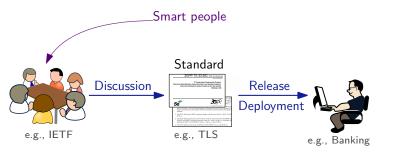
# A Formal Analysis of 5G Authentication

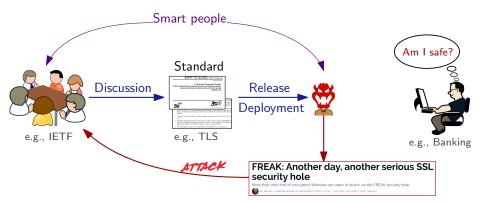
#### David Basin, Jannik Dreier, <u>Lucca Hirschi</u>, Saša Radomirovic, Ralf Sasse, Vincent Stettler



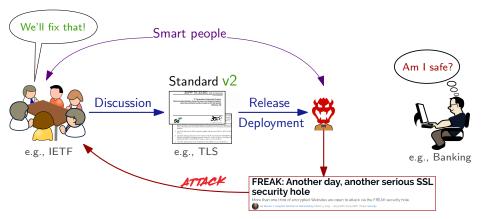
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



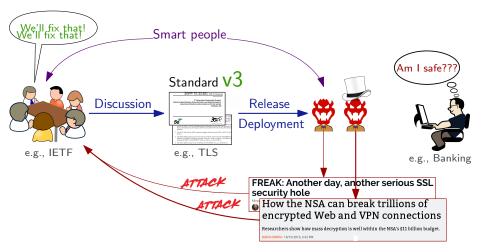


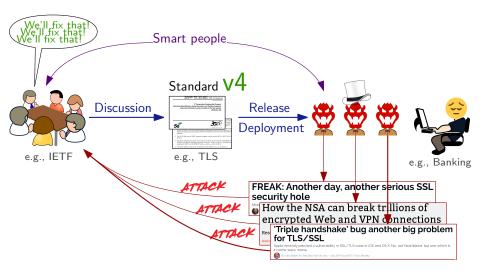


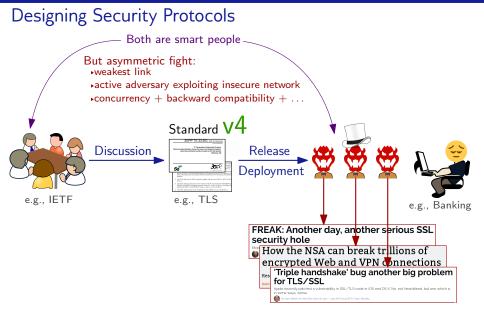


## October 18, 2018



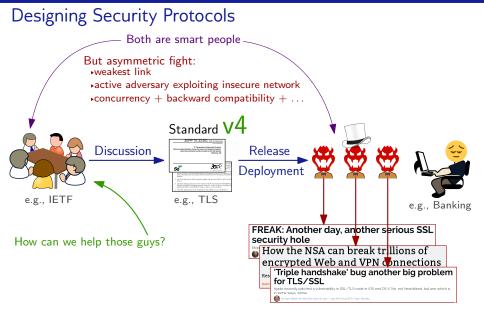




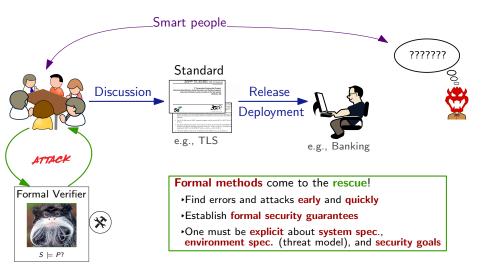










1/14







1/14

# 5G Authentication





## Mobile communication

- 4.8 billion unique users, 60% of world population has 4G
- next-gen 5G designed by 3GPP (as for 3G/4G); deployed in 2 phases
- Phase 1: frozen specification in 2018 and commercial service in 2020

## Authentication

- ▶ Key protocol AKA: secure channel + authentication between 🔲 and 🁔
- Different AKA protocols: 3G:AKA  $\sim$  4G:EPS AKA  $\sim$  5G:5G AKA



# 5G Authentication





## Mobile communication

- 4.8 billion unique users, 60% of world population has 4G
- next-gen 5G designed by 3GPP (as for 3G/4G); deployed in 2 phases
- Phase 1: frozen specification in 2018 and commercial service in 2020

