
Abstrat Congruene Closure �Leo BahmairDepartment of Computer Siene, State University of New York, Stony Brook,NY 11794-4400, U.S.A. (leo�s.sunysb.edu)Ashish TiwariSRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, U.S.A.(tiwari�sl.sri.om)Laurent VigneronLORIA { Universit�e Nany 2, Campus Sienti�que, B.P. 239, 54506Vand�uvre-l�es-Nany Cedex, Frane. (vigneron�loria.fr)Abstrat. We desribe the onept of an abstrat ongruene losure and provideequational inferene rules for its onstrution. The length of any maximal derivationusing these inferene rules for onstruting an abstrat ongruene losure is at mostquadrati in the input size. The framework is used to desribe the logial aspetsof some well-known algorithms for ongruene losure. It is also used to obtainan eÆient implementation of ongruene losure. We present experimental resultsthat illustrate the relative di�erenes in performane of the di�erent algorithms. Thenotion is extended to handle assoiative and ommutative funtion symbols, thusproviding the onept of an assoiative-ommutative ongruene losure. Congruenelosure (modulo assoiativity and ommutativity) an be used to onstrut groundonvergent rewrite systems orresponding to a set of ground equations (ontainingAC symbols).Keywords: Term Rewriting, Congruene Closure, Assoiative-Commutative The-ories 1. IntrodutionTerm rewriting systems provide a simple and very general mehanismfor omputing with equations. The Knuth-Bendix ompletion methodand its extensions to equational term rewriting systems an be usedon a variety of problems. However, ompletion based methods yieldsemi-deision proedures usually, and in the few ases where they pro-vide deision proedures, the time omplexity is onsiderably worsethan ertain other eÆient algorithms for solving the same problem.On the other hand, the speialized deision algorithms for partiularproblems are not very useful when onsidered for integration withgeneral-purpose theorem proving systems. Moreover, the logial as-� The researh desribed in this paper was supported in part by the NationalSiene Foundation under grant CCR-9902031. Some of the results desribed in thispaper also appeared in [5, 4℄. 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 L. Bahmair, A. Tiwari, and L. Vigneronpets inherent in the problem and the algorithm seem to get lost indesriptions of spei� algorithms.We are interested in developing eÆient proedures for a large lassof deidable problems using standard and general tehniques from the-orem proving so as to bridge the gap alluded to above. We �rst onsiderequational theories indued by systems of ground equations. EÆientalgorithms for omputing ongruene losure an be used to deideif a ground equation is an equational onsequene of a set of groundequations. All algorithms for ongruene losure omputation rely onthe use of ertain data-strutures, in the proess obsuring any inherentlogial aspets.In general, a system of ground equations an be ompleted intoa onvergent ground term rewriting system using a total terminationordering. However, this proess an in the worst ase take exponen-tial time unless the rules are proessed using a ertain strategy [25℄.Even under the spei� strategy, the resulting ompletion proedureis quadrati and the O(n log(n)) eÆieny of ongruene losure algo-rithms is not attained. There are known tehniques [29℄ to onstrutground onvergent systems that use graph based ongruene losurealgorithms.We attempt to apture the essene of some of the eÆient ongruenelosure algorithms using standard tehniques from term rewriting. Wedo so by introduing symbols and extending the signature to abstratlyrepresent sharing that is inherent in the use of term direted ayligraph data strutures. We thus de�ne a notion of abstrat ongruenelosure and provide transition rules that an be used to onstrutsuh abstrat ongruene losures. A whole lass of ongruene lo-sure algorithms an be obtained by hoosing suitable strategies (andimplementations) for the abstrat transition rules. The omplexity ofany suh ongruene losure algorithm is diretly related to the lengthof derivation (using these transition rules) required to ompute an ab-strat ongruene losure with the hosen strategy. We give bounds onthe length of arbitrary maximal derivations and show its relationshipwith the hoie of ordering used for ompletion.We desribe some of the spei� well-known ongruene losure algo-rithms in the framework of abstrat ongruene losure, and show thatthe abstrat framework suitably aptures the soures of eÆieny insome of these algorithms. The desription separates the logial aspetsinherent in these algorithms from implementation details.The onept of an abstrat ongruene losure is useful in more thanone way. Many other algorithms, like those for syntati uni�ation andrigid E-uni�ation, that rely either on ongruene losure omputationor on the use of term dag representation for eÆieny, also admit
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Abstrat Congruene Closure 3simpler and more abstrat desriptions using an abstrat ongruenelosure [6, 5℄.Furthermore, if ertain funtion symbols in the signature are as-sumed to be assoiative and ommutative, we an introdue standardtehniques from rewriting modulo an equational theory to handle it.Thus, we obtain a notion of ongruene losure modulo assoiativ-ity and ommutativity. As an additional appliation, we onsider theproblem of onstruting ground onvergent systems (in the originalsignature) for a set of ground equations. We show how to eliminatethe new onstants introdued earlier to transform all equations bak tothe original signature while preserving some of the nie properties ofthe system over the extended signature, thus generalizing the resultsin [29℄.1.1. PreliminariesLet � be a set, alled a signature, with an assoiated arity funtion� : �!2IN and let V be a disjoint (denumerable) set. We de�ne T (�;V)as the smallest set ontaining V and suh that f(t1; : : : ; tn) 2 T (�;V)whenever f 2 �; n 2 �(f) and t1; : : : ; tn 2 T (�;V). The elements of thesets �, V and T (�;V) are respetively alled funtion symbols, variablesand terms (over � and V). Elements  in � for whih �() = f0g arealled onstants. By T (�) we denote the set T (�; ;) of all variable-free, or ground terms. The symbols s; t; u; : : : are used to denote terms;f; g; : : :, funtion symbols; and x; y; z; : : :, variables. We write t[s℄ toindiate that a term t ontains s as a subterm and (ambiguously) denoteby t[u℄ the result of replaing a partiular ourrene of s by u.An equation is a pair of terms, written s � t. The replaementrelation !Eg indued by a set of equations E is de�ned by: u !Eg vif, and only if, u = u[l℄ ontains l as a subterm and v = u[r℄ is obtainedby replaing l by r in u, where l � r is in E. The rewrite relation !Eindued by a set of equations E is de�ned by: u !E v if, and only if,u = u[l�℄, v = u[r�℄, l � r is in E, and � is some substitution.If! is a binary relation, then denotes its inverse,$ its symmetrilosure,!+ its transitive losure and!� its reexive-transitive losure.Thus, $�Eg denotes the ongruene relation1 indued by E. We willmostly be interested in sets E of ground equations whene the dis-tintion between rewrite relation and replaement relation disappears.The equational theory of E is de�ned as the relation $�E . Equationsare often alled rewrite rules, and a set E a rewrite system, if one1 A ongruene relation is a reexive, symmetri and transitive relation on termsthat is also a replaement relation.
