Partial Order Reduction for Security Protocols

 CONCUR'15Lucca Hirschi
LSV, ENS Cachan

September 4th 2015

| | David Baelde |
| :--- | :--- | :--- | and | Stéphanie Delaune |
| :--- | and | LSV |
| :--- |

(s)

Introduction 1/2

concurrent programs + unsecure network + active attacker
\rightarrow (tricky) attacks
\rightsquigarrow we need formal verification of crypto protocols

Introduction 1/2

concurrent programs + unsecure network + active attacker \rightarrow (tricky) attacks
\rightsquigarrow we need formal verification of crypto protocols
Our setting

- Applied- π models protocols (π-calculus for crypto);
- Trace equivalence models security properties.

Introduction 1/2

concurrent programs + unsecure network + active attacker
\rightarrow (tricky) attacks
\rightsquigarrow we need formal verification of crypto protocols
Our setting

- Applied- π models protocols (π-calculus for crypto);
- Trace equivalence models security properties.
\rightsquigarrow existing algorithms checking trace equivalence without replication

Introduction 2/2

Issue: Limited practical impact
Too slow. - Bottleneck: state space explosion
e.g., verification of P.A.: 1 session $\rightarrow 1$ sec. vs. 2 sessions $\rightarrow 9$ days

Introduction 2/2

Issue: Limited practical impact

Too slow. - Bottleneck: state space explosion
e.g., verification of P.A.: 1 session $\rightarrow 1$ sec. vs. 2 sessions $\rightarrow 9$ days

Our Contribution

Partial Order Reduction techniques:

- adequate with respect to specificities of this setting
- work for reachability and trace equivalence
- very effective in practice (implem + bench)

Applied- π - Syntax

Terms

\mathcal{T} : set of terms + equational theory. e.g., $\operatorname{dec}(\operatorname{enc}(m, k), k)=$ e m.

Applied- π - Syntax

Terms

\mathcal{T} : set of terms + equational theory. e.g., $\operatorname{dec}(\operatorname{enc}(m, k), k)=$ e m.

Processes and configurations

$$
\begin{aligned}
& P, Q::=0(P \mid Q)|\operatorname{in}(c, x) \cdot P| \text { out }(c, m) . P \\
& \mid \text { if } u=v \text { then } P \text { else } Q \\
& \mid!\nu \vec{n} . P \\
& A=(\mathcal{P} ; \Phi)
\end{aligned}
$$

- Φ is the set of messages revelead to the network; intuition: intruder's knowledge.

$$
\Phi=\{\underbrace{w_{1}}_{\text {handle }} \mapsto \underbrace{\operatorname{enc}(m, k)}_{\text {out. message }} ; w_{2} \mapsto k\}
$$

Applied- π - Syntax

Terms

\mathcal{T} : set of terms + equational theory. e.g., $\operatorname{dec}(\operatorname{enc}(m, k), k)=$ e m.

Processes and configurations

$$
\begin{aligned}
& P, Q::=0(P \mid Q)|\operatorname{in}(c, x) \cdot P| \text { out }(c, m) . P \\
& \mid \text { if } u=v \text { then } P \text { else } Q \\
& \mid!\nu \vec{n} . P \\
& A=(\mathcal{P} ; \Phi)
\end{aligned}
$$

- Φ is the set of messages revelead to the network; intuition: intruder's knowledge.

$$
\Phi=\{\underbrace{w_{1}}_{\text {handle }} \mapsto \underbrace{\text { enc }(m, k)}_{\text {out. message }} ; w_{2} \mapsto k\}
$$

- recipes are terms built using handles

$$
\text { e.g., } R=\operatorname{dec}\left(w_{1}, w_{2}\right) \quad m=\mathrm{E} R \Phi
$$

intuition: how the environment builds messages from its knowledge

Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
    out(a,enc(k,kas)).out (a,enc(m,k))
| in(s,x). if enc(dec(x,kas),kas) = x
        then out(s,enc(dec(x,kas),k.bs))
        else 0
| in(b,x) [...]
\[
\Phi=\emptyset
\]
\[
t=\epsilon
\]
```

Let us explore one possible trace.

Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
    out (a, enc(k,kas)).out (a, enc(m,k))
| in(s,x). if enc(dec(x,kas),kas) = x
        then out(s,enc(dec(x,kas),kbs))
        else 0
| in(b,x) [...]
\[
\begin{gathered}
\Phi=\left\{w_{0} \mapsto e n c\left(k, k_{\mathrm{as}}\right)\right\} \\
t=\operatorname{out}\left(a, w_{0}\right)
\end{gathered}
\]
```


Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
    out (a, enc(k,kas)).out (a,enc(m,k))
| in(s,x). if enc(dec(x,kas),kas) = x
    then out(s,enc(dec(x,kas),kbs))
    else 0
| in(b,x) [...]
\[
\begin{aligned}
\Phi & =\left\{w_{0} \mapsto e n c\left(k, k_{\mathrm{as}}\right)\right\} \\
t & =\operatorname{out}\left(a, w_{0}\right) \cdot \operatorname{in}\left(s, w_{0}\right)
\end{aligned}
\]
```

w_{0} is one possible recipe using Φ

Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
    out \((a, \operatorname{enc}(k, k a s))\).out \((a, \operatorname{enc}(m, k))\)
| in \((s, x)\). if enc \((\operatorname{dec}(x, k a s), k a s)=x\)
        then out (s,enc (k,kbs))
| in(b, x) [...]
    \(\Phi=\left\{w_{0} \mapsto \operatorname{enc}\left(k, k_{\mathrm{as}}\right) ; w_{1} \mapsto \operatorname{enc}\left(k, k_{\mathrm{bs}}\right)\right\}\)
    \(t=\operatorname{out}\left(a, w_{0}\right) \cdot \operatorname{in}\left(s, w_{0}\right) \cdot \operatorname{out}\left(s, w_{1}\right)\)
```


Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
    out ( \(a\), enc (k,kas)) .out (a, enc (m,k))
l in \((s, x)\). if enc (dec \((x, k a s), k a s)=x\)
    then out ( s , enc \((\mathrm{k}, \mathrm{kbs})\) )
| in (b, x) [...]
    \(\Phi=\left\{w_{0} \mapsto e n c\left(k, k_{\mathrm{as}}\right) ; w_{1} \mapsto \operatorname{enc}\left(k, k_{\mathrm{bs}}\right)\right\}\)
    \(t=\operatorname{out}\left(a, w_{0}\right) \cdot \operatorname{in}\left(s, w_{0}\right) \cdot \operatorname{out}\left(s, w_{1}\right) \cdot \operatorname{in}\left(b, w_{1}\right)\)
```


Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