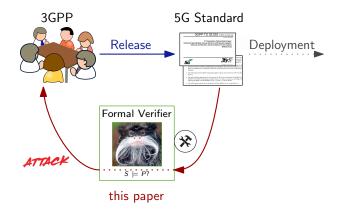
Authentication

- ▶ Key protocol AKA: secure channel + authentication between 🔲 and 🁔
- Different AKA protocols: 3G:AKA  $\sim$  4G:EPS AKA  $\sim$  5G:5G AKA

5G AKA intended to improve security but: Which security guarantees? Under which threat model/security assumptions?

## Let's formally analyze 5G AKA!

A Formal Analysis of 5G Authentication


## 5G Authentication



5G AKA intended to improve security but:

Which security guarantees? Under which threat model/security assumptions?

Let's formally analyze 5G AKA!





## Formal Verification in the Symbolic Model

(also called Dolev-Yao model)



Cryptographic primitives assumed perfect

Security protocols encoded in a formal language (syntax + semantics)

Attacker 🖑 = network (worst case scenario)

- eavesdrop: he learns all protocol outputs
- injections: he chooses all protocol inputs

Security properties encoded as reachability or equivalence properties

Sweet spot between precision and automation



## Formal Verification in the Symbolic Model

(also called Dolev-Yao model)



Cryptographic primitives assumed perfect

Security protocols encoded in a formal language (syntax + semantics)

Attacker 🖑 = network (worst case scenario)

- eavesdrop: he learns all protocol outputs
- injections: he chooses all protocol inputs

Security properties encoded as reachability or equivalence properties

## Sweet spot between precision and automation

## Automated Verification (tool):

- several efficient procedures and tools (but verification is undecidable)
- our tool of choice: Tamarin (the only one with the required features)





 $\sim$  100 pages, 4 docs

#### Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained





#### Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained

#### Modeling

- large, complex protocol with intricate state-machine
- encode security goals under many threat models





#### Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained

#### Modeling

- large, complex protocol with intricate state-machine
- encode security goals under many threat models

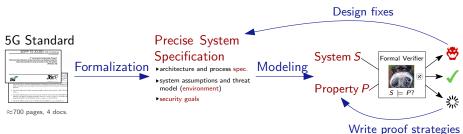




Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained

## Modeling


- large, complex protocol with intricate state-machine
- encode security goals under many threat models

#### Proofs

- ► many features that make the verification <sup>3</sup>/<sub>√</sub>
- need for proof strategies: sound by design, guide the proof search

(e.g., invariants)



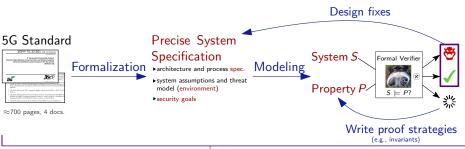


(e.g., invariants)

#### Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained

### Modeling


- large, complex protocol with intricate state-machine
- encode security goals under many threat models

#### Proofs

- ► many features that make the verification <sup>3</sup>/<sub>√</sub>
- need for proof strategies: sound by design, guide the proof search

Design fixes that are provably secure





#### Security Evaluation

#### Formalization

- implicit/unclear threat model and goals
- documents are often not self-contained

## Modeling

- large, complex protocol with intricate state-machine
- encode security goals under many threat models

#### Proofs

- Many features that make the verification ⅔
- need for proof strategies: sound by design, guide the proof search

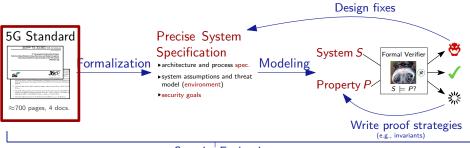
Design fixes that are provably secure Sec. Evaluation: attacks and fixes



# Our Contributions

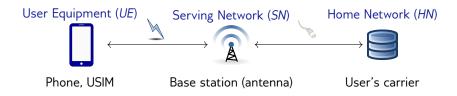
## Formalization of the 5G standard

- Extract/Formally interpret security assumptions, goals and system spec.
- Identify key missing security goals + flaws in stated goals
- Propose fine-grained variants of goals (secrecy, authentication, privacy)