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4 L. Bahmair, A. Tiwari, and L. Vigneronis interested partiularly in the rewrite relation !�E rather than theequational theory $�E .A term t is irreduible, or in normal form, with respet to a rewritesystem R, if there is no term u, suh that t!R u. We write s!!R t toindiate that t is an R-normal form of s.A rewrite system R is said to be (ground) onuent if for everypair s; s0 of (ground) terms, if there exists a (ground) term t suh thats  �R t !�R s0, then there exists a (ground) term t0 suh that s !�Rt0  �R s0. Thus, if R is (ground) onuent, then every (ground) termt has at most one normal form. A rewrite system R is terminating ifthere exists no in�nite redution sequene s0 !R s1 !R s2 � � � of terms.Clearly, if R is terminating, then every term t has at least one normalform. Rewrite systems that are (ground) onuent and terminating arealled (ground) onvergent.A rewrite system R is left-redued if every left-hand side term (ofany rule in R) is irreduible by all other rules in R. A rewrite systemR is right-redued if every right-hand side term (of any rule in R) is inR-normal form. A rewrite system that is both left-redued and right-redued is said to be fully redued.2. Abstrat Congruene ClosureWe �rst desribe the form of terms and equations that will be usedin the desription of an abstrat ongruene losure. De�nitions thatintrodue similar onepts also appear in [16, 17, 18, 27℄.DEFINITION 1. Let � be a signature and K be a set of onstantsdisjoint from �. A D-rule (with respet to � and K) is a rewrite ruleof the form f(1; : : : ; k) ! where f 2 � is a k-ary funtion symbol and 1; : : : ; k;  are onstantsin set K.A C-rule (with respet to K) is a rule  ! d, where  and d areonstants in K.For example, if �0 = fa; b; fg, and E0 = fa � b; ffa � fbg2 thenD0 = fa! 0; b! 1; f0 ! 2; f2 ! 3; f1 ! 4gis a set of D-rules over �0 and K0 = f0; 1; 2; 3; 4g. Using theseD-rules we an simplify the original equations in E0. For example, the2 When writing a term, we remove parentheses wherever possible for larity.
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Abstrat Congruene Closure 5term ffa an be rewritten to 3 as ffa !D0 ff0 !D0 f2 !D0 3.Original equations in E0 an thus be simpli�ed using D0 to give C0 =f0 � 1; 3 � 4g. The set D0 [ C0 may be viewed as an alternativerepresentation of E0 over an extended signature. The equational theorypresented by D0[C0 is a onservative extension of the theory E0. Thisreformulation of the equations E0 in terms of an extended signature is(impliitly) present in all ongruene losure algorithms, see Setion 3.The onstants in the set K an be thought of as names for equiv-alene lasses of terms. A D-rule f(1; : : : ; k) ! 0 indiates thata term with top funtion symbol f and arguments belonging to theequivalene lasses 1; : : : ; k itself belongs to the equivalene lass 0.In this sense, a set of D-rules an be thought of as de�ning a bottom-uptree automaton [10℄. Other interpretations for the onstants in K arepossible too, espeially in the ontext of term direted ayli graph(dag) representation, see Setion 3 for details.A onstant  in K is said to represent a term t in T (� [ K) (viathe rewrite system R) if t $�R . A term t is represented by R if it isrepresented by some onstant in K via R. For example, the onstant3 represents the term ffa via D0.DEFINITION 2 (Abstrat ongruene losure). Let � be a signatureand K be a set of onstants disjoint from �. A ground rewrite systemR = D [ C of D-rules and C-rules (with respet to � and K) is saidto be an (abstrat) ongruene losure if(i) eah onstant  2 K represents some term t 2 T (�) via R, and(ii) R is ground onvergent.If E is a set of ground equations over T (� [K) and in addition R issuh that(iii) for all terms s and t in T (�), s $�E t if, and only if, s !�RÆ  �R t,then R will be alled an (abstrat) ongruene losure for E.Condition (i) essentially states that K ontains no superuous on-stants; ondition (ii) ensures that equivalent terms have the samerepresentative (whih usually also implies that ongruene of terms anbe tested eÆiently); and ondition (iii) implies that R is a onservativeextension of the equational theory indued by E over T (�).The rewrite system R0 = D0 [ f0 ! 1; 3 ! 4g above is not aongruene losure for E0, as it is not ground onvergent. But we antransform R0 into a suitable rewrite system, using a ompletion-likeproess desribed in more detail below, to obtain a ongruene losureR1 = fa! 1; b! 1; f1 ! 4; f4 ! 4;0 ! 1; 2 ! 4; 3 ! 4g:
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6 L. Bahmair, A. Tiwari, and L. Vigneron2.1. Constrution of Abstrat Congruene ClosuresWe next present a general method for onstrution of an abstrat on-gruene losure. Our desription is fairly abstrat, in terms of transitionrules that manipulate triples (K;E;R), where K is the set of onstantsthat extend the original �xed signature �, E is the set of ground equa-tions (over �[K) yet to be proessed, and R is the set of C-rules andD-rules that have been derived so far. Triples represent states in theproess of onstruting a ongruene losure. Constrution starts froman initial state (;; E; ;), where E is a given set of ground equations.The transition rules an be derived from those for standard omple-tion as desribed in [3℄, with some di�erenes so that (i) appliationof the transition rules is guaranteed to terminate and (ii) a onvergentsystem is onstruted over an extended signature. The transition rulesdo not require a total redution ordering3 on terms in T (�), but simplyan ordering on T (�[U) (that is, terms in T (�) need not be omparablein this ordering) where U is an in�nite set disjoint from � from whihnew onstants K � U are hosen. In partiular, we assume �U is anyordering on the set U and de�ne � by:  � d if  �U d and t �  ift!  is a D-rule. For simpliity, we take U to be the set f0; 1; 2; : : :gand assume that i �U j if, and only if, i < j.A key transition rule introdues new onstants as names forsubterms.Extension: (K;E[t℄; R)(K [ fg; E[℄; R [ ft! g)where t!  is a D-rule, t is a term ourring in (some equation in) E,and  2 U �K.The following three rules are versions of the orresponding rules forstandard ompletion speialized to the ground ase.Simpli�ation: (K;E[t℄; R [ ft! g)(K;E[℄; R [ ft! g)where t ours in some equation in E. (It is fairly easy to see that byrepeated appliation of extension and simpli�ation, any equation inE an be redued to an equation that an be oriented by the ordering�.)Orientation: (K [ fg; E [ ft � g; R)(K [ fg; E;R [ ft! g)3 By an ordering we mean any irreexive and transitive relation on terms. Aredution ordering is an ordering that is also a well-founded replaement relation.An ordering � is total if for any two distint elements s and t, either s � t or t � s.
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Abstrat Congruene Closure 7if t � .Trivial equations may be deleted.Deletion: (K;E [ ft � tg; R)(K;E;R)In the ase of ompletion of ground equations, dedution steps anall be replaed by suitable simpli�ation steps, in partiular by ollapse.However, in order to guarantee termination, we formulate ollapse bytwo di�erent speialized transition rules. The usual side ondition inthe ollapse rule, whih refers to the enompassment ordering, an beonsiderably simpli�ed in our ase.Dedution: (K;E;R [ ft! ; t! dg)(K;E [ f � dg; R [ ft! dg)Collapse: (K;E;R [ fs[℄! 0; ! dg)(K;E;R [ fs[d℄! 0; ! dg)if  is a proper subterm of s.As in standard ompletion the simpli�ation of right-hand sides ofrules in R by other rules is optional and not neessary for orretness.Right-hand sides of rules in R are always onstants.Composition: (K;E;R [ ft! ; ! dg)(K;E;R [ ft! d; ! dg)Various known ongruene losure algorithms an be abstratly de-sribed using di�erent strategies over the above rules. All the abovetransition rules with the exeption of the omposition rule, onstitutethe mandatory set of transition rules.Example 1. Consider the set of equations E0 = fa � b; ffa � fbg.An abstrat ongruene losure for E0 an be derived from the initialstate (K0; E0; R0) = (;; E0; ;) as follows:i Constants Ki Equations Ei Rules Ri Transition0 ; E0 ;1 f0g f0 � b; ffa � fbg fa! 0g Ext2 f0g fffa � fbg fa! 0; b! 0g Ori3 f0g fff0 � f0g fa! 0; b! 0g Sim (twie)4 f0; 1g ff1 � f0g R3 [ ff0 ! 1g Ext5 f0; 1g ff1 � 1g R3 [ ff0 ! 1g Sim6 K5 fg R5 [ ff1 ! 1g OriThe rewrite system R6 is an abstrat ongruene losure for E0.