```
out ( \(a\), enc ( \(m, k\) ) )
    then out ( s , enc \((\mathrm{k}, \mathrm{kbs})\) )
| in(b, x) [...]
\(\Phi=\left\{w_{0} \mapsto \operatorname{enc}\left(k, k_{\mathrm{as}}\right) ; w_{1} \mapsto \operatorname{enc}\left(k, k_{\mathrm{bs}}\right) ; w_{2} \mapsto \operatorname{enc}(m, k)\right\}\)
\(t=\operatorname{out}\left(a, w_{0}\right) \cdot \operatorname{in}\left(s, w_{0}\right) \cdot \operatorname{out}\left(s, w_{1}\right) \cdot \operatorname{in}\left(b, w_{1}\right) \cdot \operatorname{out}\left(a, w_{2}\right)\)
```


Applied- π - Semantics - Example

Informal presentation

$$
\begin{aligned}
\text { Alice } \rightarrow \text { Server } & : \operatorname{enc}\left(k, k_{\mathrm{AS}}\right) \\
\text { Server } \rightarrow \text { Bob } & : \operatorname{enc}\left(k, k_{\mathrm{BS}}\right) \\
\text { Alice } \rightarrow \text { Bob } & : \operatorname{enc}(m, k)
\end{aligned}
$$

Configuration

Security Properties

(1) Reachability (e.g., secret, authentification) and
(2) Trace equivalence (e.g., anonymity, unlinkability).

Security Properties

(1) Reachability (e.g., secret, authentification) and
(2) Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence

- $A \approx B: \forall A \xrightarrow{t} A^{\prime} \exists B \xrightarrow{t} B^{\prime}$ such that $\Phi_{A^{\prime}} \sim \Phi_{B^{\prime}}$ (and conversely)

Security Properties

(1) Reachability (e.g., secret, authentification) and
(2) Trace equivalence (e.g., anonymity, unlinkability).

Trace equivalence

- $A \approx B: \forall A \xrightarrow{t} A^{\prime} \exists B \xrightarrow{t} B^{\prime}$ such that $\Phi_{A^{\prime}} \sim \Phi_{B^{\prime}}$ (and conversely)
- $\Phi \sim \Phi^{\prime}:\left(\forall M, N, M \Phi=N \Phi \Longleftrightarrow M \Phi^{\prime}=N \Phi^{\prime}\right)$
(bisimulation: too strong)

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) $\operatorname{in}\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, w\right)\end{aligned}\right.$

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) $\operatorname{in}\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, W\right)\end{aligned}\right.$

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) in $\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, W\right)\end{aligned}\right.$
(2) $\operatorname{in}\left(c_{1}, x\right)$.out $\left(c_{1}, m_{1}\right) \mid \operatorname{in}\left(c_{2}, y\right)$.out $\left(c_{2}, m_{2}\right) \rightsquigarrow$

- $\operatorname{tr}_{1}=\operatorname{in}\left(c_{1}, M_{1}\right) \cdot$ out $\left(c_{1}, w_{1}\right) \cdot \operatorname{in}\left(c_{2}, M_{2}\right)$.out $\left(c_{2}, w_{2}\right)$
- $\operatorname{tr}_{2}=\operatorname{in}\left(c_{2}, M_{2}\right) \cdot \operatorname{out}\left(c_{2}, w_{2}\right) \cdot \operatorname{in}\left(c_{1}, M_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right)$

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) in $\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, W\right)\end{aligned}\right.$
(2) $\operatorname{in}\left(c_{1}, x\right)$.out $\left(c_{1}, m_{1}\right) \mid \operatorname{in}\left(c_{2}, y\right)$.out $\left(c_{2}, m_{2}\right) \rightsquigarrow$

- $\operatorname{tr}_{1}=\operatorname{in}\left(c_{1}, M_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right) \cdot \operatorname{in}\left(c_{2}, M_{2}\right) \cdot \operatorname{out}\left(c_{2}, w_{2}\right)$
 when M_{1} does not use w_{2}

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) in $\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, W\right)\end{aligned}\right.$
(2) in $\left(c_{1}, x\right)$.out $\left(c_{1}, m_{1}\right) \mid \operatorname{in}\left(c_{2}, y\right)$.out $\left(c_{2}, m_{2}\right) \rightsquigarrow$

- $\operatorname{tr}_{1}=\operatorname{in}\left(c_{1}, M_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right) \cdot \operatorname{in}\left(c_{2}, M_{2}\right) \cdot \operatorname{out}\left(c_{2}, w_{2}\right)$