## Formal model of 5G AKA amenable to automation

- First faithful model of an AKA protocol (challenges: loops, state-machine, scale, XOR)
- Dedicated proof strategies (in Tamarin)

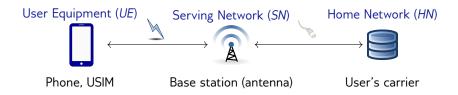
## Security Evaluation of 5G AKA


- Identify minimal assumptions required for each security goal to hold:
  - Authentication: critical properties are violated
  - Privacy: preserved for passive 😁 but broken for active 😁
  - Secrecy: holds but not Perfect Forward Secrecy
- Explicit recommendations and provably secure fixes (also simplify)

# Outline



Security Evaluation


# 5G AKA



5G AKA designed to:

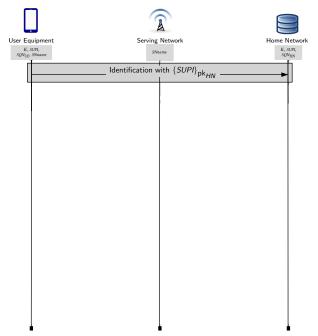
- mutually authenticate User Equipment with its Home Network (carrier)
- establish session keys btw. the User Equipment and its Serving Network

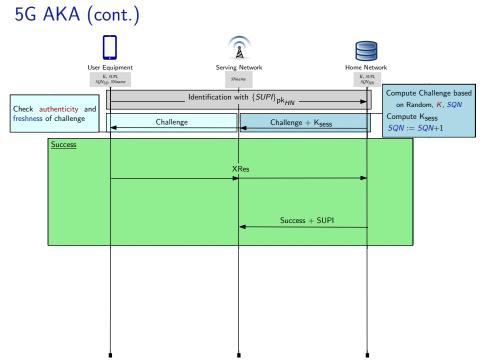


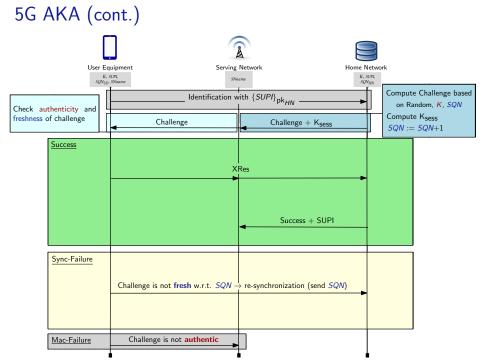


5G AKA designed to:

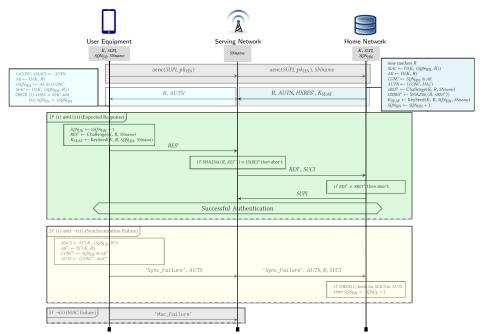
- mutually authenticate User Equipment with its Home Network (carrier)
- establish session keys btw. the User Equipment and its Serving Network


User Equipment (Phone with USIM) and Home Network share:

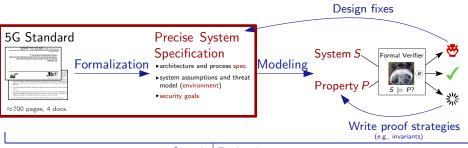

- a permanent UE's identifier SUPI (for identification)
- a symmetric key *K* (shared secret)
- a sequence number SQN (for replay protection)


User Equipment knows the Home Network's public key  $pk_{HN}$ 



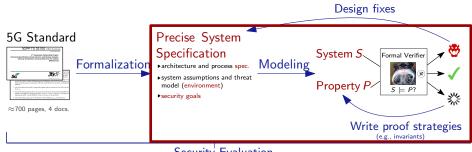

# 5G AKA (cont.)








# 5G AKA (cont.)




# Outline



Security Evaluation

# Outline



Security Evaluation

# Formal Modeling

System ~500LoC

- full state-maching with re-synchronization, precise modeling of XOR and counter SQN (only Tamarin can handle all that)
- + optional key-confirmation
- ▶ for unbounded number of UEs, SNs, and HNs, and unbounded sessions

