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Motivation
The Gyrokinetic Semi-Lagrangian (GYSELA) code:

Tore-Supra = circular plasma WEST = D-shaped plasma

@ Gyrokinetic model: 5D kinetic equation on the charged particules
distribution

@ 5 Dimensions: 2 in velocity space, 3 in configuration space

o Simplified geometry: concentric toroidal magnetic flux surfaces with
circular cross-sections

@ Based on the Semi-Lagrangian scheme
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Motivation

NumKin 2014

Current representation of the
poloidal plane :

@ Annular geometry
o Polar mesh (r,0)
Some limitations of this choice :

e Geometric (and numeric)
singular point at origin of mesh

@ Unrepresented area and very
costly to minimize that area

@ Impossible to represent complex
geometries
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Multi-patch: the general idea

Our original mesh:
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Multi-patch: the general idea
New representation of the poloidal plane:
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Multi-patch: the general idea

Specificities of the new geometry definition :

e Additional patch(es) with no
singular point at origin

@ Each patch defined as a

% ‘\\\ transformation (or mapping)
/5 X from uniform cartesian grid to
HH S new mesh
|‘|‘|‘-:‘i!==’:’:".;,;,"',"""' @ Mappings defined with NURBS
\\\“\x“:*’:sﬁﬁ":’:f';/"'l (Non-Uniform Rational
\\\§$$E="',lll/ B-Splines) = complex
\$§E geometries
—

@ Coupling between patches
defined by boundary condition
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The 5 patches configuration

External crown divided into 4 patches and the connectivity is defined as a
patch-edge to patch-edge association (creation tool: CAID)

Advantages
o Flexibility defining complex
geometries

@ Each patch can be treated
separately

@ No geometrical singularity
New challenges
@ What is the best BC?

@ How to treat particules which
characteristics’ origin are on
another patch?

@ 4 new numerical singularities
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Multi-patch: Some results

Results always showed instabilities near singular points. What we've tried

to avoid them:

@ Boundary conditions tested: strictly
interdependent gradients and mean
gradients between connecting patches

o @ Over-lapping: Impossible with interior

patch and useless for others

@ Squared internal mapping

Problem: Impossible to avoid singular points from mapping from a square

to a circle
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The hexagonal mesh

Idea: Use a new mapping: hexagon — circle.
We define a tiling of triangles of a hexagon as our mesh for a 2D poloidal
plane.

Some advantages:

@ No singular points
I3 o (Hopefully) no need of multiple
patches for the core of the
ro r tokamak
o Twelve-fold symmetry = more

efficient programming
o Easy transformation from

cartesian to hexagonal
coordinates

o Easy mapping to a disk
=> field aligned physical mesh
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The Backward Semi-Lagrangian Method

We consider the advection equation

g’:+a(x, t)-Vyf =0 (1)
The scheme:

o Fixed grid on phase-space
@ Method of characteristics : ODE — origin of characteristics
Density f is conserved along the characteristics

e M) = (X (b Xy tagn)) (2)
Interpolate on the origin using known values of previous step at mesh

points (initial distribution f known).

-

7 :

X

¢ N+l tn
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The guiding center model: general algorithm

We consider a reduced model of the gyrokinetic model — a simplified 2D
Vlasov equation coupled with Poisson—:

of
{m+EL'VXf:0 (3)
~A¢ =

The global scheme:

e Known: initial distribution function f° and electric field E°

@ Solve (Leap frog, RK4, ...) ODE for origin of characteristics X
@ For every time step :

» Solve poisson equation = E™!
» Interpolate distribution in X" = f”Jrl

Two different approaches for interpolation step:
Spline and Hermite Finite Elements interpolations.
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B(asis)-Splines basis*
B-Splines of degree d are defined by the recursion formula:

Bt (z) = 2= pi(y +—xj+1—x B¢\ (z 4
@) = B B ()

Some important properties about B-splines:
@ Piecewise polynomials of degree d = smoothness

o Compact support = sparse matrix system
o Partition of unity 3°; Bj(z) =1, Vo = conservation laws

B-spline of degree 3

B-spline of degree 5

Bspline of degree 1
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Box-splines and quasi-interpolation

Box-Splines:

Generalization of B-Splines

Depend on the vectors that define the mesh

Easy to exploit symmetry of the domain

A box-spline B= : R - R
associated to the matrix
==[m,m2,...,mn] is
defined, when N = d by

_ 1
 |det=|

B=(x) x=(z)

else, by recursion

BEun(l") = /01 B=(z — tn)
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Box-splines and quasi-interpolation

Box-Spline’s properties:
@ Does not depend on the order of 7; in =
o has the support S = =[0,1)¢
@ is positive on support §
°

is symmetric

Quasi-interpolation:
@ Distribution function known at mesh points
o Of order L if perfect reconstruction of a polynomial of degree L — 1
o No exact interpolation at mesh points f,(z;) = f(z;) + O(||Az]|%)

fulz) =Y ¢;B=(z — ) (5)
J
= Additional freedom to choose the coefficients c;
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Computing the spline coefficients using pre-filters

