
A reduced semantics for deciding trace
equivalence using constraint systems

POST’14

Lucca Hirschi

LSV, ENS Cachan & ENS Lyon

April 7, 2014

David Baelde Stéphanie Delaune
joint work with and

LSV LSV

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);

I Trace equivalence models security properties (e.g., strong
secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 2 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Applied-π

Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) = m.

Simple Processes
I Pc ::= 0 | in(c, x).Pc | out(c,m).Pc | if T then Pc else Pc

I Ps ::= Pc1 |Pc2 | . . .Pcn ci 6= cj

I Process: (Ps; Φ) (Φ set of messages revealed to the intruder).

Semantics

({out(c,m).P}] P; Φ)
νw.out(c,w)−−−−−−−−→ ({P}] P; Φ ∪ {w Bm})

if T ∧ w fresh in Φ

({in(c, x).P}] P; Φ)
in(c,t)−−−−→ ({P[x 7→ u]} ∪ P; Φ)

if tΦ = u ∧ fv(t) ⊆ dom(Φ)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 3 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Applied-π

Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) = m.

Simple Processes
I Pc ::= 0 | in(c, x).Pc | out(c,m).Pc | if T then Pc else Pc

I Ps ::= Pc1 |Pc2 | . . .Pcn ci 6= cj

I Process: (Ps; Φ) (Φ set of messages revealed to the intruder).

Semantics

({out(c,m).P}] P; Φ)
νw.out(c,w)−−−−−−−−→ ({P}] P; Φ ∪ {w Bm})

if T ∧ w fresh in Φ

({in(c, x).P}] P; Φ)
in(c,t)−−−−→ ({P[x 7→ u]} ∪ P; Φ)

if tΦ = u ∧ fv(t) ⊆ dom(Φ)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 3 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Applied-π

Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) = m.

Simple Processes
I Pc ::= 0 | in(c, x).Pc | out(c,m).Pc | if T then Pc else Pc

I Ps ::= Pc1 |Pc2 | . . .Pcn ci 6= cj

I Process: (Ps; Φ) (Φ set of messages revealed to the intruder).

Semantics

({out(c,m).P}] P; Φ)
νw.out(c,w)−−−−−−−−→ ({P}] P; Φ ∪ {w Bm})

if T ∧ w fresh in Φ

({in(c, x).P}] P; Φ)
in(c,t)−−−−→ ({P[x 7→ u]} ∪ P; Φ)

if tΦ = u ∧ fv(t) ⊆ dom(Φ)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 3 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Applied-π

Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) = m.

Simple Processes
I Pc ::= 0 | in(c, x).Pc | out(c,m).Pc | if T then Pc else Pc

I Ps ::= Pc1 |Pc2 | . . .Pcn ci 6= cj

I Process: (Ps; Φ) (Φ set of messages revealed to the intruder).

Semantics

({out(c,m).P}] P; Φ)
νw.out(c,w)−−−−−−−−→ ({P}] P; Φ ∪ {w Bm})

if T ∧ w fresh in Φ

({in(c, x).P}] P; Φ)
in(c,t)−−−−→ ({P[x 7→ u]} ∪ P; Φ)

if tΦ = u ∧ fv(t) ⊆ dom(Φ)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 3 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Trace Equivalence

Properties:
1 Reachability (e.g., secret, authentification) and
2 Equivalence (e.g., anonymity, unlikability).

Trace equivalence
I Φ ∼ Φ′ ⇐⇒ (∀M,N, MΦ = NΦ ⇐⇒ MΦ′ = NΦ′)

I A ≈ B ⇐⇒ ∀A s−→ A′, ∃B′, B s−→ B′ ∧ ΦA′ ∼ ΦB′ and conversely.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 4 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Trace Equivalence

Properties:
1 Reachability (e.g., secret, authentification) and
2 Equivalence (e.g., anonymity, unlikability).

Trace equivalence
I Φ ∼ Φ′ ⇐⇒ (∀M,N, MΦ = NΦ ⇐⇒ MΦ′ = NΦ′)

I A ≈ B ⇐⇒ ∀A s−→ A′, ∃B′, B s−→ B′ ∧ ΦA′ ∼ ΦB′ and conversely.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 4 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Trace Equivalence

Properties:
1 Reachability (e.g., secret, authentification) and
2 Equivalence (e.g., anonymity, unlikability).