# Formal Modeling

System ~500LoC

- full state-maching with re-synchronization, precise modeling of XOR and counter SQN (only Tamarin can handle all that)
- + optional key-confirmation
- ▶ for unbounded number of UEs, SNs, and HNs, and unbounded sessions

Threat Model & Security Goals ~1000LoC, 124 lemmas

- powerful Dolev Yao <sup>3</sup>/<sub>2</sub>: control all the network
- wide-range of formal security goals (including secrecy, authentication, privacy)
- + many compromise scenarios in order to identify minimal assumptions  $\sim$  strongest possible adversary model

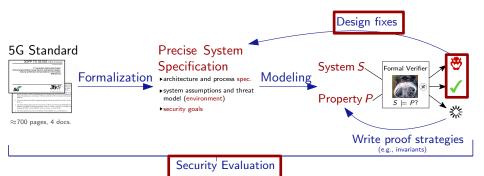


# Formal Modeling

System ~500LoC

- full state-maching with re-synchronization, precise modeling of XOR and counter SQN (only Tamarin can handle all that)
- + optional key-confirmation
- ▶ for unbounded number of UEs, SNs, and HNs, and unbounded sessions

Threat Model & Security Goals ~1000LoC, 124 lemmas


- powerful Dolev Yao <sup>3</sup>/<sub>2</sub>: control all the network
- wide-range of formal security goals (including secrecy, authentication, privacy)
- + many compromise scenarios in order to identify minimal assumptions  $\sim$  strongest possible adversary model

Proof Strategies ~1000LoC, ~ 5 hours computation time

- + complex state-changes + loops  $\rightsquigarrow$  automatic:  $\frac{3}{2}$  / manual: impractical
- proof strategies: lemmas + heuristics that guide the proof search



## Outline



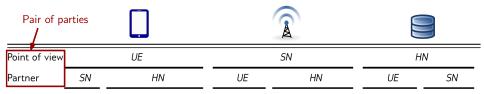
## Results





Lucca Hirschi

A Formal Analysis of 5G Authentication


## Results

## More than just $\mathfrak{G}/\checkmark$ ?

YES! For instance for authentication:

• Different perspectives ...

(who obtains guarantees, about whom?)





# Results

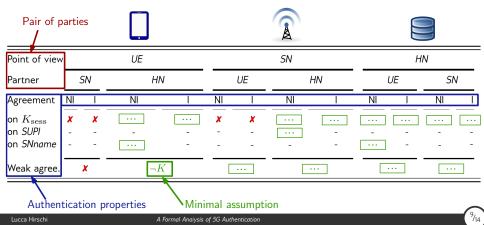
#### More than just $\textcircled{O}/\sqrt{?}$

YES! For instance for *authentication*:

- Different perspectives ... (who obtains guarantees, about whom?)
- with different kinds of agreement properties ... (identities?, data?, replay?)

| Pair of pa    | arties     |                   |                      | à  |    |      |
|---------------|------------|-------------------|----------------------|----|----|------|
| Point of view |            | UE                |                      | SN | HI | V    |
| Partner       | SN         | HN                | UE                   | HN | UE | SN   |
|               | ication pr | -                 |                      |    |    | 9,   |
| Lucca Hirschi |            | A Formal Analysis | of 5G Authentication |    |    | 9/14 |

# Results


#### More than just $\mathfrak{G}/\checkmark$ ?

YES! For instance for authentication:

Different perspectives ...
 (who obtains guarantees, about whom?)

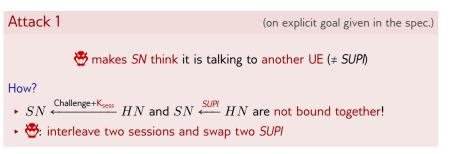
(e.g. what can be compromised?)

- with different kinds of agreement properties ... (identities?, data?, replay?)
- under different attacker models.



# Results: Authentication: Attack 1

# Attack 1 (on explicit goal given in the spec.) O makes SN think it is talking to another UE ( $\neq$ SUPI) How? $\checkmark$ SN $\xleftarrow{Challenge+K_{sess}}$ HN and SN $\xleftarrow{SUPI}$ HN are not bound together!