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8 L. Bahmair, A. Tiwari, and L. Vigneron2.2. CorretnessWe use the symbol ` to denote the one-step transformation relationon states indued by the above transformation rules. A derivation is asequene of states (K0; E0; R0) ` (K1; E1; R1) ` � � �.THEOREM 1 (Soundness). If (K;E;R) ` (K 0; E0; R0), then, for allterms s and t in T (�[K), we have s$�E0[R0 t if, and only if, s$�E[R t.Proof. For simpli�ation, orientation, deletion and omposition, thelaim follows from orretness result for the standard ompletion transi-tion rules [3℄. The laim is also easily veri�ed for the speialized ollapseand dedution rules.Now, suppose (K 0; E0; R0 = R[fu! g) is obtained from (K;E;R)using extension. For s; t 2 T (� [ K), if s $�E[R t, then learlys $�E0[R0 t. Conversely, if s $�E0[R0 t, then, s� $�E0�[R0� t�, where� is (homomorphi extension of) the mapping  7! u. But s� = s andt� = t as  62 K. Furthermore, E0� = E, and R0� = R [ fu ! ug.Therefore, s = s� $�E[R t� = t.LEMMA 1. Let K0 be a �nite set of onstants (disjoint from �), E0a �nite set of equations (over � [ K) and R0 a �nite set of D-rulesand C-rules suh that for every C-rule  ! d in R0 we have  �Ud. Then eah derivation starting from the state (K0; E0; R0) is �nite.Furthermore, if (K0; E0; R0) `� (Km; Em; Rm), then the rewrite systemRm is terminating.Proof.We �rst de�ne the measure of a state (K;E;R) to be the num-ber of ourrenes of symbols from � in E. Two states are omparedby omparing their measures using the usual \greater-than" orderingon natural numbers. It an be easily veri�ed that eah transformationrule either redues this measure, or leaves it unhanged. Spei�ally,extension always redues this measure.Now, onsider a derivation starting from the state (K0; E0; R0). Anysuh derivation an be written as(K0; E0; R0) `� (Kn; En; Rn) ` (Kn+1; En+1; Rn+1) ` � � �where the derivation (Kn; En; Rn) ` (Kn+1; En+1; Rn+1) ` � � � ontainsno appliations of extension, and hene the set Kn = Kn+1 = � � � is�nite. Therefore, the ordering �Kn (de�ned as the restrition of theordering �U on Kn) is well-founded.Next we prove that the derivation (Kn; En; Rn) ` (Kn+1; En+1;-Rn+1) ` � � � is �nite. Assign a weight w() to eah symbol  in Kn sothat w() > w(d) if, and only if,  �Kn d; and set w(f) = maxfw() : 2 Kng + 1, for eah f 2 �. Let � be the Knuth-Bendix ordering
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Abstrat Congruene Closure 9using these weights. De�ne a seondary measure of a state (K;E;R)as the set fffs; tgg : s � t 2 Eg [ fffsg; ftgg : s! t 2 Rg. Two statesare ompared by omparing their measures using a two-fold multisetextension4 of the ordering � on terms. It is straight forward to seethat appliation of any transition rule (exept extension) to a stateredues the seondary measure of the state. Moreover, every rule in Rjis reduing in the redution ordering�, and hene eah rewrite systemRj is terminating.The following lemma says that extension introdues no superuousonstants.LEMMA 2. Suppose (K;E;R) ` (K 0; E0; R0) and that for every  2 K,there exists a term s 2 T (�) suh that  $�E[R s. Then, for everyd 2 K 0, there exists a term t 2 T (�) suh that d$�E0[R0 t.Proof. If d 2 K 0 also belongs to the set K, then the laim is easilyproved using Theorem 1. Otherwise let d 2 K 0�K. The only non-trivialase is the ase when (K 0; E0; R0) is obtained using extension.Let f(1; : : : ; k) ! d be the rule introdued by extension. Sine1; : : : ; k 2 K, there exist terms s1; : : : ; sk 2 T (�) suh that si $�E[Ri and hene, using Theorem 1, si $�E0[R0 i: The term f(s1; : : : ; sk) isthe required term t.We all a state (K;E;R) �nal if no mandatory transition rule isappliable to this state. It follows from Lemma 1 that �nal states anbe �nitely derived. The third omponent of a �nal state is always anabstrat ongruene losure.THEOREM 2. Let � be a signature and K1 a �nite set of onstantsdisjoint from �. Let E1 be a �nite set of equations over � [ K1 andR1 be a �nite set of D-rules and C-rules suh that every  2 K1represents some term t 2 T (�) via E1 [ R1, and  �U d for ev-ery C-rule  ! d in R1. If (Kn; En; Rn) is a �nal state suh that(K1; E1; R1) `� (Kn; En; Rn), then En = ; and Rn is an abstratongruene losure for E1 [R1 (over � and Kn).Proof. Sine the sets K1, E1, and R1 are �nite and the state(Kn; En; Rn) is obtained from (K1; E1; R1) using a �nite derivation,it follows that Kn, En, and Rn are all �nite sets. If En 6= ;, then either4 A multiset over a set S is a mapping M from S to the natural numbers. Anyordering � on a set S an be extended to an ordering �m on multisets over S asfollows: M �m N i� M 6= N and whenever N(x) > M(x) then M(y) > N(y), forsome y � x. The multiset ordering �m (on �nite multisets) is well founded if theordering � is well founded [13℄.