Trace equivalence
I Φ ∼ Φ′ ⇐⇒ (∀M,N, MΦ = NΦ ⇐⇒ MΦ′ = NΦ′)

I A ≈ B ⇐⇒ ∀A s−→ A′, ∃B′, B s−→ B′ ∧ ΦA′ ∼ ΦB′ and conversely.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 4 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Big Picture

Goal
I Motivation: Improve algorithms checking trace equivalence for

simple processes
I How: Dramatically decrease the number of interleavings to

consider via a reduced semantics

−→

≈

Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

Symbolic
=====⇒
≈c=≈s

7−→c

≈s

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 5 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Big Picture

−→

≈

Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

︸ ︷︷ ︸
Grouping actions:

I generalization of the idea
"force to perform output
as soon as possible"

I −→c only explores specific
traces

I Theorem 1: ≈=≈c

Symbolic
=====⇒
≈c=≈s

7−→c

≈s

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 5 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Big Picture

−→

≈

Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

Symbolic
=====⇒
≈c=≈s

7−→c

≈s

︸ ︷︷ ︸
Symbolic semantics:

I classic step adapted
for −→c

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 5 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Big Picture

−→

≈

Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

Symbolic
=====⇒
≈c=≈s

7−→c

≈s

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d

︸ ︷︷ ︸
Analyze dependencies:

I force one order for
independent (parallel)
actions

I analyze dependencies
"on the fly"

I 7−→d explores even less
traces

I Theorem 2: ≈s=≈2
d

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 5 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Outline

1 Introduction

2 Compressed semantics

3 Reduced semantics

4 Conclusion

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 6 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Outline

1 Introduction

2 Compressed semantics

3 Reduced semantics

4 Conclusion

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 7 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression

I Reachability: force output actions to be performed first

I Equivalence: not that simple
order of actions matters (observable)
we consider two processes (symmetry)

Grouping actions into blocks

in(c,_) . . .in(c,_).out(c,_) . . .out(c,_)

via a compressed semantics −→c .

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 8 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression

I Reachability: force output actions to be performed first
I Equivalence: not that simple

order of actions matters (observable)
we consider two processes (symmetry)

Grouping actions into blocks

in(c,_) . . .in(c,_).out(c,_) . . .out(c,_)

via a compressed semantics −→c .

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 8 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression

I Reachability: force output actions to be performed first
I Equivalence: not that simple

order of actions matters (observable)
we consider two processes (symmetry)

Grouping actions into blocks

in(c,_) . . .in(c,_).out(c,_) . . .out(c,_)

via a compressed semantics −→c .

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 8 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression - Example
Basic rules of −→c :

I choose a basic process Pi ∈ P, it is now under focus;
I focus: only Pi can perform actions

I Pi can release the focus only if:
it has performed a block IO (> 1 input, > 1 output) and
it can not perform an output any more.

Example
Consider P = P1 | P2 with Pi = in(ci , x).in(ci , y).out(ci , 〈x , y〉).

I Semantics −→c explores only two interleavings of 6 actions:

in(c1, x1).in(c1, y1).out(c1,w1).in(c2, x2).in(c2, y2).out(c2,w2)

and

in(c2, x2).in(c2, y2).out(c2,w2).in(c1, x1).in(c1, y1).out(c1,w1)

I semantics −→ explores 20 such interleavings.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 9 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression - Example
Basic rules of −→c :

I choose a basic process Pi ∈ P, it is now under focus;
I focus: only Pi can perform actions
I Pi can release the focus only if:

it has performed a block IO (> 1 input, > 1 output) and
it can not perform an output any more.

Example
Consider P = P1 | P2 with Pi = in(ci , x).in(ci , y).out(ci , 〈x , y〉).