+  ${\buildrel {\buildrel {\buildre {\uildre {\buildre {\uildre {\uulldre {\uulltre \ulltre \uulltre \uulltre \uildre \uildre \uildre \u$ 

Remark: In an earlier draft (v0.7.1), SUPI,  $K_{sess}$  sent together  $\sim$ 

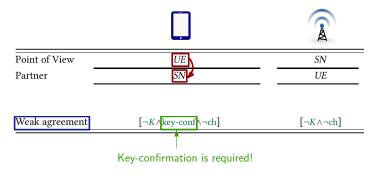
(we detected the introduced flaw when updating our models)



# Results: Authentication: Attack 1



Remark: In an earlier draft (v0.7.1), SUPI,  $K_{sess}$  sent together  $\sim \checkmark$  (we detected the introduced flaw when updating our models)


#### Fix

Either:

- explicitly assume a binding channel SN-HN (= binding message-session)
- cryptographically bind the messages together

### Results: Authentication: Attack 2

We re-verify all authentication properties when attack 1 is fixed:



However, key-confirmation is not mandatory in the standard!

(subsequent procedures?)



# Results: Authentication: Attack 2 (cont.)

#### Attack 2

(on explicit goal given in the spec.)

😴 can impersonate a SN towards UEs without key-conf (not mandatory)

#### How?

 SNname is not included in the MAC sent by HN that comes with the challenge



# Results: Authentication: Attack 2 (cont.)

#### Attack 2

(on explicit goal given in the spec.)

#### How?

 SNname is not included in the MAC sent by HN that comes with the challenge

#### Fix

Either:

- ► mandatory key-confirmation, required in one direction only (UE ← SN)
- add SNname to the MAC sent by HN (key-confirmation not required then)

Remark: our fixes reduce the number of roundtrips required to get security!

# Results: Secrecy and Privacy

 $Secrecy(K_{sess}, K)$  holds but not  $PFS(K_{sess})$ 

Privacy: The UE's identifier SUPI remains secret

(with honest SN/HN)

- defeats IMSI-catchers but
- ▶ insufficient to ensure untraceability with an active . Attack 3
- ► fix requires major redesign 😒

 $\sim$  new 5G tracking device ("5G-Stingray") coming?



# Conclusion

Contributions: Formalization of the 5G standard + Tamarin model with proof techniques + comprehensive security evaluation

#### 5G AKA standard:

- ► definitely lacks explicit assumptions and security goals 🙁
- ► meets core properties after easy fixes/+assumptions ☺
- improves privacy over 3G/4G, but still suffers from traceability attacks (2)

We have an ongoing discussion with 3GPP and GSMA: they will modify the standard.

# Conclusion

Contributions: Formalization of the 5G standard + Tamarin model with proof techniques + comprehensive security evaluation

#### 5G AKA standard:

- ► definitely lacks explicit assumptions and security goals 🙁
- ▶ meets core properties after easy fixes/+assumptions ③
- ▶ improves privacy over 3G/4G, but still suffers from traceability attacks ☺

We have an ongoing discussion with 3GPP and GSMA: they will modify the standard.

#### Future work:

- verify and formally compare other variants of AKA (3G, 4G, EAP-AKA' in 5G)
- follow the development of 5G (e.g. phase 2)
- more precise/efficient verification of privacy



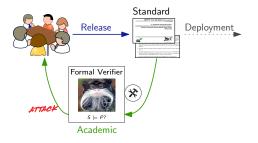
# Conclusion

Contributions: Formalization of the 5G standard + Tamarin model with proof techniques + comprehensive security evaluation

#### 5G AKA standard:

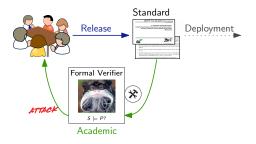
- ► definitely lacks explicit assumptions and security goals 🙁
- ► meets core properties after easy fixes/+assumptions ☺
- ▶ improves privacy over 3G/4G, but still suffers from traceability attacks ☺

We have an ongoing discussion with 3GPP and GSMA: they will modify the standard.

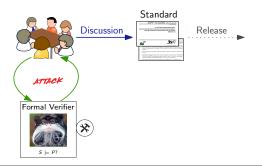

#### Future work:

- verify and formally compare other variants of AKA (3G, 4G, EAP-AKA' in 5G)
- follow the development of 5G (*e.g.* phase 2)
- more precise/efficient verification of privacy

Others' future work: Formal Methods are a powerful tool! They are now mature enough for the real-world.