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10 L. Bahmair, A. Tiwari, and L. Vigneronextension or orientation will be appliable. Sine (Kn; En; Rn) is a �nalstate, En = ;.In order to show that Rn is an abstrat ongruene losure for E1 [R1, we need to prove the three onditions in De�nition 2.1. Lemma 2 implies that every  2 Kn represents some term t 2 T (�)via Rn.2. Using Lemma 1 we know that Rn is terminating. Furthermore, sine(Kn; En; Rn) is a �nal state, Rn is left-redued. By the ritial pairlemma [1℄, therefore, Rn is onuent; and hene onvergent.3. Finally, Theorem 1 establishes that if s $�E1[R1 t for some s; t 2T (�), then s$�En[Rn t. Sine En = ; and Rn is onvergent, s!�RnÆ  �Rn t.2.3. PropertiesTo summarize, we have presented an abstrat notion of ongruenelosure and given a method to onstrut suh an abstrat ongruenelosure for a given set of ground equations. The only parameters re-quired by the proedure are a denumerable set U of onstants (disjointfrom �) and an ordering (irreexive and transitive relation) on thisset. It might appear that the abstrat ongruene losure one obtainsdepends on the ordering �U used. In this setion, we �rst show thatwe an onstrut an abstrat ongruene losure that is independent ofthe ordering on onstants.In the proess of onstrution of an abstrat ongruene losure, wemay dedue an equality between two onstants inK, and we require anordering�U to deal with suh equations. Sine onstants are essentially\names" for equivalene lasses, it is redundant to have two di�erentnames for the same equivalene lass. Hene, one suh onstant andthe orresponding ordering dependene an be eliminated.DEFINITION 3. Any onstant  2 K that ours as a left-hand sideof a C-rule in R is alled redundant in R.Redundant onstants in R an be eliminated after omposition andollapse steps with C-rules in R have been applied exhaustively.Compression: (K [ f; dg; E;R [ f! dg)(K [ fdg; Eh 7! di; Rh 7! di)if  ours only one as a left-hand side term, the notation h 7! didenotes the homomorphi extension of the mapping � de�ned as �() =
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Abstrat Congruene Closure 11d and �(x) = x for x 6= , and Eh 7! di denotes the set of equationsobtained by applying the mapping h 7! di to eah term in the set E.Corretness of the new enhaned set of transition rules for on-strution of ongruene losure an be established in the same wayas before.THEOREM 3. Let � be a signature and E be a �nite set of equationsover �. Then, there exists an abstrat ongruene losure D for E (over� and some K) onsisting only of D-rules.Proof. Let (;; E; ;) `� (Kn; En; Rn) suh that none of the mandatorytransition rules nor ompression is appliable to the state (Kn; En; Rn).We observe that the following version of soundness (Theorem 1) isstill true: if (Ki; Ei; Ri) ` (Kj ; Ej ; Rj), then, for all terms s and t inT (� [ (Ki \Kj)), s $�Ej[Rj t i� s $�Ei[Ri t. Additionally, Lemma 1and Lemma 2 ontinue to hold with the new set of transition rules, andthe proofs remain essentially unhanged. This establishes that we anuse Theorem 2 in this new setting to onlude that Rn is an abstratongruene losure. Finally, sine ompression is not appliable to the�nal state, there an be no C-rules in Rn.Graph-based ongruene losure algorithms an be desribed usingD-rules; see Setion 3. However, we an de�ne a generalized D-rule(with respet to � and K) as any rule of the form t !  where 2 K and t 2 T (�;K) � K, as done in [5℄. The transition rulesfor onstrution of ongruene losure an be suitably generalized withminimal hanges. The new de�nition of D-rules allows for preservingas muh of the original term struture as possible.Choosing an ordering �U on the y: As remarked earlier, the set oftransition rules presented in Setion 2.15 for onstrution of abstratongruene losure is parameterized by a denumerable set U of on-stants and an ordering �U on this set. Sine elements of U serve onlyas names, we an hoose U to be any ountable set of symbols. Anordering �U need not be spei�ed a priori but an be de�ned on the yas the derivation proeeds. We need to maintain irreexivity wheneverthe ordering relation is extended. Observe that we only need an orderingwhen there is a C-equation to orient.If we exhaustively apply simpli�ation before trying to orient a C-equation, any orientation of the fully simpli�edC-equation an be used.Given a derivation (K0; E0;D0[C0) ` � � � ` (Ki; Ei;Di[Ci) using thisstrategy, we onstrut a sequene of relations �0;�1; : : :, where eah �jis de�ned by  �j d if ! d 2 [k�jCk. We laim that eah �j de�nes5 We exlude Compression for rest of the disussion.
final.tex; 9/02/2002; 14:52; p.11



12 L. Bahmair, A. Tiwari, and L. Vigneronan ordering. To see this note that �0 de�nes a trivial ordering (in whihno two elements in U are omparable). Moreover, whenever the relation�j is extended by  � d, the onstants  and d are inomparable in thetransitive losure of the existing relation �j , and hene irreexivity ofthe ordering de�ned by �j+1 is established.Bounding the maximal derivation length: The above observationestablishes that there exist derivations for ongruene losure on-strution in whih we do not spend any time in omparing elements.However, we will shortly show that the length of derivations ruiallydepends on the hosen ordering. This reveals a tradeo� between thee�ort spent in hoosing an ordering and the lengths of derivationsobtained when using that ordering.DEFINITION 4. An ordering � on the set U is feasible for a state(K;E;R) if there exists an unfailing6 maximal derivation starting fromthe state (K;E;R) that uses the ordering �.The depth or height of an ordering � is the length of the longesthain. More spei�ally, if the longest hain for ordering � is 0 � 1 �� � � � Æ, then the depth of � is Æ.Congruene losure omputation using speialized data struturesis known to be more eÆient than naive standard ompletion. We nextshow, by proving a bound on the length of any maximal derivation,that our desription aptures the ause of this eÆieny.LEMMA 3. Any maximal derivation starting from the state (K0 =;; E0; R0 = ;) is of length O((2k + l)Æ + n), where k is the numberof appliations of extension, l is the di�erene between the number ofourrenes of 0-arity symbols in E0 and number of distint 0-aritysymbols in E0, Æ is the depth of ordering �U used to onstrut thederivation, and n is the number of �-symbols in E0.Proof. In order to simplify the argument, we �rst split simpli�ationand dedution rules as follows (ignoring the K-omponent):Sim1 : (E[f(: : :)℄; R [ ff(: : :)! g)(E[℄; R [ ff(: : :)! g) Sim2 : (E[℄; R [ f! dg)(E[d℄; R [ f! dg)Ded1 : (E;R [ ff(: : :)! ; f(: : :)! dg)(E [ f � dg; R [ ff(: : :)! dg)Ded2 : (E;R [ f! d; ! d0g)(E [ fd � d0g; R [ f! dg)6 By unfailing we mean that the set of unoriented equations in the �nal state isempty.
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Abstrat Congruene Closure 13Next, we bound the number of appliations of individual rules inany derivation as follows:(i) a derivation step using either sim2, ded2, ollapse, or ompositionorresponds to rewriting some onstant. Sine the length of a rewritingsequene 1 ! 2 ! � � � is bounded by Æ and 2k + l is an upper boundon the number of ourrenes of onstants (from K1) in Ei [ Ri (forany i), therefore the number of appliations of sim2, ded2, ollapse,and omposition is O((2k + l)Æ);(ii) the number of deletion steps is at most jE0j+ k as eah transitionrule, with the exeption of extension and deletion, preserves the ar-dinality of Ei [ Ri and extension inreases this number by one whiledeletion dereases it by one;(iii) the number of sim1 and ded1 steps is at most n as eah suh stepredues the number of �-symbols (in E [R);(iv) the number of Extension steps is k; and(v) appliation of Orientation at most doubles the length of anyderivation.Thus, the total length of any derivation is O((2k + l)Æ + n).The number k of extension steps used in any maximal derivation isO(n) beause the total number of �-symbols in the seond omponentof the state is non-inreasing in any derivation and an appliation ofextension redues this number by one.LEMMA 4. A starting state (K0 = ;; E0; R0 = ;) an be transformedinto a state (Km; Em; Rm) in O(n) derivation steps, where n is the totalnumber of symbols in the �nite set E0 of ground equations, suh that(i) the set Em onsists of only C-equations and Rm onsists of onlyD-rules, and (ii) the total number of symbols in Em [Rm is O(n).Proof. We onstrut the desired derivation by an exhaustive applia-tion of extension and simpli�ation rules. Clearly, the set Em ontainsonly C-equations and Rm ontains only D-rules. The length of thisderivation is O(n) as every appliation of extension and simpli�ationredues the total number of �-symbols in Ei by at least one. More-over, the total number of symbols in Em [ Rm is O(n) beause everyappliation of extension and simpli�ation inreases the total numberof symbols by a onstant.Informally speaking, therefore, sine l is learly O(n), Lemma 3 givesus an upper bound of O(nÆ) on the length of maximal derivations. Anytotal (linear) order on the set K1 of onstants is feasible, but has depthequal to the ardinality of K1, whih is O(n). This gives a quadratibound on the length of a derivation. However, we an also show thatthere exist feasible orderings with smaller depth.
