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Secure?

Extremely complex setting
▶ unsecure network
▶ active attacker
▶ parties running concurrently

Formal methods
▶ mathematical & exhaustive analysis
▶ formal guarantees
▶ automated & mechanised
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Symbolic Model
Cryptographic primitives
▶ assumed perfect
▶ primitives modelled as function symbols & equational theory
▶ e.g. , 7−→ enc(·, ·), dec(·, ·) & dec(enc(m, k), k) = m

Security protocols
▶ in a process algebra
▶ each party 7−→ process

7−→ P = in(x).
new Y.
out(enc((x, Y ), k))

Attacker
▶ = network (worst case scenario)
▶ eavesdrop: he learns all protocol outputs
▶ injections: he chooses all protocol inputs

Benefit: high level of automation !
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Symbolic Model
Big Picture

Protocol’s specification
X

X, Y

Security goal
e.g. cannot steal

Protocol’s model
P =

P = ...

in(x).
new Y.
out(enc((x, Y ), k))

Unreachability of bad states
e.g. States( knows k)

Reachability in a
transition system

?

∞ # sessions

∞ ’s
choices

Undecidable

≈

Undecidable
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Symbolic Model
Big Picture

Protocol’s specification
X

X, Y

Privacy goal
e.g. cannot track

Protocol’s model
P =

P = ...

in(x).
new Y.
out(enc((x, Y ), k))

≈ between scenarios
e.g. , ≈ ,

≈ between
transition systems

?

∞ # sessions

∞ ’s
choices
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≈
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Two Approaches for Verifying ≈ Automatically

Decision for < ∞ sessions

bounded # sessions

< ∞
branching

▶ bound the number of sessions
▶ symbolic semantics
⇝ finite description of

▶ exhaustive exploration of symbolic
executions

▶ Tools: Apte, Akiss, Spec

Semi-decision for ∞ sessions

“Real” attack

“False” attack

▶ over-approximations of &
semantics

▶ strong form of ≈
(i.e. diff-equivalence)

▶ Tools: ProVerif, Tamarin, Maude-NPA
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Limitation of Decision Procedures

Decision for < ∞ sessions

bounded # sessions

< ∞
branching

▶ bound the number of sessions
▶ symbolic semantics ⇝ finite

description of

▶ exhaustive exploration of symbolic
executions

▶ Tools: Apte, Akiss, Spec

Contributions

▶ Partial Order Reduction techniques
▶ adequate for security & ≈
▶ integration (proof & implem)

7→ POST’14 & CONCUR’15

▶ States Space Explosion (concurrency)

▶ ⇝ scales very badly
PA: 1 sess. 7→ 1sec. vs. 3 sess. 7→ >2days

exhaustive exploration
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Limitation of Semi-decision Procedures

Contributions

▶ Privacy via Sufficient Conditions
▶ 2 conditions ⇒ unlinkability & ano.
▶ automatic verification (our tool UKano)
▶ new proofs/attacks on real-life protocols

7→ S&P’16

▶ Serious Precision Issue (privacy)
▶ ⇝ systematic false attacks (unlinkability)

e.g. e-Passport, RFID protocols, …

Semi-decision for ∞ sessions

“Real” attack

“False” attack

▶ over-approximations of &
semantics

▶ strong form of ≈
(i.e. diff-equivalence)

▶ Tools: ProVerif, Tamarin,
Maude-NPA

strong form of ≈
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Introduction

I Model

II Partial Order Reduction

III Privacy via Sufficient Conditions

IV Conclusion



Applied π-Calculus
Model of messages: Term algebra
▶ Function symbols enc(·, ·), dec(·, ·)
▶ Equational theory =E dec(enc(x, y), y) =E x

Model of protocols: Process calculus
▶ Process: P, Q := 0 null

| in(c, x).P input
| out(c, m).P output
| if Test then P else Q conditional
| P | Q parallel
| ! P replication
| new X.P creation of name

▶ Frame (ϕ): the set of messages revealed to ( ’s knowledge)

ϕ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

, w2 7→ k}

▶ Configuration: A = (P; ϕ)
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Applied-π - Semantics
▶ Recipes: terms built using handles

e.g. R = dec(w1, w2)
Rϕ =E m

for ϕ = {w1 7→ enc(m, k), w2 7→ k}

“How builds messages from its knowledge”

▶ Protocol’s output:

({out(c, u).P} ∪ P; ϕ) out(c,w)−−−−−→ ({P} ∪ P; ϕ ∪ {w 7→ u}) if w fresh

u

▶ Protocol’s input:

({in(c, x).P} ∪ P; ϕ) in(c,R)−−−−→ ({P{x 7→ Rϕ}} ∪ P ; ϕ)

RΦ▶ + expected rules for conditional (modulo =E) & others

⇝ controls all the network
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Applied-π - Trace Equivalence

Static Equivalence (intuitively)
Φ ∼ Ψ when
▶ dom(Φ) = dom(Ψ) and
▶ for all tests, it holds on Φ ⇐⇒ it holds on Ψ (modulo =E)

Trace Equivalence
A ≈ B: for any A

t−→ A′ there exists B
t−→ B′ such that Φ(A′) ∼ Φ(B′)

(and the converse).
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Trace Equivalence: Example

Key k

Key k′

0
enc(0, k)

0
enc(0, k′)

k′ = k ⇐⇒ =
= ⇐⇒

P | P ̸≈ P | P
P = in(c, x).out(c, enc(x, k))

P = in(c, x).out(c, enc(x, k′))

(P |P ; ∅)
in(c,0).out(c,w1).in(c,0).out(c,w2)

−−−−−−−−−−−−−−−−−−−−−−→ (∅; {w1 7→ enc(0, k), w2 7→ enc(0, k)})
̸∼

(P |P ; ∅)
in(c,0).out(c,w1).in(c,0).out(c,w2)

−−−−−−−−−−−−−−−−−−−−−−→ (∅; {w1 7→ enc(0, k), w2 7→ enc(0, k′)})
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States Space Explosion Problem

|

in(c,
M1)

out(c, w1) in(c, M2) out(c, w2)

in(c, M
2 )

out(c, w2) in(c, M1) out(c, w1)

in(c, M
1)

in(c, M1)
in(c, M2)in(c, M

2)

in(c, M2) out(c, w1) out(c, w2)

in(c, M2) out(c, w2) out(c, w1)

in(c, M1) out(c, w1) out(c, w2)

in(c, M1) out(c, w2) out(c, w1)

Example: Private Authentication protocol 2 parties, 4 actions

Verification of anonymity: (with APTE)
▶ 1 session 7→ 1 second
▶ 2 sessions 7→ 1 hour
▶ 3 sessions 7→ >2 days
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1st Type of Redundancies & Compression

out(c1, m1) | out(c2, m2)
out(c1, w1).out(c2, w2)

out(c2, w2).out(c1, w1)
=

in(c1, x1) | out(c2, m2)
in(c1, M1).out(c2, w2)

out(c2, w2).in(c1, M1)
⊆

M1 = w2
M1 = dec(w2, 0)

M1 = 0

Goal: do not explore states + generic class

Compressed semantics −→c

▶ exploration strategy based on nature of available actions indep. from data
▶ actions are executed in a row⇝ blocks (big steps)
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2nd Type of Redundancies & Reduction

in(c1, x1).out(c1, m1) | in(c2, x2).out(c2, m2)

IOc2 (M2, w2).IOc1 (M1, w1)

IOc1 (M1, w1).IOc2 (M2, w2)

̸=⊆, ̸=⊇

M1 = 0
M1 = w2

M2 = w1

M2 = 0

Goal: do not explore twice states in the area + generic class

Reduced semantics −→r

▶ refines further −→c by analyzing data
▶ exploration strategy relying on data dependencies “M1 needs w2”: M1⋉w2
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Soundness & Completeness

Reachability: soundness & completeness of −→r / −→c w.r.t. −→
same states are reachable

Equivalence is more involved and requires additional assumption

Action-determinacy
A is action-deterministic if: two reachable actions in parallel must be ̸=

Attacker knows to/from whom he is sending/receiving messages.

Theorem: ≈r=≈c=≈
Let A and B be two action-deterministic configurations.

A ≈r B ⇐⇒ A ≈c B ⇐⇒ A ≈ B
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Integration, Implementation & Practical Impact

▶ Integration in symbolic & constraints solving setting
▶ Proof of soundness of integration in APTE
▶ Fully implemented in the distributed version of APTE github.com/APTE

Selection of benchmarks:

10-3

10-2

10-1

100

101

102

103

104

 5  10  15  20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

10-3

10-2

10-1

100

101

102

103

104

 3  6  9  12
se

co
nd

s

nb. of parallel processes

reference
compression

reduction

Toy example Wide Mouthed Frog

▶ New scenarios & protocols can be analysed
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Unlinkability
[ISO/IEC 15408] Ensuring that a user may make multiple uses of a service or

resource without others being able to link these uses together.