#### Now:

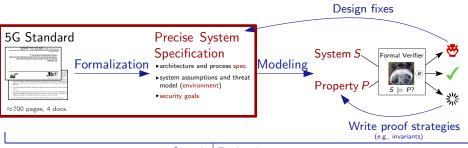





#### Now:



Ideally:




<sup>15</sup>/<sub>14</sub>

A Formal Analysis of 5G Authentication

# **Backup Slides**

# Outline



Security Evaluation

# Formalization

Goal: build a precise specification of the system (protocol), environment (*e.g.* threat model), and security goals

Example of imprecision in the standard and our interpretation:

Assurance [that the subscriber] is connected to a serving network that is authorized by the home network. [...] This authorization is 'implicit' in the sense that it is implied by a successful authentication and key agreement run.

 $\sim$ 

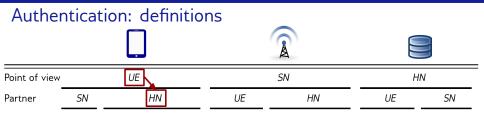
Subscriber must obtain non-injective agreement on SNname with its Home Network after key confirmation.



# Formalization

Goal: build a precise specification of the system (protocol), environment (*e.g.* threat model), and security goals

Example of imprecision in the standard and our interpretation:


Assurance [that the subscriber] is connected to a serving network that is authorized by the home network. [...] This authorization is 'implicit' in the sense that it is implied by a successful authentication and key agreement run.

#### $\sim$

Subscriber must obtain non-injective agreement on SNname with its Home Network after key confirmation.

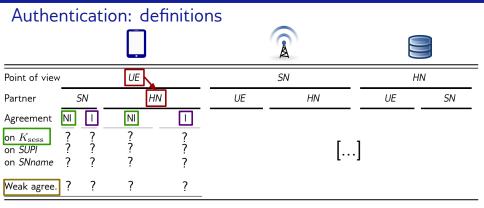
#### Takeaways

- critical security goals are missing (implicit?): e.g. injective agreement on the key seed
- some stated goals are two weak: no assurance that the authenticated party participated to the current session
- unclear system assumption (e.g. on channels) and threat model (notably for privacy)



(HN's identity, HN's view on the session)




| Authentica                                                                                                                           | tion: defir | nitions               |                        |               |    |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|------------------------|---------------|----|----|--|
|                                                                                                                                      |             |                       |                        |               |    |    |  |
| Point of view                                                                                                                        | UE          |                       | S                      | N             | НМ | V  |  |
| Partner SN                                                                                                                           | HN          |                       | UE                     | HN            | UE | SN |  |
| Weak agree. ? ?                                                                                                                      | ?           | ?                     |                        | [             | .] |    |  |
| Authentication depends on the perspective and the expected agreement:<br>What guarantees does <i>UE</i> obtain regarding <i>HN</i> ? |             |                       |                        |               |    |    |  |
| weak agreemen                                                                                                                        | agreeme     | nt on <i>HN</i> 's ar | nd <i>UE</i> 's ids (i | mutual auth.) |    |    |  |
|                                                                                                                                      |             |                       |                        |               |    |    |  |



| Authentication: definitions                               |                         |                 |                   |                 |    |    |    |    |  |  |
|-----------------------------------------------------------|-------------------------|-----------------|-------------------|-----------------|----|----|----|----|--|--|
|                                                           |                         |                 |                   |                 |    | Ì  |    |    |  |  |
| Point of view                                             | ~                       |                 | UE                |                 |    | SN | H  | IN |  |  |
| Partner                                                   | 5                       | SN              | HI                | V               | UE | HN | UE | SN |  |  |
| Agreement<br>on K <sub>sess</sub><br>on SUPI<br>on SNname | <b>ℕ</b><br>?<br>?<br>? | <br>?<br>?<br>? | NI<br>?<br>?<br>? | <br>?<br>?<br>? |    | [  | .] |    |  |  |
| Weak agree.                                               | ?                       | ?               | ?                 | ?               |    |    |    |    |  |  |

| weak agreement                                | agreement on HN's and UE's ids (mutual auth.)    |
|-----------------------------------------------|--------------------------------------------------|
| (NI) non-injective agreement on $K_{ m sess}$ | agreement on HN's and UE's ids and $K_{ m sess}$ |
|                                               |                                                  |





