

Ballot Secrecy

(Weak) phases are not enough

Take:
$V(\mathbb{M})=1: \operatorname{out}(c, \boldsymbol{Q}) \cdot 2: \operatorname{out}(c$, , $)$

But strong phases suffer from theoretical limitations w.r.t. replications. Idea:

- Executions with strong phases = executions with weak phases that wait for all processes at each phase jump

Ballot Secrecy

(Weak) phases are not enough

Take:

But strong phases suffer from theoretical limitations w.r.t. replications. Idea:

- Executions with strong phases = executions with weak phases that wait for all processes at each phase jump
- Fair executions = executions with weak phases that wait for and

Ballot Secrecy: Use weak phases $+\approx$ fair instead of strong phases $+\approx$

Leaking Status

$$
\begin{aligned}
& \mathrm{V}=1: \begin{array}{|l|l|l|l|}
\hline \operatorname{Out}(\mathbf{I}(\mathbf{l}) & \ln (y) & \operatorname{Out}(u) \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline \operatorname{Out}(\mathbf{z}) & \operatorname{Out}(n) \\
\hline
\end{array} \\
& \mathrm{A}=1: \begin{array}{|l|l|l|}
\hline \ln (x) & \operatorname{Out}(t) & \ln (z) \\
\hline
\end{array}
\end{aligned}
$$

Leaking Status

Leaking Status

Leaking Status

Leaking Status

- at most 1 type of leak in a single phase \leadsto phase leaking status
id-leaking phases unlinkable to v \wedge vote-leaking phases unlinkable to id $\approx\binom{$ diff $\left[v_{1}, v_{2}\right]$ in id-leaking phases }{ diff $\left[i d_{1}, i d_{2}\right]$ in vote-leaking phases }

Leaking Status

- at most 1 type of leak in a single phase \sim phase leaking status id-leaking phases unlinkable to v \wedge vote-leaking phases unlinkable to id $\approx\binom{\operatorname{diff}\left[v_{1}, v_{2}\right]$ in id-leaking phases }{$\operatorname{diff}\left[i d_{1}, i d_{2}\right]$ in vote-leaking phases }
- name has at most 1 type of link \sim name leaking status id-leaking phases/names unlinkable to v
vote-leaking phases/names unlinkable to id $\quad \approx\binom{\operatorname{diff}\left[\mathbf{n}_{1}^{v}, \mathbf{n}_{2}^{v}\right]$ in id-leaking phases }{$\operatorname{diff}\left[\mathbf{n}_{1}^{i d}, \mathbf{n}_{2}^{i d}\right]$ in vote-leaking phases }

Leaking Status

- at most 1 type of leak in a single phase \leadsto phase leaking status id-leaking phases unlinkable to v \wedge vote-leaking phases unlinkable to id $\approx\binom{$ diff $\left[v_{1}, v_{2}\right]$ in id-leaking phases }{ diff $\left[i d_{1}, i d_{2}\right]$ in vote-leaking phases }
- name has at most 1 type of link \leadsto name leaking status id-leaking phases/names unlinkable to v
vote-leaking phases/names unlinkable to id $\approx\binom{\operatorname{diff}\left[n_{1}^{v}, \boldsymbol{n}_{2}^{v}\right]$ in id-leaking phases }{ diff $\left[\mathbf{n}_{1}^{i d}, n_{2}\right]$ in vote-leaking phases }

But diff-equivalence is still problematic

Phase-Process and Dishonest Condition

Idea: if a deviation from the honest execution in phase i has some impact in phase $j>i \sim$ may link phases i and j.
e.g. "weaken"/taint credential in phase 1 and observe it in phase 2

Dishonest Condition (Informal)
For any fair execution $\left(\mathcal{S} ; \phi_{0} ; 1\right) \xrightarrow{\text { t.phase }(j)}(\mathcal{P} ; \phi ; j)$, if a process at phase j annotated $[\mathcal{Q}, \mathbb{Z}]$ for $\in\{\mathbb{Q}\}$ and \mathcal{V} is present in \mathcal{P} then it followed th up to phase j.

Phase-Process and Dishonest Condition

Idea: if a deviation from the honest execution in phase i has some impact in phase $j>i \sim$ may link phases i and j.
e.g. "weaken"/taint credential in phase 1 and observe it in phase 2

Dishonest Condition (Informal)

For any fair execution $\left(\mathcal{S} ; \phi_{0} ; 1\right) \xrightarrow{\text { t.phase }(j)}(\mathcal{P} ; \phi ; j)$, if a process at phase j annotated $[\mathcal{Q}, \mathbb{Q}]$ for $\in\{$ and $\mathbb{Q} \in \mathcal{V}$ is present in \mathcal{P} then it followed th up to phase j.