I Semantics −→c explores only two interleavings of 6 actions:

in(c1, x1).in(c1, y1).out(c1,w1).in(c2, x2).in(c2, y2).out(c2,w2)

and

in(c2, x2).in(c2, y2).out(c2,w2).in(c1, x1).in(c1, y1).out(c1,w1)

I semantics −→ explores 20 such interleavings.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 9 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression - Example
Basic rules of −→c :

I choose a basic process Pi ∈ P, it is now under focus;
I focus: only Pi can perform actions
I Pi can release the focus only if:

it has performed a block IO (> 1 input, > 1 output) and
it can not perform an output any more.

Example
Consider P = P1 | P2 with Pi = in(ci , x).in(ci , y).out(ci , 〈x , y〉).

I Semantics −→c explores only two interleavings of 6 actions:

in(c1, x1).in(c1, y1).out(c1,w1).in(c2, x2).in(c2, y2).out(c2,w2)

and

in(c2, x2).in(c2, y2).out(c2,w2).in(c1, x1).in(c1, y1).out(c1,w1)

I semantics −→ explores 20 such interleavings.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 9 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression - Result
The semantics −→c induces a compressed trace equivalence ≈c

Theorem 1

A ≈ B ⇐⇒ A ≈c B

Key ideas
I symmetric: remove same interleavings on both sides
I completeness: in any execution, we can swap two actions on

different channels (simple processes)

Benefits
I first optimization that decreases (possibly exponentially many)

interleavings to consider
I easy to implement
I allow us to reason with macro-actions i.e., blocks
 reduced semantics

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 10 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Compression - Result
The semantics −→c induces a compressed trace equivalence ≈c

Theorem 1

A ≈ B ⇐⇒ A ≈c B

Key ideas
I symmetric: remove same interleavings on both sides
I completeness: in any execution, we can swap two actions on

different channels (simple processes)

Benefits
I first optimization that decreases (possibly exponentially many)

interleavings to consider
I easy to implement
I allow us to reason with macro-actions i.e., blocks
 reduced semantics

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 10 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Outline

1 Introduction

2 Compressed semantics

3 Reduced semantics

4 Conclusion

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 11 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic calculus - 1

Inputs messages: infinitely branching symbolic calculus.

System of Constraints
I Constraints: D `?X x u =? v u 6=? v
I System of constraints: (Φ,S).

P = out(c, k).in(c, x).out(c, 〈k , x〉).in(c, y)

leads to
S = {{w} `?X x , {w ,w ′} `?Y y}
Φ = {w B k ; w ′ B 〈k , x〉}

Symbolic process

(P; Φ;S)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 12 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic calculus - 1

Inputs messages: infinitely branching symbolic calculus.

System of Constraints
I Constraints: D `?X x u =? v u 6=? v
I System of constraints: (Φ,S).

P = out(c, k).in(c, x).out(c, 〈k , x〉).in(c, y)

leads to
S = {{w} `?X x , {w ,w ′} `?Y y}
Φ = {w B k ; w ′ B 〈k , x〉}

Symbolic process

(P; Φ;S)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 12 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic calculus - 1

Inputs messages: infinitely branching symbolic calculus.

System of Constraints
I Constraints: D `?X x u =? v u 6=? v
I System of constraints: (Φ,S).

P = out(c, k).in(c, x).out(c, 〈k , x〉).in(c, y)

leads to
S = {{w} `?X x , {w ,w ′} `?Y y}
Φ = {w B k ; w ′ B 〈k , x〉}

Symbolic process

(P; Φ;S)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 12 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic calculus - 1

Inputs messages: infinitely branching symbolic calculus.

System of Constraints
I Constraints: D `?X x u =? v u 6=? v
I System of constraints: (Φ,S).

P = out(c, k).in(c, x).out(c, 〈k , x〉).in(c, y)

leads to
S = {{w} `?X x , {w ,w ′} `?Y y}
Φ = {w B k ; w ′ B 〈k , x〉}

Symbolic process

(P; Φ;S)

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 12 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic Calculus - 2

Semantics

({out(c,m).P}] P; Φ;S)
νw.out(c,w)7−−−−−−−→ ({P}] P; Φ ∪ {w Bm};S)

if w fresh in φ

({in(c, x).P}] P; Φ;S)
in(c,X)7−−−−→ (P; Φ;S ∪ {dom(φ)`?X x})

if X fresh in S

Symbolic equivalence

A ≈s B ⇐⇒ ∀A s7−→ A′ ∀Θ ∈ Sol(ΦA′ ,DA′), ∃B′ B s7−→ B′,Θ ∈
Sol(ΦB′ ,DB′) and ΦA′ ∼ ΦB′ and conversely.