- $\mathrm{Hr}_{2}=\mathrm{in}\left(\theta_{2}, M_{2}\right) \cdot \theta\left(\theta_{2}, W_{2}\right) \cdot \operatorname{in}\left(0_{1}, M_{1}\right) \cdot o u t\left(0_{1}, W_{1}\right)$ when M_{1} does not use w_{2}
- what about trace equivalence (\approx) ?

$$
\text { e.g., in }\left(c_{1}, x\right) \| \operatorname{out}\left(c_{2}, m\right) \not \approx \operatorname{out}\left(c_{2}, m\right) \cdot \operatorname{in}\left(c_{1}, x\right)
$$

Redundancies

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:
(1) in $\left(c_{1}, x\right) \left\lvert\, \operatorname{out}\left(c_{2}, m\right) \rightsquigarrow \begin{aligned} & \operatorname{tr}_{1}=\operatorname{out}\left(c_{2}, w\right) \cdot \operatorname{in}\left(c_{1}, M\right) \\ & \operatorname{tr}_{2}=\operatorname{in}\left(c_{1}, M\right) \cdot \operatorname{out}\left(c_{2}, W\right)\end{aligned}\right.$
(2) $\operatorname{in}\left(c_{1}, x\right)$.out $\left(c_{1}, m_{1}\right) \mid \operatorname{in}\left(c_{2}, y\right)$.out $\left(c_{2}, m_{2}\right) \rightsquigarrow$

- $\operatorname{tr}_{1}=\operatorname{in}\left(c_{1}, M_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right) \cdot \operatorname{in}\left(c_{2}, M_{2}\right) \cdot$ out $\left(c_{2}, w_{2}\right)$
 when M_{1} does not use w_{2}
- what about trace equivalence (\approx) ?

$$
\text { e.g., in }\left(c_{1}, x\right) \mid \operatorname{out}\left(c_{2}, m\right) \not \approx \operatorname{out}\left(c_{2}, m\right) \cdot \operatorname{in}\left(c_{1}, x\right)
$$

- \rightsquigarrow same swaps are possible (\equiv same sequential dependencies)

Big Picture

\longrightarrow	Annot. Sem.	$\longrightarrow a$	Compression	$\longrightarrow{ }_{c}$	Reduction	\longrightarrow_{r}
\approx	Strong Sym: $\approx=\approx_{a}$	$\approx a$	Theorem 1: $\approx_{a}=\approx_{c}$	\sim_{c}	Theorem 2: $\approx_{c}=\approx_{r}$	\sim_{r}

Required properties

\rightarrow_{r} is such that:

- reachability properties coincide on \rightarrow_{r} and \rightarrow;
- for action-determinate processes, trace-equivalence coincides on \rightarrow_{r} and \rightarrow.

Big Picture

\longrightarrow	$\xrightarrow{\text { Annot. Sem. }}$	$\longrightarrow a$	Compression	$\longrightarrow{ }_{c}$	Reduction	$\longrightarrow r$
\approx	Strong Sym: $\approx=\approx_{a}$		Theorem 1: $\approx_{a}=\approx_{c}$	\approx_{c}	Theorem 2: $\approx_{c}=\approx_{r}$	\approx_{r}

Required properties

\rightarrow_{r} is such that:

- reachability properties coincide on \rightarrow_{r} and \rightarrow;
- for action-determinate processes, trace-equivalence coincides on \rightarrow_{r} and \rightarrow.

Action-determinsm

A is action-deterministic if: two actions in parallel must be \neq
Attacker knows to/from whom he is sending/receiving messages.

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions
e.g., in $\left(c_{1}, x\right) \mid \operatorname{out}\left(c_{2}, m\right) \xrightarrow{\left[\text { out }\left(c_{2}, w\right)\right]^{1.2} \cdot\left[\text { in }\left(c_{1}, M_{1}\right)\right]^{1.1}} a \cdot$ labels: in parallel while out $\left(c_{2}, m\right) \cdot \operatorname{in}\left(c_{1}, x\right) \xrightarrow{\left[\text { out }\left(c_{2}, w\right)\right]^{1} \cdot\left[\operatorname{in}\left(c_{1}, M_{1}\right)\right]^{1}} a$ labels: in sequence

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions
e.g., in $\left(c_{1}, x\right) \mid \operatorname{out}\left(c_{2}, m\right) \xrightarrow{\left[\text { out }\left(c_{2}, w\right)\right]^{1.2} .\left[\text { in }\left(c_{1}, M_{1}\right)\right]^{1.1}} a \cdot$ labels: in parallel while out $\left(c_{2}, m\right) \cdot \operatorname{in}\left(c_{1}, x\right) \xrightarrow{\left[\begin{array}{ll} \\ \left.\text { [out }\left(c_{2}, w\right)\right]^{1}\end{array} \cdot\left[\text { in }\left(c_{1}, M_{1}\right)\right]^{1}\right.} a \cdot$ labels: in sequence

