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Introduction
Prove automatically security properties of cryptographic protocols
using formal methods.

Our setting
I Applied-π models protocols (Dolev-Yao model);
I Trace equivalence models security properties (e.g., strong

secrecy, unlinkability, anonymity, ...)

 decidable for bounded number of sessions
 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Main bottleneck: size of search space (interleavings).

Our Contribution
Reduce search space of equivalence checking using POR ideas by
eliminating a lot of redundancies (for simple processes).
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Applied-π

Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) = m.

Simple Processes
I Pc ::= 0 | in(c, x).Pc | out(c,m).Pc | if T then Pc else Pc

I Ps ::= Pc1 |Pc2 | . . .Pcn ci 6= cj

I Process: (Ps; Φ) (Φ set of messages revealed to the intruder).

Semantics

({out(c,m).P} ] P; Φ)
νw.out(c,w)−−−−−−−−→ ({P} ] P; Φ ∪ {w Bm})

if T ∧ w fresh in Φ

({in(c, x).P} ] P; Φ)
in(c,t)−−−−→ ({P[x 7→ u]} ∪ P; Φ)

if tΦ = u ∧ fv(t) ⊆ dom(Φ)
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Trace Equivalence

Properties:
1 Reachability (e.g., secret, authentification) and
2 Equivalence (e.g., anonymity, unlikability).

Trace equivalence
I Φ ∼ Φ′ ⇐⇒ (∀M,N, MΦ = NΦ ⇐⇒ MΦ′ = NΦ′)

I A ≈ B ⇐⇒ ∀A s−→ A′, ∃B′, B s−→ B′ ∧ ΦA′ ∼ ΦB′ and conversely.
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Big Picture

Goal
I Motivation: Improve algorithms checking trace equivalence for

simple processes
I How: Dramatically decrease the number of interleavings to

consider via a reduced semantics

−→

≈

Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

Symbolic
=====⇒
≈c=≈s

7−→c

≈s

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d
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Compression
========⇒
Thm 1: ≈=≈c

−→c

≈c

︸ ︷︷ ︸
Grouping actions:

I generalization of the idea
"force to perform output
as soon as possible"

I −→c only explores specific
traces

I Theorem 1: ≈=≈c
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7−→c

≈s

Reduction
======⇒

Thm 2: ≈s=≈2
d

7−→d

≈2
d

︸ ︷︷ ︸
Analyze dependencies:

I force one order for
independent (parallel)
actions

I analyze dependencies
"on the fly"

I 7−→d explores even less
traces

I Theorem 2: ≈s=≈2
d
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Outline

1 Introduction

2 Compressed semantics

3 Reduced semantics
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Compression

I Reachability: force output actions to be performed first

I Equivalence: not that simple
order of actions matters (observable)
we consider two processes (symmetry)

Grouping actions into blocks

in(c,_) . . .in(c,_).out(c,_) . . .out(c,_)

via a compressed semantics −→c .
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Compression - Example
Basic rules of −→c :

I choose a basic process Pi ∈ P, it is now under focus;
I focus: only Pi can perform actions

I Pi can release the focus only if:
it has performed a block IO (> 1 input, > 1 output) and
it can not perform an output any more.

Example
Consider P = P1 | P2 with Pi = in(ci , x).in(ci , y).out(ci , 〈x , y〉).

I Semantics −→c explores only two interleavings of 6 actions:

in(c1, x1).in(c1, y1).out(c1,w1).in(c2, x2).in(c2, y2).out(c2,w2)

and

in(c2, x2).in(c2, y2).out(c2,w2).in(c1, x1).in(c1, y1).out(c1,w1)

I semantics −→ explores 20 such interleavings.
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Compression - Result
The semantics −→c induces a compressed trace equivalence ≈c

Theorem 1

A ≈ B ⇐⇒ A ≈c B

Key ideas
I symmetric: remove same interleavings on both sides
I completeness: in any execution, we can swap two actions on

different channels (simple processes)

Benefits
I first optimization that decreases (possibly exponentially many)

interleavings to consider
I easy to implement
I allow us to reason with macro-actions i.e., blocks
 reduced semantics
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Symbolic calculus - 1

Inputs messages: infinitely branching symbolic calculus.

System of Constraints
I Constraints: D `?X x u =? v u 6=? v
I System of constraints: (Φ,S).

P = out(c, k).in(c, x).out(c, 〈k , x〉).in(c, y)

leads to
S = {{w} `?X x , {w ,w ′} `?Y y}
Φ = {w B k ; w ′ B 〈k , x〉}

Symbolic process

(P; Φ;S)
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Symbolic Calculus - 2

Semantics

({out(c,m).P} ] P; Φ;S)
νw.out(c,w)7−−−−−−−→ ({P} ] P; Φ ∪ {w Bm};S)

if w fresh in φ

({in(c, x).P} ] P; Φ;S)
in(c,X)7−−−−→ (P; Φ;S ∪ {dom(φ)`?X x})

if X fresh in S

Symbolic equivalence

A ≈s B ⇐⇒ ∀A s7−→ A′ ∀Θ ∈ Sol(ΦA′ ,DA′), ∃B′ B s7−→ B′,Θ ∈
Sol(ΦB′ ,DB′) and ΦA′ ∼ ΦB′ and conversely.