Idea: Coefficients obtained by discrete filtering of sample values f(x;)

c:p*fZZf(l“i)Pi (6)

prefilters: Obtained by solving a linear system of L equations
(quasi-interpolation conditions)

xample wit = 2: 4"’
) ° VF\)lle use l:nformztion on two <§h§i§h>
- RIS
hexagons from point h’&-"%’ﬂhg
@ Points at same radius have h’hﬁ%ﬂhg
same weight h’h‘,"q"%’
e Error: O(|| Az ||?) 4%5?”
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Poisson solver : FEM based solver

In cartesian coordinates:

“ Ay = f(t,2) in Q ta
o(t, z) = ga(t, ) on Ty
quf)(t, I) ‘n = gn(t, :1:) on I'y Iy

Which we can write in general coordinates such as:

Vi JHIY Vb)) = F(t,m) (7)
And its weak formulation

= [ @ T IV | [dn = [ Fene | T) [y (8)
Q Q

with 1) test function, that we will define as a box-spline
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Poisson solver : Discretization

We discretize the solution ¢ and the test function 1 using the splines
(Box- or B-splines) denoted B; as follows

o"(x) = Z ¢i Bi(x), p'(x) = ZPz’Bz‘(X)
" (x) = Bj(x)
We obtain

> o (/ 9 Bi0y B; +/ ayBiayBj) = _Zpi/ B:By, )
7 Q Q ok U9

= SELALIB’s general coordinate elliptic solver (developed by A. Back) or
Jorek (Django version, developed by A. Ratnani) solver
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Circular advection test case

In order to compare the two families’ performances:
Oif + yOrf — x0yf =0 (10)

Taking a gaussian pulse as an initial distribution function

Fom((EFE ) o

Constant CFL ( CFL=2) ,0, =0y = 2%/5 , hexagonal radius : 8.
Null Dirichlet boundary condition.
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Hexagonal mesh: first results

model Points a dt
On mesh points | 17101 0.
Constant advec. | 17101 | 0.05
Circular advec. | 17101 1.

loops Lo error

0.025 1 4.99 x 107°
0.025 | 81 |4.70x 1077
0.025 | 81 |4.33x107°

Box-splines (deg = 2) for circular advection:

Cells dt loops | Ly error | Lo, error | points/u-seconds
40 0.05 60 3.53E-2 | T7.7T4E-2 0.162
80 0.025 120 | 1.88E-3 | 4.66E-3 0.162
160 | 0.0125 | 240 | 6.77E-5 | 1.35E-4 0.162
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Comparing results with a FE method

As a project for the CEMRACS 2014, we decided to compare results with
a FE scheme (joined work with Charles Prouveur, Michel Mehrenberger,
Eric Sonnedrucker)
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Handling boundary conditions : Main problem

Non interpolatory splines — Problems with Dirichlet boundary conditionsJ

We can differentiate three different
types of elements:

@ Interior elements

@ Exterior elements

@ Boundary elements
New questions arise:

@ How to derive the equation such
that BC intervene?

@ Which elements should be
considered as interior/exterior?

AVAVAVAVA
/NINNLN
(NN
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Dirichlet boundary conditions : Nitsche's method

Using Nitsche's method, we derive the variational form of the Poisson
equation which yields?:

/va-qudQ—/rdw(qu'n)drd—/rdgb(Vq/)'n)drd+a/rd1/1¢dl’
:/qufd9+/rn¢gndr—/rdgd(w-n)dwa/rdwgddr

= standard penalty method + additional integrals along I'.

Solutions ¢ respect the boundary condition problem under some
conditions of the stabilization parameter «

!Anand Embar, John Dolbow, and Isaac Harari. International Journal for
Numerical Methods in Engineering 83.7 (2010), pp. 877-898. 1SsN: 1097-0207.
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Nitsche's method: coercivity study and the o parameter

We discretize the solution ¢ and the test function 1 using splines like
before and we study rhs()", ¢") at (", "):

rhs(b", o) = / Vol - VphdQ — 2 / SV n)drg + o / (M2dr
Q rd rd

Using the definition of the Ly-norm : || ¢ ||= (o 1/12)1/2

hs(v",0") =) Vo |2 =2 [ oM(Tu" - m)dla+ o] |

We define C such that || V¢ -n |2, < C || V4" ||? and using Young's
inequality we find that coercivity is ensured when

a>1
C
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Conclusion and perspectives

Multi-patch:

@ Schwartz iterative method: stabilize singular points

May still be useful for more complex geometries
Implementation in the SELALIB library

Hexagonal mesh:

Results more encouraging than multi-patch results

No numeric problems due to the mesh

Efficiency to be compared

More complex models to be tested

Results have to be tested on a disk (and not a hexagon)
Boundary conditions to be defined properly

Box-MOMS (Maximal order minimal support box splines)
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