I There already exist several procedures checking equivalence
between constraint systems

I Goal: starting with 7−→c (compressed symbolic semantics),
reduces the number of interleavings to explore

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 13 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic Calculus - 2

Semantics

({out(c,m).P}] P; Φ;S)
νw.out(c,w)7−−−−−−−→ ({P}] P; Φ ∪ {w Bm};S)

if w fresh in φ

({in(c, x).P}] P; Φ;S)
in(c,X)7−−−−→ (P; Φ;S ∪ {dom(φ)`?X x})

if X fresh in S

Symbolic equivalence

A ≈s B ⇐⇒ ∀A s7−→ A′ ∀Θ ∈ Sol(ΦA′ ,DA′), ∃B′ B s7−→ B′,Θ ∈
Sol(ΦB′ ,DB′) and ΦA′ ∼ ΦB′ and conversely.

I There already exist several procedures checking equivalence
between constraint systems

I Goal: starting with 7−→c (compressed symbolic semantics),
reduces the number of interleavings to explore

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 13 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Symbolic Calculus - 2

Semantics

({out(c,m).P}] P; Φ;S)
νw.out(c,w)7−−−−−−−→ ({P}] P; Φ ∪ {w Bm};S)

if w fresh in φ

({in(c, x).P}] P; Φ;S)
in(c,X)7−−−−→ (P; Φ;S ∪ {dom(φ)`?X x})

if X fresh in S

Symbolic equivalence

A ≈s B ⇐⇒ ∀A s7−→ A′ ∀Θ ∈ Sol(ΦA′ ,DA′), ∃B′ B s7−→ B′,Θ ∈
Sol(ΦB′ ,DB′) and ΦA′ ∼ ΦB′ and conversely.

I There already exist several procedures checking equivalence
between constraint systems

I Goal: starting with 7−→c (compressed symbolic semantics),
reduces the number of interleavings to explore

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 13 / 20

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides
I Do not remove too much information (intruder can observe the

order).

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•
X1nw2

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides
I Do not remove too much information (intruder can observe the

order).

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•
X1nw2

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides
I Do not remove too much information (intruder can observe the

order).

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•
X1nw2

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides

I Do not remove too much information (intruder can observe the
order).

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•
X1nw2

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides
I Do not remove too much information (intruder can observe the

order).

P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl).out(cl ,wl)

IO(a)

IO(b)

IO(b)IO(a)IO(b) IO(c)IO(c)

IO(b)

IO(a)

IO(a)IO(c)IO(a)IO(c)IO(b)

IO(c)

Xbnwc

P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl).out(cl ,wl)

IO(a)

IO(b)

IO(b)IO(a)IO(b) IO(c)IO(c)

IO(b)

IO(a)

IO(a)IO(c)IO(a)IO(c)IO(b)

IO(c)

Xbnwc Xanwb Xcnwb
Xanwc Xanwb

Xbnwc

P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl).out(cl ,wl)

IO(a)

IO(b)

IO(c) IO(b)

IO(c) IO(a)

IO(b)

IO(c)

IO(a)IO(c)

IO(c)

IO(a)

IO(b)

IO(b)

IO(a)

Xbnwc Xanwb Xcnwb
Xcnwb

Xbnwa,wc

Xanwb

Xbnwc

P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl).out(cl ,wl)

IO(a)

IO(b)

IO(c) IO(b)

IO(c) IO(a)

IO(b)

IO(c)

IO(a)IO(c)

IO(c)

IO(a)

IO(b)

IO(b)

IO(a)

Xbnwc Xanwb Xcnwb
Xcnwb

Xbnwa,wc

A block on c is executed following t , one input of the block must depend on
one output of dep (t , c) = {w1,w2 . . .wn} if

I t = t1.IO(c1).IO(c2) . . . IO(cn)

I c < c1;
I c2, . . . , cn < c

Introduction Compressed semantics Reduced semantics Conclusion

Reduced semantics
Reduced semantics 7−→d

Compressed, symbolic semantics + dependency constraints built on
the fly.