I There already exist several procedures checking equivalence
between constraint systems

I Goal: starting with 7−→c (compressed symbolic semantics),
reduces the number of interleavings to explore

Lucca Hirschi Parsifal Seminar: A reduced semantics for deciding trace equivalence using constraint systems 13 / 20
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P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

•

•

•

•

•

in(c1,X1)

out(c1,w1)

in(c2,X2)

out(c2,w2)

in(c2,X2)

out(c2,w2)

in(c1,X1)

out(c1,w1)

Dependency constraint: X1 must depend on w2.

We can add constraints on the fly thanks to an order <.

I symmetry: Eliminate same traces on both sides
I Do not remove too much information (intruder can observe the

order).
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P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl ).out(cl ,wl )
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A block on c is executed following t , one input of the block must depend on
one output of dep (t , c) = {w1,w2 . . .wn} if

I t = t1.IO(c1).IO(c2) . . . IO(cn)

I c < c1;
I c2, . . . , cn < c
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Reduced semantics
Reduced semantics 7−→d

Compressed, symbolic semantics + dependency constraints built on
the fly.

(P; Φ;∅)
tr7−→d (P ′; Φ′;S ′) (P ′; Φ′;S ′) ioc(

−→
X ,−→w )7−−−−−−→c (P ′′; Φ′′;S ′′)

(P; Φ;∅)
tr·ioc(

−→
X ,−→w )7−−−−−−−→d (P ′′; Φ′′;S ′′ ∪ {

−→
X ndep (tr, c)})

Two possible semantics for Sol(Xnw):
I second order: w occurs in the recipe XΘ

I first order: for all recipe R, if RΦ = (XΘ)Φ then w occurs in R

Theorem 2
≈2

d = ≈s ≈1
d = ≈s
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Idea of the proof

I [t ]: set of traces modulo valid permutations;
I Min([t ]): lexico. minimum of the class.

Lemma 1
If −→c explores t from P then it also explores all traces of [t ]
(+ same resulting frames).

Lemma 2
I If −→c explores t from P then 7−→d explores Min([t])

(+ same resulting frames);
I 7−→d explores no other trace of [t ] from P.
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Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE
PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266

SPEC 2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65

Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)
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Future Work
I study constraint solving in more details
I study others redundancies recognize symmetries ?
I extend to more general classes of processes

(e.g., nested |, replication, non-determinate?)

Any question?
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Benchmarks More compression using focusing

Benchmarks

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE

PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266
BAC 1 S./1 4/52/6 13.98 0.02 0.008
Simple 3 par 3/6/2 0.060 0.004 0.0040
Simple 5 par 5/10/2 178.8 0.124 0.024
Simple 7 par 7/14/2 > 163h 8.512 0.196
Simple 10 par 7/14/2 > 163h 664 1.05
Complex 4 par 4/10/4 99.87 0.55 0.136
Complex 7 par 7/16/4 > 163h 198077 363.08

SPEC

2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65
WMF 1S 3/16/3 65.20 8.01 8.09
WMF 2S ⊥ 6/24/3 7742.24 3.21 3.30
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### Description of the role of Alice
let process_Alice k_a k_b =

new N_a;
in(a,a);
out(a,aenc((N_a,pk(k_a)),pk(k_b)));
in(a,x).

### Description of the role of Bob
let process_Bob k_a k_b =

in(b,x);
let (na,pka) = adec(x,k_b) in
if pka = pk(k_a)
then new N_b; out(b,aenc((na,N_b,pk(k_b)),pk(k_a)))
else new N; out(b,aenc(N,pk(k_a))).

### Main
let instance1 =

new k_a ; new k_b ; new k_c ; out(c,pk(k_a)) ; out(c,pk(k_b)) ;
out(c,pk(k_c)); ( process_Alice k_a k_b | process_Bob k_a k_b ).

let instance2 =
new k_a ; new k_b ; new k_c ; out(c,pk(k_a)) ; out(c,pk(k_b)) ;
out(c,pk(k_c)); ( process_Alice k_c k_b | process_Bob k_c k_b ).

equivalence instance1 and instance2.
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Benchmarks More compression using focusing

Informal Analogy: Focusing - Compression

I Compression: complete (wrt. equivalence) reduction of search
space

I Focusing: complete (wrt. provability) reduction of search space

Processes LL formulae polarity
in(c, x).P ∃x .A synchronous
out(c, t).P ∀x .A asynchronous

P1|P2 P1 ` P2 asynchronous
!a,−→c P ?P asynchronous

compressed execution focused derivation
completeness of ≈c completeness of focused proof system
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Benchmarks More compression using focusing

Focused semantics

Focused execution: alternation of two phases
1 Asynchronous phase:
2 Synchronous phase:
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Benchmarks More compression using focusing

Focused semantics

Focused execution: alternation of two phases
1 Asynchronous phase: When: ∃ output process.

What: Only output actions are available.
2 Synchronous phase: When: all processes start with an input or !.

What: Choose one input process (or replicate one !): its is now
under focus. Force to perform all its inputs until it reveals an
asynchronous action.
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Benchmarks More compression using focusing

Results (work in progress)

Even more effective compression handling REPLICATION and nested
parallel compositions for determinate processes.

if A tr−→ A1 and A tr−→ A2 then A1 = A2.

Proof of completeness following the informal analogy and:

I Strictly better: does the same for simple processes.
I Very modular: can be applied to any π-calculus-like.
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