| weak agreement                                | agreement on HN's and UE's ids (mutual auth.)                    |
|-----------------------------------------------|------------------------------------------------------------------|
| (NI) non-injective agreement on $K_{ m sess}$ | agreement on <i>HN</i> 's and <i>UE</i> 's ids and $K_{ m sess}$ |
| (I) injective agreement on $K_{ m sess}$      | NI + uniqueness of <i>HN</i> 's session (no replay)              |



| Authentication: definitions |    |            |                    |                    |    |    |    |    |  |
|-----------------------------|----|------------|--------------------|--------------------|----|----|----|----|--|
|                             |    |            |                    |                    |    | R  |    |    |  |
| Point of view               | v  |            | UE                 |                    |    | SN | Н  | HN |  |
| Partner                     | 5  | 5N         | ΗN                 | /                  | UE | HN | UE | SN |  |
| Agreement                   | NI |            | NI                 |                    |    |    |    |    |  |
| on $K_{ m sess}$            | x  | x          | $\neg K \land k-c$ | $\neg K \land k-c$ |    |    | 1  |    |  |
| on <i>SUPI</i> wa × wa ×    |    |            |                    |                    |    |    |    |    |  |
| on <i>SNname</i>            | wa | ×          | [¬ <i>K</i> ∧k-c]  | ×                  |    | L  |    |    |  |
| Weak agree.                 | 6  | <b>X</b> ] | $\neg K$           | 5                  |    |    |    |    |  |

| weak agreement                                | agreement on HN's and UE's ids (mutual auth.)       |
|-----------------------------------------------|-----------------------------------------------------|
| (NI) non-injective agreement on $K_{ m sess}$ | agreement on HN's and UE's ids and $K_{ m sess}$    |
| (I) injective agreement on $K_{ m sess}$      | NI + uniqueness of <i>HN</i> 's session (no replay) |

#### Minimal security assumption:

- $\neg K$ : no reveal of long-term key
- k-c: requires key-confirmation

- A Formal Analysis of 5G Authentication
- ► ¬ch: requires secure channel SN-HN
- (also compromise of  $sk_{\rm HN}$ , SUPI, SQN)



| Authe                                                      | Authentication: definitions |                    |                                                    |                         |           |                    |                    |                                  |                        |                    |                |               |
|------------------------------------------------------------|-----------------------------|--------------------|----------------------------------------------------|-------------------------|-----------|--------------------|--------------------|----------------------------------|------------------------|--------------------|----------------|---------------|
|                                                            |                             |                    |                                                    |                         |           |                    |                    |                                  |                        |                    |                |               |
| Point of view                                              | Point of view UE SN HN      |                    |                                                    |                         |           |                    |                    |                                  |                        |                    |                |               |
| Partner                                                    | S                           | N                  | HN                                                 | ]                       | [         | UE                 |                    | HN                               | L                      | JE                 | SN             | V             |
| Agreement                                                  | NI                          | Ι                  | NI                                                 | I                       | NI        | I                  | NI                 | 1                                | NI                     | Ι                  | NI             | I             |
| on K <sub>sess</sub><br>on <i>SUPI</i><br>on <i>SNname</i> | X<br>wa<br>wa               | <b>X</b><br>×<br>× | $\neg K \land k-c$<br>wa<br>[ $\neg K \land k-c$ ] | $\neg K \land k-c$<br>× | wa<br>wa  | <b>x</b><br>×<br>× | ⊐ch<br>[¬ch]<br>wa | $\neg K \land \neg ch$<br>×<br>× | $\neg K$ wa $[\neg K]$ | $\neg K$<br>×<br>× | ⊣ch<br>×<br>wa | −ch<br>×<br>× |
| Weak agree.                                                | [ <sup>1</sup>              | <b>X</b> ]         | $\neg K$                                           |                         | $[\neg k$ | ∑∧¬ch]             |                    | ⊸ch                              |                        | K                  | −C             | h             |

| weak agreement                                | agreement on HN's and UE's ids (mutual auth.)       |
|-----------------------------------------------|-----------------------------------------------------|
| (NI) non-injective agreement on $K_{ m sess}$ | agreement on HN's and UE's ids and $K_{ m sess}$    |
| (I) injective agreement on $K_{ m sess}$      | NI + uniqueness of <i>HN</i> 's session (no replay) |