Strong Symmetry Lemma

- mismatch on labels \rightsquigarrow systematically used to show $\not \approx$
- for action-deterministic, ($\approx+$ labels) coincides with \approx

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out().P, ($\left.P_{1} \mid P_{2}\right), 0$ Bring new data or choices, execution independent on the context

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out(). $P,\left(P_{1} \mid P_{2}\right), 0$ Bring new data or choices, execution independent on the context
- positive: in().P Execution depends on the context

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out().P, ($\left.P_{1} \mid P_{2}\right), 0$

Bring new data or choices, execution independent on the context
\rightsquigarrow to be performed as soon as possible in a given order

- positive: in().P

Execution depends on the context

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out(). $P,\left(P_{1} \mid P_{2}\right), 0$

Bring new data or choices, execution independent on the context
\rightsquigarrow to be performed as soon as possible in a given order

- positive: in().P

Execution depends on the context
\rightsquigarrow can be performed only if no negative

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out(). $P,\left(P_{1} \mid P_{2}\right), 0$

Bring new data or choices, execution independent on the context
\rightsquigarrow to be performed as soon as possible in a given order

- positive: in().P

Execution depends on the context
\rightsquigarrow can be performed only if no negative
\rightsquigarrow choose one positive, put it under focus
\rightsquigarrow focus released when negative

Compression - Intuitions

The Idea

Follow a particular strategy that reduces the number of choices by looking at the nature of available actions.

Polarities of processes:

- negative: out ()$. P,\left(P_{1} \mid P_{2}\right), 0$

Bring new data or choices, execution independent on the context
\rightsquigarrow to be performed as soon as possible in a given order

- positive: in().P

Execution depends on the context
\rightsquigarrow can be performed only if no negative
\rightsquigarrow choose one positive, put it under focus
\rightsquigarrow focus released when negative
(Replication: ! $\nu \vec{n} . P$ is positive but releases the focus)

Compression - Example

$$
\mathcal{P}=\{!\nu n \cdot \operatorname{in}(c, x) \cdot \operatorname{out}(c, \operatorname{enc}(\langle x, n\rangle\}, k)) \cdot 0\}
$$

Compressed interleavings:
$t=$

Compression - Example

$$
\mathcal{P}=\left\{\begin{array}{l}
\quad \text { } \nu n \cdot \operatorname{in}(c, x) \cdot \operatorname{out}\left(c,\{<x, n>\}_{k}\right) \cdot 0 \\
\operatorname{in}\left(c_{1}, x\right) \cdot \operatorname{out}\left(c_{1}, \operatorname{enc}\left(\left\langle x, n_{1}\right\rangle, k\right)\right) \cdot 0
\end{array}\right\}
$$

Compressed interleavings: $t=\operatorname{sess}\left(a, c_{1}\right)$

Compression - Example

$$
\left.\begin{array}{rl}
\mathcal{P}=\{ & !\nu n \cdot \operatorname{in}(c, x) \cdot \operatorname{out}(c,\{<x, n>\} k) \cdot 0 ; \\
& \text { out }\left(c_{1}, \operatorname{enc}\left(\left\langle x, n_{1}\right\rangle, k\right)\right) \cdot 0
\end{array}\right\}
$$

Compressed interleavings:
$t=\operatorname{sess}\left(a, c_{1}\right) \cdot \operatorname{in}\left(c_{1}, M_{1}\right)$

Compression - Example

$$
\mathcal{P}=\left\{!\nu n \cdot \operatorname{in}(c, x) \cdot \operatorname{out}\left(c,\{<x, n>\}_{k}\right) \cdot 0\right\}
$$

Compressed interleavings:
$t=\operatorname{sess}\left(a, c_{1}\right) \cdot \operatorname{in}\left(c_{1}, X_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right)$

Compression - Example

$$
\mathcal{P}=\left\{!\nu n \cdot \operatorname{in}(c, x) \cdot \operatorname{out}\left(c,\{<x, n>\}_{k}\right) \cdot 0\right\}
$$

Compressed interleavings:
$t=\operatorname{sess}\left(a, c_{1}\right) \cdot \operatorname{in}\left(c_{1}, X_{1}\right) \cdot \operatorname{out}\left(c_{1}, w_{1}\right)$

Only traces of the form:
sess $_{1}$. in $_{1}$. out $_{1}$. sess ${ }_{2}$. in n $_{2}$.out ${ }_{2}$. ...

Compression - Results

Reachability:

- Soundness: $A \xrightarrow{t}{ }_{c} A^{\prime} \Rightarrow A \xrightarrow{t} A^{\prime}$
- Completeness: for complete execution $A \xrightarrow{t} A^{\prime} \Rightarrow$ $\exists t_{c}$, permutation of $t, A \xrightarrow{t_{c}}{ }_{c} A^{\prime}$

Compression - Results

Reachability:

- Soundness: $A \xrightarrow{t}{ }_{c} A^{\prime} \Rightarrow A \xrightarrow{t} A^{\prime}$
- Completeness: for complete execution $A \xrightarrow{t} A^{\prime} \Rightarrow$ $\exists t_{c}$, permutation of $t, A \xrightarrow{t_{c}} A^{\prime}$

Equivalence:

Theorem: $\approx_{c}=\approx$

Let A and B be two action-deterministic configurations.

$$
A \approx B \text { if, and, only if, } A \approx_{c} B .
$$

Reduction - Intuitions

By building upon $\rightarrow_{c}, \approx_{c}$:

- compressed semantics produces blocks of actions of the form:

$$
b=(\text { sess }) . \text { in } \ldots \text { in.out } \ldots \text { out }
$$

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

Reduction - Intuitions

By building upon $\rightarrow_{c}, \approx_{c}$:

- compressed semantics produces blocks of actions of the form:

$$
b=(\text { sess }) . \text { in } \ldots \text { in.out } \ldots \text { out }
$$

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

$$
P=\operatorname{in}\left(c_{1}, x\right) . \operatorname{out}\left(c_{1}, m_{1}\right) \mid \operatorname{in}\left(c_{2}, y\right) . \operatorname{out}\left(c_{2}, m_{2}\right)
$$

Compressed traces:

- $\operatorname{tr}_{1}=\operatorname{in}\left(c_{1}, M_{1}\right) \cdot$ out $\left(c_{1}, w_{1}\right) \cdot \operatorname{in}\left(c_{2}, M_{2}\right) \cdot$ out $\left(c_{2}, w_{2}\right)$
- $\mathrm{Hr}_{2}=\mathrm{in}\left(\theta_{2}, \mathrm{Al}_{2}\right) \cdot \operatorname{out}\left(\theta_{2}, W_{2}\right) \cdot \operatorname{in}\left(0_{1}, M_{1}\right) \cdot \operatorname{out}\left(0_{1}, W_{1}\right)$ when M_{1} does not use w_{2}

Reduction - Monoid of traces

Definition

Given a frame Φ, the relation \equiv_{ϕ} is the smallest equivalence over compressed traces such that:

- t. $b_{1} \cdot b_{2} \cdot t^{\prime} \equiv_{\phi} t \cdot b_{2} . b_{1} \cdot t^{\prime}$ when $b_{1} \| b_{2}$, and
- t. $b_{1} \cdot t^{\prime} \equiv_{\phi} t \cdot b_{2} \cdot t^{\prime}$ when $\left(b_{1}=\mathrm{E} b_{2}\right)$.

Reduction - Monoid of traces

Definition

Given a frame Φ, the relation \equiv_{ϕ} is the smallest equivalence over compressed traces such that:

- t. $b_{1} \cdot b_{2} \cdot t^{\prime} \equiv_{\phi} t \cdot b_{2} \cdot b_{1} \cdot t^{\prime}$ when $b_{1} \| b_{2}$, and
- $t \cdot b_{1} \cdot t^{\prime} \equiv_{\Phi} t \cdot b_{2} \cdot t^{\prime}$ when $\left(b_{1}={ }_{\mathrm{E}} b_{2}\right)$.

Lemma
 If $A \xrightarrow[\rightarrow]{t}_{c} A^{\prime}$. Then $A{\xrightarrow{t^{\prime}}}_{c} A^{\prime}$ for any $t^{\prime} \equiv_{\Phi\left(A^{\prime}\right)} t$.

Goal: explore one trace per equivalence class.

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.
Semantics (informal)

$$
\frac{A \xrightarrow[\rightarrow]{t}_{r} A^{\prime} A^{\prime} \xrightarrow[\rightarrow]{b}_{c} A^{\prime \prime}}{A \xrightarrow{t . b} A^{\prime}} \text { if } t \ltimes b
$$

Informally, $t \ltimes b$ means:
there is no way to swap b towards the beginning of t before a block $b_{0} \succ b$ (even by modifying recipes)

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.
Semantics (informal)

$$
\xrightarrow[{A_{r}^{t} A^{\prime} A^{\prime} \xrightarrow[\rightarrow]{b}_{c} A^{\prime \prime}}]{A \xrightarrow{t . b} A^{\prime}} \text { if } t \ltimes b
$$

Informally, $t \ltimes b$ means:
there is no way to swap b towards the beginning of t before a block $b_{0} \succ b$ (even by modifying recipes)