(P; Φ;∅)
tr7−→d (P ′; Φ′;S ′) (P ′; Φ′;S ′) ioc(

−→
X ,−→w)7−−−−−−→c (P ′′; Φ′′;S ′′)

(P; Φ;∅)
tr·ioc(

−→
X ,−→w)7−−−−−−−→d (P ′′; Φ′′;S ′′ ∪ {

−→
X ndep (tr, c)})

Two possible semantics for Sol(Xnw):
I second order: w occurs in the recipe XΘ

I first order: for all recipe R, if RΦ = (XΘ)Φ then w occurs in R

Theorem 2
≈2

d = ≈s ≈1
d = ≈s

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 16 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Reduced semantics
Reduced semantics 7−→d

Compressed, symbolic semantics + dependency constraints built on
the fly.

(P; Φ;∅)
tr7−→d (P ′; Φ′;S ′) (P ′; Φ′;S ′) ioc(

−→
X ,−→w)7−−−−−−→c (P ′′; Φ′′;S ′′)

(P; Φ;∅)
tr·ioc(

−→
X ,−→w)7−−−−−−−→d (P ′′; Φ′′;S ′′ ∪ {

−→
X ndep (tr, c)})

Two possible semantics for Sol(Xnw):
I second order: w occurs in the recipe XΘ

I first order: for all recipe R, if RΦ = (XΘ)Φ then w occurs in R

Theorem 2
≈2

d = ≈s ≈1
d = ≈s

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 16 / 20

Introduction Compressed semantics Reduced semantics Conclusion

Reduced semantics
Reduced semantics 7−→d

Compressed, symbolic semantics + dependency constraints built on
the fly.

(P; Φ;∅)
tr7−→d (P ′; Φ′;S ′) (P ′; Φ′;S ′) ioc(

−→
X ,−→w)7−−−−−−→c (P ′′; Φ′′;S ′′)

(P; Φ;∅)
tr·ioc(

−→
X ,−→w)7−−−−−−−→d (P ′′; Φ′′;S ′′ ∪ {

−→
X ndep (tr, c)})

Two possible semantics for Sol(Xnw):
I second order: w occurs in the recipe XΘ

I first order: for all recipe R, if RΦ = (XΘ)Φ then w occurs in R

Theorem 2
≈2

d = ≈s ≈1
d = ≈s

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 16 / 20

Idea of the proof

I [t]: set of traces modulo valid permutations;
I Min([t]): lexico. minimum of the class.

Lemma 1
If −→c explores t from P then it also explores all traces of [t]
(+ same resulting frames).

Lemma 2
I If −→c explores t from P then 7−→d explores Min([t])

(+ same resulting frames);
I 7−→d explores no other trace of [t] from P.

Introduction Compressed semantics Reduced semantics Conclusion

Outline

1 Introduction

2 Compressed semantics

3 Reduced semantics

4 Conclusion

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 18 / 20

Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE
PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266

SPEC 2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65

Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)

Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE
PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266

SPEC 2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65

Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)

Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE
PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266

SPEC 2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65

Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)

Introduction Compressed semantics Reduced semantics Conclusion

Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)

Any question?

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 20 / 20

Benchmarks More compression using focusing

Outline

5 Benchmarks

6 More compression using focusing

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 21 / 20

Benchmarks More compression using focusing

Benchmarks

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE

PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266
BAC 1 S./1 4/52/6 13.98 0.02 0.008
Simple 3 par 3/6/2 0.060 0.004 0.0040
Simple 5 par 5/10/2 178.8 0.124 0.024
Simple 7 par 7/14/2 > 163h 8.512 0.196
Simple 10 par 7/14/2 > 163h 664 1.05
Complex 4 par 4/10/4 99.87 0.55 0.136
Complex 7 par 7/16/4 > 163h 198077 363.08

SPEC

2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65
WMF 1S 3/16/3 65.20 8.01 8.09
WMF 2S ⊥ 6/24/3 7742.24 3.21 3.30

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 22 / 20

Description of the role of Alice
let process_Alice k_a k_b =

new N_a;
in(a,a);
out(a,aenc((N_a,pk(k_a)),pk(k_b)));
in(a,x).