#### Minimal security assumption:

- $\neg K$ : no reveal of long-term key
- k-c: requires key-confirmation
- Lucca Hirschi

- A Formal Analysis of 5G Authentication
- ► ¬ch: requires secure channel SN-HN
- (also compromise of  $sk_{\rm HN},$  *SUPI*, *SQN*)



# Authentication: all results

| Point of view    | Point of view UE |              |                    |                    |           | SN     |       |                        |            | HN       |     |    |  |
|------------------|------------------|--------------|--------------------|--------------------|-----------|--------|-------|------------------------|------------|----------|-----|----|--|
| Partner          |                  | SN           | ΗN                 | 1                  |           | UE     |       | HN                     | l          | JE       | SN  | ,  |  |
| Agreement        | NI               | Ι            | NI                 | I                  | NI        | I      | NI    | I                      | NI         | Ι        | NI  | 1  |  |
| on $K_{ m sess}$ | x                | X            | $\neg K \land k-c$ | $\neg K \land k-c$ | x         | X      | −ch   | $\neg K \land \neg ch$ | $\neg K$   | $\neg K$ | −ch | ch |  |
| on <i>SUPI</i>   | wa               | ×            | wa                 | ×                  | wa        | ×      | [¬ch] | ×                      | wa         | ×        | ×   | ×  |  |
| on <i>SNname</i> | wa               | ×            | [¬ <i>K</i> ∧k-c]  | ×                  | wa        | ×      | wa    | ×                      | $[\neg K]$ | ×        | wa  | ×  |  |
| Weak agree.      |                  | [ <b>X</b> ] | $\neg K$           | 5                  | $[\neg F$ | {∧¬ch] |       | ⊸ch                    | _          | K        | ¬C  | h  |  |

#### After fixing Attack 1 (binding):

| Point of View        | L                                     | SN                     |                        |  |
|----------------------|---------------------------------------|------------------------|------------------------|--|
| Partner              | S                                     | UE                     |                        |  |
| Agreement            | NI                                    | NI                     | Ι                      |  |
| on K <sub>SEAF</sub> | $\neg K \land key-conf \land \neg ch$ | $\neg K \land \neg ch$ | $\neg K \land \neg ch$ |  |
| Weak agreement       | $[\neg K \land key$                   | $[\neg K \land$        | ¬ch]                   |  |



# Other Results

Secrecy:

| Point of view            | UE                                      | SN                     | HN                                      |
|--------------------------|-----------------------------------------|------------------------|-----------------------------------------|
| $K_{\rm sess}$           | $\neg K \land \neg ch$                  | $\neg K \land \neg ch$ | $\neg K \land \neg ch$                  |
| $PFS(K_{\mathrm{sess}})$ | ×                                       | X                      | X                                       |
| SUPI                     | $\neg sk_{\mathrm{HN}} \land \neg ch^*$ | -                      | $\neg sk_{\mathrm{HN}} \land \neg ch^*$ |
| K                        | Ø                                       | Ø                      | Ø                                       |

\*: no dishonest SNs (violated otherwise)

# Other Results

Secrecy:

| Point of view            | UE                                      | SN                     | HN                                      |
|--------------------------|-----------------------------------------|------------------------|-----------------------------------------|
| $K_{\rm sess}$           | $\neg K \land \neg ch$                  | $\neg K \land \neg ch$ | $\neg K \land \neg ch$                  |
| $PFS(K_{\mathrm{sess}})$ | ×                                       | X                      | ×                                       |
| SUPI                     | $\neg sk_{\mathrm{HN}} \land \neg ch^*$ | -                      | $\neg sk_{\mathrm{HN}} \land \neg ch^*$ |
| K                        | Ø                                       | Ø                      | Ø                                       |

\*: no dishonest SNs (violated otherwise)

#### Privacy:

- SUPI remains confidential, even against active attackers and hence also against passive attackers.
- ▶ 5G AKA thus defeats previous active IMSI-catcher attacks
- We also have modelled a weak, passive attacker and have automatically proven that he cannot trace subscribers.
- active attackers are realistic threats for most use cases. We have (automatically) found that 5G AKA suffers from a traceability attack in that setting.