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14 L. Bahmair, A. Tiwari, and L. VigneronLEMMA 5. Let (Km; Em; Rm) be a state suh that Em onsists ofonly C-equations and Rm onsists of only D-rules. Then, there existsa feasible ordering �U for this state with depth O(log(n)), where n isthe number of onstants in Km.Proof. We shall exhibit an unfailing derivation that onstruts therequired ordering on the y as disussed before, i.e., during the deriva-tion, we ensure that whenever we apply orientation as (Ki; Ei [ f �dg;Di [ Ci) ` (Ki; Ei;Di [ Ci [ f ! dg), the onstants  and d arein Ci-normal form. Additionally, we also impose the requirement thatthe ardinality of the set f0 2 Km : 0 $�Ci g is less than or equal tothe ardinality of f0 2 Km : 0 $�Ci dg.As argued before, the relation thus built de�nes an ordering. Suppose(K1; E1;D1 [ C1) is the �nal state of this unfailing derivation. If1 � 2 � � � � � j is a maximal desending hain, then the ardinalityof the set f0 2 Km : 0 $�C1 jg is at least 2j�1. But, sine theardinality of Km is O(n), therefore, j = O(log(n)).Combining these three lemmas leads to the following result.THEOREM 4. There exists a maximal derivation of length O(n log(n))with starting state (;; E0; ;), where n is the total number of symbols inthe �nite set E0 of ground equations.Proof. We onstrut the derivation in two stages. In the �rst stagewe use the derivation onstruted in the proof of Lemma 4 to obtainan intermediate state (Km; Em; Rm) from the starting state (K0 =;; E0; R0 = ;). In the seond stage, we start with this intermediatestate and arry out the derivation in the proof of Lemma 5 to reah a�nal state. The laim then follows from Lemma 4 and Lemma 3.Theorem 4 establishes the possibility of obtaining short maximalderivations using (simple strategies on) the abstrat transition rules.However, in order to get an eÆient, say O(n log(n)), algorithm foromputing a ongruene losure, we need to show that the orderingon onstants an be eÆiently omputed and eah individual step inthe derivation an be applied in (amortized) onstant time. The �rstof these is easily ahieved by extending the state triple (K;E;R) byan additional omponent whih is a funtion, ounter, that maps eahonstant in K to a natural number. More preisely, ounter() storesthe ardinality of the set[℄C def= f0 2 K : 0 $�C gwhere C is the set of C-equations in R. Thus, ounter() is the numberof onstants in the urrent equivalene lass of  (see proof of Lemma 5).
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Abstrat Congruene Closure 15The funtion ounter an easily be updated when a C-equation, say � d, is oriented into, say ! d, by setting ounter(d) = ounter()+ ounter(d).Seondly, eÆient appliation of eah transition step requires spe-ialized data strutures and/or eÆient indexing mehanisms. Somesuh details have been desribed in the literature and we disuss thesein the next setion.We observe here that in the speial ase when eah ongruene lassmodulo E0 is �nite, feasible orderings with onstant depth (in fat,depth 1) an be onstruted eÆiently on the y. During orientation,only those C-equations, whih ontain onstants whose ongruenelass [℄Ci (w.r.t. the set Ci of C-equations in the present state) isknown to not hange in subsequent states, are oriented. For example, if is one suh onstant and [℄Ci = f; 1; : : : ; kg, then we orient so thatwe add rules fi !  : i = 1; : : : ; kg to the third omponent. That suhC-equations always exist and an be eÆiently identi�ed is a simpleonsequene of the �niteness assumption, see [30, 15℄ for details. Thus,this yields a linear bound on the length of (ertain) maximal derivationsfor onstrution of ongruene losure in this speial ase.3. Congruene Closure StrategiesThe literature abounds with various implementations of ongruene lo-sure algorithms. The general framework of abstrat ongruene losurean be used to uniformly desribe the logial harateristis of suhalgorithms and provides a ontext for interpreting di�erenes in theirperformane. We next desribe the algorithms proposed by Downey,Sethi and Tarjan [15℄, Nelson and Oppen [23℄, and Shostak [28℄ in thisway. That is, we provide a desription of these algorithms (the desrip-tion does not apture ertain implementation details) using abstratongruene losure transition rules.Direted ayli graphs (dags) are a ommon data struture used toimplement algorithms that work with terms. In fat, many ongruenelosure algorithms assume that the input is an equivalene relation onverties of a given dag, and the desired output, the ongruene losureof this equivalene, is again represented by an equivalene on the samedag.A set of C-rules and D-rules may be interpreted as an abstrationof a dag representation. The onstants in K (or U) represent nodesin a dag. The D-rules speify edges and the C-rules represent a bi-nary relation on the nodes. More preisely, a D-rule f(1; : : : ; k) ! spei�es that the node  is labelled by the symbol f and has pointers
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16 L. Bahmair, A. Tiwari, and L. Vigneron
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D-rules representing the term dag:a ! 1 g11 ! 2b ! 4 f12 ! 3 ! 6 g68 ! 9d ! 7 h7 ! 8h4 ! 5 f59 ! 10C-rules representing the relationon verties:1 � 5 2 � 9 3 � 104 � 7 6 � 5 5 � 8Figure 1. A term dag and a relation on its vertiesto the nodes 1; : : : ; k. Conversely, any dag and an assoiated binaryrelation on its nodes an be represented using D-rules and C-rules.Figure 1 illustrates the representation of a set of terms (and a binaryrelation on them) using dags and using D-rules and C-rules. The solidlines represent subterm edges, and the dashed lines represent a binaryrelation on the verties. We have a D-rule orresponding to eah vertex,and a C-rule for eah dashed edge. (We note here that generalized D-rules (with respet to � and K) as de�ned in Setion 2.3 orrespondto storing ontexts, rather than just symbols from �, in eah node ofthe term dag. We do not pursue this optimization in this paper.)Traditional ongruene losure algorithms employ data strutureswhih are suitably abstrated in our presentation as follows:(i) To obtain a representation via D-rules and C-equations for theinput dag orresponding to equation set E0, we start from the state(;; E0; ;), and repeatedly apply a single extension step followed by anexhaustive appliation of simpli�ation (represented using the expres-sion (Ext � Sim�)�). In the resulting state (K1; E1;D1), the set D1represents the input dag and the set E1 ontains only C-equationsrepresenting the input equivalene on nodes of this dag. Note thatdue to eager simpli�ation, we obtain representation of a dag withmaximum possible sharing. For example, if E0 = fa � b; ffa � fbg,then K1 = f0; 1; 2; 3; 4g, E1 = f0 � 1; 3 � 4g and R1 = fa !0; b! 1; f0 ! 2; f2 ! 3; f1 ! 4g.(ii) The signature of a term f(t1; : : : ; tk) is de�ned as f(1; : : : ; k)where i is the name of the equivalene lass ontaining term ti. Asignature table (indexed by verties of the input dag) stores a signaturefor some or all verties. A signature table spei�es a set of fully left-
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Abstrat Congruene Closure 17redued D-rules.(iii) The use table (also alled predeessor list) is a mapping from theonstant  to the set of all nodes whose signature ontains . In ourpresentation this translates to a method of indexing the set of D-rules.(iv) A union-�nd data struture is used to maintain equivalene lasseson the set of nodes of the input dag. In the abstrat representation, C-rules desribe equivalene relations on onstants in K. Operations onthe union-�nd struture exhibit as transitions on C-rules. For instane,appliation of omposition spei�es path-ompression on the union-�ndstruture.We note that D-rules serve a two-fold purpose: they represent a termdag, and also a signature table.3.1. Shostak's AlgorithmWe show that Shostak's ongruene losure proedure is a spei�strategy over the general transition rules for abstrat ongruenelosure.Shostak's ongruene losure is dynami in that equations are pro-essed one at a time. The strategy underlying Shostak's proedure anbe desribed by the following regular expression:((Sim� �Ext�)� � (Del [Ori) � (Col �Ded�)�)�This expression should be interpreted as follows. Given a (start) state(K;E;R) (i) pik an equation s � t from the set E, (ii) apply sim-pli�ation to this state to normalize s, i.e., s !!R s0, (iii) exhaustivelyapply extension to reate D-rules for subterms of s0 until s0 redues toa onstant, say . Perform steps (ii) and (iii) on the other term t aswell to get a onstant d. (iv) if  and d are idential then apply deletion(and ontinue with (i)), and if not, reate a C-rule, say  ! d, usingorientation. (v) Replae  by d using ollapse and follow it by exhaustiveappliation of dedution. Repeat this until there are no more possibleollapse steps. Finally, the steps (i) through (v) are repeatedly applied.Shostak's proedure halts if no unoriented equations remain.Shostak's proedure uses indexing based on the idea of the use()list. This use() based indexing helps in identifying all possible ollapseappliations.It is fairly easy to observe that a maximal derivation starting fromstate (;; E0; ;) and using the above strategy ends in a �nal state. Hene,Theorem 2 establishes that the third omponent of Shostak's haltingstate is onvergent and an abstrat ongruene losure (for E0).