Description of the role of Bob
let process_Bob k_a k_b =

in(b,x);
let (na,pka) = adec(x,k_b) in
if pka = pk(k_a)
then new N_b; out(b,aenc((na,N_b,pk(k_b)),pk(k_a)))
else new N; out(b,aenc(N,pk(k_a))).

Main
let instance1 =

new k_a ; new k_b ; new k_c ; out(c,pk(k_a)) ; out(c,pk(k_b)) ;
out(c,pk(k_c)); (process_Alice k_a k_b | process_Bob k_a k_b).

let instance2 =
new k_a ; new k_b ; new k_c ; out(c,pk(k_a)) ; out(c,pk(k_b)) ;
out(c,pk(k_c)); (process_Alice k_c k_b | process_Bob k_c k_b).

equivalence instance1 and instance2.

Benchmarks More compression using focusing

Outline

5 Benchmarks

6 More compression using focusing

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 24 / 20

Benchmarks More compression using focusing

Informal Analogy: Focusing - Compression

I Compression: complete (wrt. equivalence) reduction of search
space

I Focusing: complete (wrt. provability) reduction of search space

Processes LL formulae polarity
in(c, x).P ∃x .A synchronous
out(c, t).P ∀x .A asynchronous

P1|P2 P1 ` P2 asynchronous
!a,−→c P ?P asynchronous

compressed execution focused derivation
completeness of ≈c completeness of focused proof system

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 25 / 20

Benchmarks More compression using focusing

Informal Analogy: Focusing - Compression

I Compression: complete (wrt. equivalence) reduction of search
space

I Focusing: complete (wrt. provability) reduction of search space

Processes LL formulae polarity
in(c, x).P ∃x .A synchronous
out(c, t).P ∀x .A asynchronous

P1|P2 P1 ` P2 asynchronous
!a,−→c P ?P asynchronous

compressed execution focused derivation
completeness of ≈c completeness of focused proof system

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 25 / 20

Benchmarks More compression using focusing

Informal Analogy: Focusing - Compression

I Compression: complete (wrt. equivalence) reduction of search
space

I Focusing: complete (wrt. provability) reduction of search space

Processes LL formulae polarity
in(c, x).P ∃x .A synchronous
out(c, t).P ∀x .A asynchronous

P1|P2 P1 ` P2 asynchronous
!a,−→c P ?P asynchronous

compressed execution focused derivation
completeness of ≈c completeness of focused proof system

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 25 / 20

Benchmarks More compression using focusing

Focused semantics

Focused execution: alternation of two phases
1 Asynchronous phase:
2 Synchronous phase:

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 26 / 20

Benchmarks More compression using focusing

Focused semantics

Focused execution: alternation of two phases
1 Asynchronous phase: When: ∃ output process.

What: Only output actions are available.
2 Synchronous phase:

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 26 / 20

Benchmarks More compression using focusing

Focused semantics

Focused execution: alternation of two phases
1 Asynchronous phase: When: ∃ output process.

What: Only output actions are available.
2 Synchronous phase: When: all processes start with an input or !.

What: Choose one input process (or replicate one !): its is now
under focus. Force to perform all its inputs until it reveals an
asynchronous action.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 26 / 20

Benchmarks More compression using focusing

Results (work in progress)

Even more effective compression handling REPLICATION and nested
parallel compositions for determinate processes.

if A tr−→ A1 and A tr−→ A2 then A1 = A2.

Proof of completeness following the informal analogy and:

I Strictly better: does the same for simple processes.
I Very modular: can be applied to any π-calculus-like.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 27 / 20

Benchmarks More compression using focusing

Results (work in progress)

Even more effective compression handling REPLICATION and nested
parallel compositions for determinate processes.

if A tr−→ A1 and A tr−→ A2 then A1 = A2.

Proof of completeness following the informal analogy and:

I Strictly better: does the same for simple processes.
I Very modular: can be applied to any π-calculus-like.

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 27 / 20

	Introduction
	Compressed semantics
	Reduced semantics
	Conclusion
	Appendix
	Benchmarks
	More compression using focusing