≈
Id 1Id 1 Id 2

2 sessions
1 user

Id 3 Id 4 Id 5

∞

∞

Id 2Id 3Id 4Id 5

∞

∞∞∞∞

M =

!new Id. !new Sess. P !new Id. new Sess. P

= S

≈?

never diff-equivalent
(false attacks)

Strong Unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]
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Contributions

Reachability property

≈ between simpler systems

with precise verification Unlinkability & Anonymity

Theory
▶ 2 conditions implying unlinkability and anonymity
▶ for a large class of 2-party protocols for any crypto. primitives
▶ each condition is fundamentally simpler & captures key ingredient

Practice
▶ our conditions can be checked automatically using encodings
▶ we provide tool support for that: UKano

Applications
▶ new proofs & attacks on real-life protocols e.g. e-passport
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Class of Protocols

2-party Protocols

▶ Intuitively, a party P is a process of the form:

P ::= 0 | in(c, x). if Test then out(c, u).P else Pelse

Pelse ::= 0 | out(c′, u′)

▶ Two parties: I (initiator) & R (responder)

Example:
▶ R = P = in(c, x).out(c, enc(x, k))

▶ I = P = out(c, X).in(c, z). if dec(z, k) = X then out(c, open)

▶ M = !new k. !new X.(I | R)
▶ S = !new k. new X.(I | R)
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1st Class: Leaks through Relations over Messages

Key k

Key k′

R[k, sess1]

R[k′, sess2]

0

enc(0, k)

0

enc(0, k′)

k′ = k ⇐⇒ =
= ⇐⇒

... ∃ relation over messages that leaks info about identities.
For some behaviour...
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1st Class: Leaks through Relations over Messages

Problem
For some ’s behaviours, relations over messages leak info about involved
agents.

Ideas of our condition preventing such attacks
▶ Avoid rel. R: R holds ⇐⇒ specific mapping [sessions 7→ identities]

e.g. w1 =E w2 ⇐⇒ [sess1 7→ id, sess2 7→ id]
▶ Introduce Ideal(Φ): frame one obtains for [session 7→ fresh identity]

1st Condition: Frame Opacity
For all M t−→ (P; Φ), we have that Φ ∼ Ideal(Φ).

Example: Φ = {w1 7→ enc(0, k), w2 7→ enc(0, k)}
Ideal(Φ) = {w 7→ enc(0, k1), w2 7→ enc(0, k2)}
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2nd Class: Leaks through Conditionals’ Outcomes

So, let’s introduce two modifications ...

Key k Key k
new Y

new X

enc(⟨challenge, X⟩, k)

enc(⟨X, Y ⟩, k)

Key k′
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2nd Class: Leaks through Conditionals’ Outcomes
Attack: tracks

Key k Key k
new Y

new X

Key k′

enc(⟨challenge, X⟩, k) enc(⟨challenge, X⟩, k)

enc(⟨challenge, X⟩, k)

enc(⟨X, Y ⟩, k)

Abort

Abort̸= ⇐⇒
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2nd Class: Leaks through Conditionals’ Outcomes

Problem
For some ’s behaviours, conditionals’ outcomes leak info about involved
agents.

Ideas of our condition preventing such attacks
▶ Expected: does not interfere ⇒ conditionals 3

▶ Problems when: did interfere ⇒ conditionals 3/5 binary info about agents

▶ Require: conditional 3 ⇐⇒ did not interfere

2nd Condition: Well-Authentication
For any execution of M, if an agent I(id, sess) successfully passes a test,
he must be interacting honestly with some unique R(id, sess′).
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Main Result

Theorem
For any protocol in our class, for any term algebra:

Frame Opacity
&

Well-Authentication

}
⇒

{ Unlinkability
&

Anonymity

Idea of the proof M t−→ (P; Φ) ⇝ S t−→ (Q; Ψ) with Φ ∼ Ψ
▶ Seen as exchanges between threads: [id,session]
▶ Rename ids to pairwise distinct ids (keeping “connected” threads together)