final.tex; 9/02/2002; 14:52; p.17



18 L. Bahmair, A. Tiwari, and L. VigneronExample 2. We use the set E0 from Example 1 to illustrate Shostak'smethod, showing the essential intermediate steps in the derivation.i Cnsts Ki Equations Ei Rules Ri Transition0 ; E0 ;1 f0; 1g fffa � fbg fa! 0; b! 1; Ext �Ext�0 ! 1g Ori2 f0; 1g fff1 � fbg fa! 0; b! 1; 0 ! 1g Sim � Sim3 f0; : : : ; 3g f3 � fbg R2 [ ff1 ! 2; f2 ! 3g Ext �Ext4 f0; : : : ; 3g f3 � 2g R3 Sim � Sim5 f0; : : : ; 3g ; R4 [ f3 ! 2g Ori3.2. Downey, Sethi, and Tarjan's AlgorithmThis algorithm assumes that the input is a dag and an equivalenerelation on its verties. Thus, the starting state is a triple given by(K1; ;;D1 [ C1), where D1 represents the input dag and C1 the givenequivalene. The underlying strategy of this algorithm an be desribedas: ((Col � (Ded [ f�g))� � (Sim� � (Del [Ori))�)�where � is the null transition rule. This strategy is implemented byrepeating the following steps: (i) Repeatedly apply the ollapse rule andany resulting dedution steps until no more ollapse steps are possible.(ii) if no ollapse steps are possible, repeatedly selet a C-equation,fully simplify it and then either delete or orient it.In the Downey, Sethi and Tarjan proedure an equation  � d isoriented to ! d if the equivalene lass  ontains fewer terms (in theset of all subterms in the input set of equations) than the equivalenelass d. This is ruial in ensuring the O(n log(n)) time omplexity forthis algorithm, .f. Theorem 4.If (Kn; En;Dn[Cn) is the last state in a derivation from (K1; ;;D1[C1) using the above strategy, then, (Kn; En;Dn [ Cn) is a �nal state,and hene the set Dn [ Cn is onvergent and an abstrat ongruenelosure. The rewrite system Dn represents the information ontainedin the signature table, and Cn represents information in the union-�ndstruture. The set Cn is usually onsidered the output of the Downey,Sethi and Tarjan proedure.Example 3. We illustrate the Downey-Sethi-Tarjan algorithm by us-ing the same set of equations E0 as above. The start state is (K1; ;;D1[C1) where K = f0; : : : ; 4g, D1 = fa ! 0; b! 1; f0 ! 2; f2 !
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Abstrat Congruene Closure 193; f1 ! 4g, and, C1 = f0 ! 1; 3 ! 4g.i Consts Ki Eqns Ei Rules Ri Transition1 K1 ; D1 [ C12 K1 ; fa! 0; b! 1; f1 ! 2; Colf2 ! 3; f1 ! 4g [C13 K1 f2 � 4g R2 � ff1 ! 2g Ded4 K1 ; R3 [ f4 ! 2g OriNote that 4 � 2 was oriented in a way that no further ollapses wereneeded thereafter.3.3. Nelson and Oppen's AlgorithmThe Nelson-Oppen proedure is not exatly a ompletion proedureand it does not generate a ongruene losure in our sense. The initialstate of the Nelson-Oppen proedure is given by the tuple (K1; E1;D1),where D1 is the input dag, and E1 represents an equivalene on vertiesof this dag. The sets K1 and D1 remain unhanged in the Nelson-Oppen proedure. In partiular, the inferene rule used for dedutionis di�erent from the onventional dedution rule7.NODedution: (K;E;D [ C)(K;E [ f � dg;D [ C)if there exist two D-rules f(1; : : : ; k) ! , and, f(d1; : : : ; dk) ! d inthe set D; and, i !!C Æ  !C di, for i = 1; : : : ; k.The Nelson-Oppen proedure an now be (at a ertain abstrat level)represented as:NO = (Sim� � (Ori [Del) �NODed�)�whih is applied in the following sense: (i) selet a C-equation  � dfrom the E-omponent, (ii) simplify the terms  and d using simpli�-ation steps until the terms an't be simpli�ed any more, (iii) eitherdelete, or orient the simpli�ed C-equation, (iv) apply the NODedutionrule until there are no more non-redundant appliations of this rule, (v)if the E-omponent is empty, then we stop, otherwise ontinue withstep (i).7 This rule performs dedution modulo C-equations, i.e., we ompute ritial pairsbetween D-rules modulo the ongruene indued by C-equations. Hene, the Nelson-Oppen proedure an be desribed as an extended ompletion [12℄ (or ompletionmodulo C-equations) method over an extended signature.