t is Φ-minimal if there is no $t^{\prime} \equiv_{\phi} t$ such that $t^{\prime} \prec_{\text {lex }} t$

If $A \xrightarrow{t}{ }_{c} A^{\prime}$ then t is $\Phi\left(A^{\prime}\right)$-minimal if, and only if, $A \xrightarrow{t} r_{r} A^{\prime}$.
Theorem
$\approx=\approx_{r}$ for action-deterministic configurations.

Benchmarks

We implemented compression/reduction in APTE
by adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.
$\operatorname{tr} \ltimes b$: a new type of constraints

All benchmarks \& instructions for reproduction: www.lsv.ens-cachan.fr/~hirschi/apte_por

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

(1) drop action-deterministic assumption
(2) impact of the choice of \prec
(3) study others redundancies \rightsquigarrow recognize symmetries ?

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

(1) drop action-deterministic assumption
(2) impact of the choice of \prec
(3) study others redundancies \rightsquigarrow recognize symmetries ?

Any question?

Compressed semantics - Definition

\mathcal{P} is initial if $\forall P \in \mathcal{P}, P$ is positiveor replicated.
Semantics:

Compressed semantics - Definition

\mathcal{P} is initial if $\forall P \in \mathcal{P}, P$ is positiveor replicated.
Semantics:

StART/In

$$
\begin{gathered}
\frac{\mathcal{P} \text { is initial }(P ; \Phi) \xrightarrow{\text { in }(c, M)}\left(P^{\prime} ; \Phi\right)}{(\mathcal{P} \uplus\{P\} ; \varnothing ; \Phi) \xrightarrow{\text { foc (in }(c, M))} c\left(\mathcal{P} ; P^{\prime} ; \Phi\right)} \\
\frac{(P ; \Phi) \xrightarrow{\text { in }(c, M)}\left(P^{\prime} ; \Phi\right)}{(\mathcal{P} ; P ; \Phi) \xrightarrow{\text { in }(c, M)} c\left(\mathcal{P} ; P^{\prime} ; \Phi\right)}
\end{gathered}
$$

Compressed semantics - Definition

\mathcal{P} is initial if $\forall P \in \mathcal{P}, P$ is positiveor replicated.
Semantics:

START/In

Pos/In

Release

$$
\mathcal{P} \text { is initial } \quad(P ; \Phi) \xrightarrow{\text { in }(c, M)}\left(P^{\prime} ; \Phi\right)
$$

$$
\overline{(\mathcal{P} ; P ; \Phi) \xrightarrow{\text { rel }} c(\mathcal{P} \uplus\{P\} ; \varnothing ; \Phi)}
$$

$\mathrm{NEG} / \alpha \quad \frac{(\{P\} ; \Phi) \xrightarrow{\alpha}\left(\mathcal{P}^{\prime} ; \Phi^{\prime}\right)}{(\mathcal{P} \uplus\{P\} ; \varnothing ; \Phi) \xrightarrow{\alpha}\left(\mathcal{P} \uplus \mathcal{P}^{\prime} ; \varnothing ; \Phi^{\prime}\right)} \alpha \in\left\{\right.$ par, zero, out $\left.\left(_,-\right)\right\}$

+ Repl/In

Reduced semantics

We assume an arbitrary order \prec over blocks (without recipes/messages): priority order.

Semantics

$$
\begin{aligned}
& A \xrightarrow{\epsilon} r A \\
& \xrightarrow{A \xrightarrow[\rightarrow]{\operatorname{tr}}_{r}(\mathcal{P} ; \varnothing ; \Phi) \quad(\mathcal{P} ; \varnothing ; \Phi) \xrightarrow{b}_{c} A^{\prime}} \begin{array}{l}
\text { if } \operatorname{tr} \ltimes b^{\prime} \text { for all } b^{\prime} \\
\text { with }\left(b^{\prime}=E b\right) \Phi
\end{array}
\end{aligned}
$$

Availability

A block b is available after tr, denoted $\operatorname{tr} \ltimes b$, if:

- either $\operatorname{tr}=\epsilon$
- or $\operatorname{tr}=\operatorname{tr}_{0} . b_{0}$ with $\neg\left(b_{0} \| b\right)$
- or $\operatorname{tr}=\operatorname{tr}_{0} . b_{0}$ with $b_{0} \| b, b_{0} \prec b$ and $\operatorname{tr}_{0} \ltimes b$.

Benchmarks

Toy example ($\Pi_{i}($ in.out $)$)

Wide Mouthed Frog

Benchmarks

Toy example ($\Pi_{i}($ in.out $)$)

Wide Mouthed Frog

Maximum number of parallel processes verifiable in 20 hours:

Protocol	ref	comp	red
Yahalom (3-party)	4	5	5
Needham Schroeder (3-party)	4	6	7
Private Authentication (2-party)	4	7	7
E-Passport PA (2-party)	4	7	9
Denning-Sacco (3-party)	5	9	10
Wide Mouthed Frog (3-party)	6	12	13

Instructions for reproduction:
www.lsv.ens-cachan.fr/~hirschi/apte_por