Goal: (i) still executable & (ii) frames ∼

(i) “Have honest interactions” stable by our renaming + Well-Authentication
(ii) Stability of Ideal(·) by renamings + Frame Opacity
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Practical Impact
Mechanisation & UKano

Benefit: each condition is fundamentally simpler
▶ Unlinkability: ∀.∃. ∼
▶ Frame Opacity: ∀. ∼
▶ Well-Authentication: ∀.Reach

Both conditions can be automatically verified using ProVerif & encodings
▶ Well-Authentication:

• just reachability properties

▶ Frame Opacity:
• checkable with good precision via diff-equivalence

Tool: UKano (built on top of ProVerif)

Automatically checks our conditions
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Practical Impact
Case Studies: verification of unlinkability (UK)

RFID protocols FO WA UK
Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) − 5

Fixed LAK 3 3 safe

[*] FO WA UK
DAA sign 3 3 safe
DAA join 3 3 safe
abcdh (irma) 3 3 safe

e-passport FO WA UK
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (fallible dec) − 5

PACE (missing test) − 5

PACE − 5

PACE with tags 3 3 safe

▶ Our conditions are tight
▶ Established new proofs and found new attacks using UKano
▶ Was impossible before: systematic false attacks except for [*]

Lucca Hirschi PhD Defense: Automated Verification of Privacy in Security Protocols
33/36



Practical Impact
Case Studies: verification of unlinkability (UK)

RFID protocols FO WA UK
Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) − 5

Fixed LAK 3 3 safe

[*] FO WA UK
DAA sign 3 3 safe
DAA join 3 3 safe
abcdh (irma) 3 3 safe

e-passport FO WA UK
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (fallible dec) − 5

PACE (missing test) − 5

PACE − 5

PACE with tags 3 3 safe

▶ Our conditions are tight
▶ Established new proofs and found new attacks using UKano
▶ Was impossible before: systematic false attacks except for [*]

Lucca Hirschi PhD Defense: Automated Verification of Privacy in Security Protocols
33/36



Introduction

I Model

II Partial Order Reduction

III Privacy via Sufficient Conditions

IV Conclusion



Summary

Decision for < ∞ sessions Semi-decision for ∞ sessions

Verification of ≈ in
symbolic model

Verification of privacy
for real-life protocols

Issue: scales too badly Issue: not precise enough

Implem + Benchmarks

POR Techniques

Tool + New Proofs/Attacks

Privacy via Sub-Conditions
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Future Work
Decision for < ∞ sessions Semi-decision for ∞ sessions

Verification of ≈ in
symbolic model

Verification of privacy
for real-life protocols

Issue: scales too badly Issue: not precise enough

POR Techniques Privacy via Sub-Conditions

▶ Drop action-determinacy assumption
▶ POR for backward search (e.g. Tamarin)

▶ Extend the class: stateful & > 2 parties
▶ Verification of FO via reachability:

UK & ANO. 7→ pure reachability

Adapt for bounded case + benefit from POR

Generic approach: Exploit in broader contexts
& Infer guidelines for PETs

Ready to guide analysis/design/standardisation ?
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Compressed Strategy

Compressed semantics −→c

▶ Polarities: Negative: out().P, (P1 | P2), 0 & Positive: in().P
▶ Negative: explored greedily, in a given order e.g. c1 < c2

▶ Positive: explored only when ̸ ∃ Negative,
▶ chooses one and put it under focus
▶ focus is released when becomes begative

Replication: !ac,nP is positive but releases the focus.
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Reduced Strategy

We assume an arbitrary order ≺ over blocks priority order.

Reduced Semantics −→r

−→r explores a block b after a trace t only when:
▶ −→c explores t.b and
▶ t⋉b.

Informally, t⋉b means:
there is no way to swap b towards the beginning of t before a block
b0 ≻ b (even by modifying recipes)

Theorem: ≈r=≈
Let A and B be two action-deterministic configurations.

A ≈ B if, and, only if, A ≈r B.
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POR & Trace Equivalence

What about trace equivalence (≈c) ?

e.g., (in(c1, x) | out(c2, m)) ̸≈ (out(c2, m).in(c1, x))

▶ ⇝ same swaps are possible (≡ same sequential dependencies)
▶ Lemma: A, B action-det, A ≈ B ⇒ same sequential dependencies
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