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20 L. Bahmair, A. Tiwari, and L. VigneronUsing the Nelson-Oppen strategy, assume we get a derivation(K1; E1;D1) `�NO (Kn; En;Dn [ Cn). One onsequene of using anon-standard dedution rule, NODedution, is that the resulting setDn [ Cn = D1 [ Cn need not neessarily be onvergent, although therewrite relation Dn=Cn [12℄ is onvergent.Example 4. Using the same set E0 as equations, we illustrate theNelson-Oppen proedure. The initial state is given by (K1; E1;D1)where K1 = f0; 1; 2; 3; 4g; E1 = f0 � 1; 3 � 4g; and,D1 = fa! 0; b! 1; f0 ! 2; f2 ! 3; f1 ! 4g.i Constants Ki Equations Ei Rules Ri Transition1 K1 E1 D12 K1 f3 � 4g D1 [ f0 ! 1g Ori3 K1 f2 � 4; 3 � 4g R2 NODed4 K1 f3 � 4g R2 [ f2 ! 4g Ori5 K1 ; R4 [ f3 ! 4g OriConsider deiding the equality fa � ffb. Even though fa $�E0 ffb,the terms fa and ffb have distint normal forms with respet to R5.But terms in the original term universe have idential normal forms.4. Experimental ResultsWe have implemented several ongruene losure algorithms, inludingthose proposed by Nelson and Oppen (NO) [23℄, Downey, Sethi andTarjan (DST) [15℄, and Shostak (SHO) [28℄, and two algorithms basedon ompletion|one with an indexing mehanism (IND) and the otherwithout (COM). Implementation of the �rst three proedures is basedon the representation of terms by direted ayli graphs and therepresentation of equivalene lasses by a union-�nd data struture.Union-�nd data struture uses path ompression, and the same ode(with only minor variations) is used in all three implementations.NO is an implementation of the pseudoode given on page 358 (withsome details on page 359) of [23℄. In partiular, the predeessor listsare kept sorted and dupliates are removed whenever two predeessorlists are merged. Furthermore, the double loop desribed in step 4 ofthe algorithm is implemented as an optimized linear searh (with a\sorting" overhead) as suggested in [23℄. We tested other minor variantstoo. The one variant in whih spliing the predeessor list was done inonstant time (allowing for dupliates in the proess) and step 4 was
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Abstrat Congruene Closure 21implemented as a nested loop, gave the best running times on ourexamples, whih we report here.The DST implementation orresponds exatly to the pseudoodeon page 761 of [15℄. In partiular, the signature table is implementedas a hash table, equivalene lasses are represented in union-�nd, andthe sets pending and ombine are implemented as singly linked lists ofpointers to graph nodes and to graph edges respetively.Implementation SHO of Shostak's algorithm is based on the spe-ialization to the pure theory of equality of the ombination methoddesribed on page 8 of [28℄. The main data strutures in the imple-mentation are the union-�nd, use lists, and sig whih stores a signaturefor eah vertex. The manipulation of these data strutures, espeiallythe use lists, and the sequene of alls to merge is exatly as desribedin [28℄. A desription of this algorithm (with only a slight di�erene inthe order of alls to subroutine merge) is also present in [11, 18℄.The ompletion proedure COM uses the following strategy:((Sim� �Ext�)� � (Del[Ori) � ((Com� �Col�) �Ded � (Del[Ori))�)�:More spei�ally, we proess one equation at a time, fully simplify it andif neessary use extension to generate a C-equation. The C-equationis oriented and omposition and ollapse are applied exhaustively,followed by a dedution step. The generated C-equation is similarlyhandled. When no more C-equations an be produed, we proess thenext equation. In short, this strategy is based on eager elimination ofredundant onstants.The indexed variant IND uses a slightly di�erent strategy((Sim� � Ext�)� � ((Del [Ori) � (Col� �Com? �Ded?)� � Sim�)�)�:As before, using Sim� �Ext� we onvert one equation to a C-equation.This equation is oriented and individually on every D-rule, we per-form all simpli�ations using this C-rule, viz ollapse, omposition,followed by any dedution step (Col� � Com? � Ded?). Subsequently,simpli�ation of equations using the oriented C-rule are done. All theC-equations are proessed this way before we take up the next equationto proess. Indexing refers to the use of suitable data strutures toeÆiently identify whihD-rules ontain spei�ed onstants, thus mak-ing the proess of identifying ollapse, omposition and superpositioneÆient.In all our implementations, input is read from a �le ontaining equa-tions in a spei�ed syntax. It is parsed and represented internally asa list of tree node pairs (representing terms with no sharing). Thereis a preproessing step in the NO and DST algorithms to onvert this
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22 L. Bahmair, A. Tiwari, and L. VigneronTable I. Total running time (in milliseonds) for Examples 11{14. Eqns refersto the number of equations; Vert to the number of verties in the initial dag;and Class to the number of equivalene lasses indued on the dag.Eqns Vert Class DST NO SHO COM INDEx.11 5 27 1 1.286 1.640 0.281 0.606 0.409Ex.12 20 27 1 2.912 2.772 0.794 1.858 0.901Ex.13 12 20 6 1.255 0.733 0.515 0.325 0.323Ex.14 34 105 2 10.556 22.488 7.275 12.077 4.416representation into a dag and to initialize the other required data stru-tures. In DST we onstrut a dag in whih all verties have outdegreeat most two. The other three algorithms interleave onstrution of adag with dedution steps. The published desriptions of DST and NOdo not address onstrution of a dag. Our implementation maintainsthe list of terms that have been represented in the dag in a hash tableand reates a new node for eah term not yet represented.The input set of equations E an be lassi�ed based on: (i) thesize of the input and the number of equations, (ii) the number ofequivalene lasses on terms and subterms of E, and, (iii) the averagenumber of ourrenes of a onstant in the set of D- and C-rules, whihroughly speaking orresponds to average size of use lists in most of theimplementations. The �rst set of examples are relatively simple anddeveloped by hand to highlight strengths and weaknesses of the variousalgorithms. Example 11 ontains �ve equations that indue a singleequivalene lass8. Example 12 is the same as 11, exept that it ontains�ve opies of all the equations. Example 13 requires slightly larger uselists9. Finally, example 14 onsists of equations that are oriented in the\wrong" way10.In a �rst set of experiments, we assume that the input is a setof equations presented as pairs of trees (representing terms). Thus,the total running time given inludes time spent on preproessing andonstrution of the dag (for NO and DST). In Table I the times shownare the averages of several runs on a Sun Ultra workstation undersimilar load onditions. The time was omputed using the gettimeofdaysystem all.8 The equation set is ff2(a) � a; f10a � f15b; b � f5b; a � f3a; f5b � bg.9 The equation set is fg(a; a; b) � f(a; b); gabb � fba; gaab � gbaa; gbab �gabb; gbba � gbab; gaaa � faa; a � ;  � d; d � e; b � 1; 1 � d1; d1 � e1g.10 The set is fg(f i(a); h10(b)) � g(a; b); i = f1; � � � ; 25g; h47(b) � b; b �h29(b); h(b) � 0; 0 � 1; 1 � 2; 2 � 3; 3 � 4; 4 � a; a � f(a)g.
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Abstrat Congruene Closure 23Table II. Total running time (in seonds) for randomly generated sets ofequations.Eqns Vert �0;�1;�2, d Class DST NO SHO INDEx.21 10000 17604 2, 0, 2, 3 7472 11.1 3.19 10.2 13.0Ex.22 5000 4163 2, 1, 1, 3 3 2.28 306 3.09 0.77Ex.23 5000 7869 3, 0, 1, 3 2745 2.44 1.36 3.52 3.99Ex.24 6000 8885 3, 0, 1, 3 9 3.55 1152 52.4 7.07Ex.25 7000 9818 3, 0, 1, 3 1 4.63 1682 47.8 5.47Ex.26 5000 645 4, 2, 0, 23 77 1.22 1.58 0.37 0.36Ex.27 5000 1438 10, 2, 0, 23 290 1.45 3.67 0.39 0.37Table II ontains similar omparisons for onsiderably larger ex-amples onsisting of randomly generated equations over a spei�edsignature. The equations are obtained by �xing a signature and a boundon the depth of terms and randomly piking 2n terms from the set of allbounded depth terms in the given signature. We generate n equationsby pairing the 2n terms thus obtained. The hoie of signatures anddepth bound was governed by the need to randomly generate interest-ing instanes (i.e. where there are a fair number of dedutions). Theolumns �i denote the number of funtion symbols of arity i in thesignature and d denotes the maximum term depth. The total runningtime inludes the preproessing time11.In Table III we show the time for omputing a ongruene losureassuming terms are already represented by a dag. In other words, wedo not inlude the time it takes to reate a dag. Note that we inludeno omparison with Shostak's method, as the dynami onstrution ofa dag from given term equations is inherent in this proedure. However,a omparison with a suitable strategy (in whih all extension steps areapplied before any dedution steps) of IND is possible. We denote byIND* indexed ompletion based on a strategy that �rst onstruts adag. The examples are the same as in Table II.Several observations an be drawn from these results. First, theNelson-Oppen proedure NO is ompetitive only when dedution stepsare few and the number of equivalene lasses is large. In logialterms, this is beause it uses a non-standard dedution rule (see [5℄),whih may fore the proedure to unneessarily repeat the same de-dution steps many times over a single exeution. Not surprisingly,straight-forward ompletion without indexing is also ineÆient when11 Times for COM are not inluded as indexing is indispensable for largerexamples.