- Prevent a class of attacks
- Allow us to focus on less executions (those that meet the condition)

$$
\begin{aligned}
& \mathrm{V}=1: \begin{array}{l|l|l|l|l|}
\hline \operatorname{Out}(\text { Ita) } & \ln (y) & \operatorname{Out}(u) & \text { Out(I) } & \operatorname{Out}(n) \\
\mathrm{A}=1: & \ln (x) & \operatorname{Out}(t) & \ln (z)
\end{array}
\end{aligned}
$$

Phase-Process and Dishonest Condition

Idea: if a deviation from the honest execution in phase i has some impact in phase $j>i \sim$ may link phases i and j.
e.g. "weaken"/taint credential in phase 1 and observe it in phase 2

Dishonest Condition (Informal)

For any fair execution $\left(\mathcal{S} ; \phi_{0} ; 1\right) \xrightarrow{\text { t.phase }(j)}(\mathcal{P} ; \phi ; j)$, if a process at phase j annotated $[\mathcal{Q}, \mathbb{Q}]$ for $\in\{$ and $\mathbb{Q} \in \mathcal{V}$ is present in \mathcal{P} then it followed th up to phase j.

- Prevent a class of attacks
- Allow us to focus on less executions (those that meet the condition)

Phase-Process and Dishonest Condition

Idea: if a deviation from the honest execution in phase i has some impact in phase $j>i \sim$ may link phases i and j.
e.g. "weaken"/taint credential in phase 1 and observe it in phase 2

Dishonest Condition (Informal)

For any fair execution $\left(\mathcal{S} ; \phi_{0} ; 1\right) \xrightarrow{\text { t.phase }(j)}(\mathcal{P} ; \phi ; j)$, if a process at phase j annotated $[\mathcal{Q}, \mathbb{Q}]$ for $\in\{\in \mathbb{Q}\}$ and $\mathbb{\mathcal { V }}$ is present in \mathcal{P} then it followed th up to phase j.

- Prevent a class of attacks
- Allow us to focus on less executions (those that meet the condition)

$$
\begin{aligned}
& \mathcal{R}^{\text {id }}\left(\mathbf{n}_{A}^{\text {id }}, \mathbf{n}_{1}^{v}\right)=\left\{\begin{array}{l|l|l|l|}
1: & \operatorname{Out}(\mathbf{L}) & \ln (y) & \operatorname{Out}(u) \\
1: & \ln (x) & \operatorname{Out}(t) & \ln (z)
\end{array}\right\} \\
& \mathcal{R}^{\vee}\left(\mathbf{n}_{A}^{\text {id }}, \mathbf{n}_{1}^{v}\right)=\left\{\begin{array}{l|l|l}
2: & \operatorname{Out}(\mathbf{I}) & \operatorname{Out}\left(n_{1}\right)
\end{array}\right\}
\end{aligned}
$$

Relation Condition

We would like to check the absence of relation for all phase-processes. (less structural links now ©)

$$
\begin{aligned}
& \operatorname{diff}\left[n_{V}^{\vee}, n_{x}^{v}\right] \text { in id-leaking process-phases } \\
& \operatorname{diff}\left[n_{s}^{\text {id }}, n_{\frac{i d}{i d}}^{\text {id }}\right] \text { in vote-leaking process-phases }
\end{aligned}
$$

Formally defined through a bi-process:

$$
\begin{aligned}
& \left.\biguplus!\mathcal{R} ; \phi_{0} ; 1\right)
\end{aligned}
$$

Relation Condition

We would like to check the absence of relation for all phase-processes. (less structural links now ©)

$$
\begin{aligned}
& \operatorname{diff}\left[n_{V}^{v}, n_{x}^{v}\right] \text { in id-leaking process-phases } \\
& \operatorname{diff}\left[n_{ভ}^{\text {id }}, n_{\frac{i d}{\text { id }}}\right] \text { in vote-leaking process-phases }
\end{aligned}
$$

Formally defined through a bi-process:

$$
\begin{aligned}
& \left.\biguplus!\mathcal{R} ; \phi_{0} ; 1\right)
\end{aligned}
$$

Relation Condition (Informal)

The Honest Relations Condition is satisfied if \mathcal{B} is diff-equivalent and th is phase-oblivious.
th is phase-oblivious when it dœs not connect a handle and a recipe of different leaking status

Tally Condition

Goal: prevents ballot secrecy attacks that exploit the tally's outcome. Ballots are either:

1. (honest): stems from an honest execution of or
2. (dishonest): dœs not depend on data that can be linked to an identity
\sim the vote Tally would extract is insensible to the swap \leftrightarrow

Tally Condition

Goal: prevents ballot secrecy attacks that exploit the tally's outcome. Ballots are either:

1. (honest): stems from an honest execution of or
2. (dishonest): dœs not depend on data that can be linked to an identity \sim the vote Tally would extract is insensible to the swap \leftrightarrow

Tally Condition (Informal)

\forall fair execution $\mathcal{B} \xrightarrow{\mathrm{t}}\left(\mathcal{P}^{\prime},\left(\phi_{l}, \phi_{r}\right)\right)$, for any ballot $w \phi_{l}$ in the BB , either:

1. there exists a voter $V(\mathbb{Q}, \mathbb{Q}),\{\in\}$ who had an honest interaction and who has cast w
2. or there exists some $v \in \mathcal{V} \cup\{\perp\}$ such that $\operatorname{Extract}\left(w \phi_{l}\right) \downarrow v$ and Extract $\left(w \phi_{r}\right) \downarrow v$.

Tally Condition

Goal: prevents ballot secrecy attacks that exploit the tally's outcome. Ballots are either:

1. (honest): stems from an honest execution of or
2. (dishonest): dœs not depend on data that can be linked to an identity \sim the vote Tally would extract is insensible to the swap \leftrightarrow

Tally Condition (Informal)

\forall fair execution $\mathcal{B} \xrightarrow{\mathrm{t}}\left(\mathcal{P}^{\prime},\left(\phi_{l}, \phi_{r}\right)\right)$, for any ballot $w \phi_{l}$ in the BB , either:

1. there exists a voter $V(\mathbb{Q}, \mathbb{Q}),\{\hat{\mathcal{E}}\}$ who had an honest interaction and who has cast w
2. or there exists some $v \in \mathcal{V} \cup\{\perp\}$ such that $\operatorname{Extract}\left(w \phi_{l}\right) \downarrow v$ and $\operatorname{Extract}\left(w \phi_{r}\right) \downarrow v$.
3. Ballot can depend on data from vote-leaking phases but not from id-leaking phases
\sim bias leaking information on a ballot unlinkable to or is ok
\sim refines ballot independence

Our Results

Theorem (soundness)
For any $E=\left(\mathcal{V} ; \phi_{0} ; V(\mathcal{Q}), \mathcal{R},\left(\Psi_{b}\right.\right.$, Extract $\left.)\right)$, if the Dishonest, Relation and Tally conditions hold then E satisfies ballot secrecy.

Our Results

Theorem (soundness)

For any $E=\left(\mathcal{V} ; \phi_{0} ; V(\mathcal{Q}), \mathcal{R},\left(\Psi_{b}\right.\right.$, Extract $\left.)\right)$, if the Dishonest, Relation and Tally conditions hold then E satisfies ballot secrecy.

- We provide an algorithm for computing models checking the conditions and heuristics to find leaking status (checkability)
(tool is FW)
- We apply our techniques to several case studies and compare ourselves with the swapping technique (tightness):

Protocol	Ballot Secrecy	Our verif. time	Swapping technique verif. time	
FOO	\checkmark	0.04	0.26	
Lee 1	\checkmark	0.04	46	(collapsed-phases: 45.33)
Lee 2	\checkmark	0.05	\dagger	(collapsed-phases: 269.06)
Lee 3	\checkmark	0.01	\dagger	
Lee 4	\times	6.64	169.94	
JC	\checkmark	18.79	\times	
Belenios	\checkmark	0.02	\times	

Conclusion

Reusing core ideas

- Adapt for the case of receipt-freeness and cœrcion-resistance
- Reuse methodology for other contexts/privacy properties
- Infer generic framework (e.g. separation btw. data and active deviation issues)
- Extract guidelines for privacy from our conditions (?)

Future Work

- Extend our result with more precise Tally:
- Combine with the new BPRIV privacy definition [S\&P'15, Euro S\&P'19]
- Provide a tool with ProVerif/Tamarin as back-end
- Reuse methodology for other contexts/privacy properties