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24 L. Bahmair, A. Tiwari, and L. VigneronTable III. Running time (in seonds) when input is in a dag form.DST NO IND* DST NO IND*Ex.21 0.919 0.296 0.076 Ex.25 0.958 1614.961 9.770Ex.22 0.309 319.112 1.971 Ex.26 0.026 0.781 0.060Ex.23 0.241 0.166 0.030 Ex.27 0.048 2.470 0.176Ex.24 0.776 1117.239 7.301
many dedution steps are neessary. Indexing is of ourse a standardtehnique employed in all pratial implementations of ompletion.The running time of the DST proedure ritially depends on thesize of the hash table that ontains the signatures of all verties. If thehash table size is large, enough potential dedutions an be detetedin (almost) onstant time. If the hash table size is redued, to say 100,then the running time inreases by a fator of up to 50. A hash tablewith 1000 entries was suÆient for our examples (whih ontained fewerthan 10000 verties). Larger tables did not improve the running timessubstantially.Indexed Completion, DST and Shostak's method are roughly ompa-rable in performane, though Shostak's algorithm has some drawbaks.For instane, equations are always oriented from left to right. In on-trast, Indexed Completion always orients equations in a way so as tominimize the number of appliations of the ollapse rule, an idea thatis also impliit in Downey, Sethi and Tarjan's algorithm. Example 12illustrates this fat. More ruially, the manipulation of the use listsin Shostak's method is done in a onvoluted manner due to whihredundant inferenes may be done when searhing for the orret non-redundant ones. As a onsequene, Shostak's algorithm performs poorlyon instanes where use lists are large and dedution steps are many suhas in Examples 13, 24 and 25.Finally, we note that the indexing tehnique used in our implemen-tation of ompletion is simple|with every onstant  we assoiate alist of D-rules that ontain  as a subterm. On the other hand DSTmaintains at least two di�erent ways of indexing the signatures, whihmakes it more eÆient when the examples are large and dedutionsteps are plenty. On small examples, the overhead to maintain thedata strutures dominates. This also suggests that the use of moresophistiated indexing shemes for indexed ompletion might improveits performane.
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Abstrat Congruene Closure 255. Assoiative-Commutative Congruene ClosureWe next onsider the problem of onstruting a ongruene losure fora set of ground equations over a signature onsisting of binary fun-tion symbols that are assoiative and ommutative. It is not obvioushow the traditional dag-based algorithms an be modi�ed to handleassoiativity and ommutativity of ertain funtion symbols, thoughommutativity alone is easily handled by simple modi�ations, seeomments on page 767 of [15℄.Let � be a signature with arity funtion �, and E a set of groundequations over �. Let �AC be some subset of �, ontaining all theassoiative-ommutative operators. We denote by P the identitiesf(x1; ::: ; xk; s; y1; ::: ; yl; t; z1; ::: ; zm) �f(x1; ::: ; xk; t; y1; ::: ; yl; s; z1; ::: ; zm)where f 2 �AC , k; l;m � 0, and k + l +m + 2 2 �(f); and by F theset of identitiesf(x1; : : : ; xm; f(y1; : : : ; yr); z1; : : : ; zn) �f(x1; : : : ; xm; y1; : : : ; yr; z1; : : : ; zn)where f 2 �AC and fm + n + 1;m + n + r; rg � �(f). The on-gruene indued by all ground instanes of P is alled a permutationongruene. Flattening refers to normalizing a term with respet tothe set F (onsidered as a rewrite rule). The set AC = F [ P de�nesan AC-theory. The symbols in �AC are alled assoiative-ommutativeoperators12. We require that �(f) be a singleton set for all f 2 ���ACand �(f) = f2; 3; 4; : : :g for all f 2 �AC .We note that apart from the D-rules and the C-rules, in the preseneof AC-symbols we additionally need A-rules.DEFINITION 5. Let � be a signature and K be a set of on-stants disjoint from �. Equations, whih when fully attened areof the form f(1; : : : ; k) � f(d1; : : : ; dl), where f 2 �AC , and1; � � � ; k; d1; � � � ; dl 2 K, will be alled A-equations. Direted A-equations are alled A-rules.We an now generalize all de�nitions made in Setion 2 to the asewhen ertain funtion symbols are known to be assoiative and om-mutative. By ACnR we denote the rewrite system onsisting of all rules12 The equations F[P de�ne a onservative extension of the theory of assoiativityand ommutativity to varyadi terms. For a �xed arity binary funtion symbol, theequations f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z)) de�ne an AC-theory.
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26 L. Bahmair, A. Tiwari, and L. Vigneronu ! v suh that u $�AC u0� and v = v0�, for some rule u0 ! v0 in Rand some substitution �. We say that ACnR is onuent modulo AC iffor all terms s; t suh that s$�R[AC t, there exist terms w and w0 suhthat s !�ACnR w $�AC w0  �ACnR t. We speak of ground onuene ifthis ondition is true for all ground terms s and t. The other de�nitionsare analogous.Part of the ondition for onuene modulo AC an be satis�edby the inlusion of so-alled extensions of rules [24℄. Given an AC-operator f and a rewrite rule � : f(1; 2)! , we onsider its extension�e : f(f(1; 2); x) ! f(; x). Given a set of rewrite rules R, by Re wedenote the set R plus extensions of rules in R. Extensions have to beused for rewriting terms and omputing ritial pairs when workingwith AC-symbols. The key property of extended rules is that whenevera term t is reduible by ACnRe and t$�AC t0, then t0 is also reduibleby ACnRe.DEFINITION 6. Let R be a set of D-rules, C-rules and A-rules (withrespet to � and K). We say that a onstant  in K represents a termt in T (� [K) (via the rewrite system R) if t $�ACnRe . A term t isalso said to be represented by R if it is represented by some onstantvia R.DEFINITION 7. Let � be a signature and K be a set of onstantsdisjoint from �. A ground rewrite system R = A [D [C is said to bean assoiative-ommutative ongruene losure (with respet to � andK) if(i) D is a set of D-rules, C is a set of C-rules, A is a set of A-rules,and every onstant  2 K represents at least one term t 2 T (�) via R,and(ii) ACnRe is ground onvergent modulo AC over T (� [K).In addition, if E is a set of ground equations over T (�[K) suh that,(iii) If s and t are terms over T (�), then s $�AC[E t if, and onlyif, s!�ACnRe Æ $�AC Æ  �ACnRe t,then R will be alled an assoiative-ommutative ongruene losure forE.When �AC is empty this de�nition speializes to that of an abstratongruene losure in De�nition 2.For example, let � onsist of funtion symbols, a; b; ; f and g, (f isAC) and letE0 be a set of three equations f(a; ) � a; f(; g(f(b; ))) �b and g(f(b; )) � f(b; ). Using extension and orientation we an obtaina representation of the equations in E0 using D-rules and C-rules as:R1 = fa! 1; b! 2; ! 3; f(2; 3)! 4;g(4)! 5; f(1; 3)! 1; f(3; 5)! 2; 5 ! 4g:
final.tex; 9/02/2002; 14:52; p.26



Abstrat Congruene Closure 27However, the rewrite system R1 above is not a ongruene losurefor E0, as it is not a ground onvergent rewrite system. But we antransform R1 into a suitable rewrite system, using a ompletion-like(modulo AC) proess desribed in more detail in the next setion, toobtain a ongruene losure (details are given in Example 5),R0 = fa! 1; b! 2; ! 3; f23 ! 4; f34 ! 2; f13 ! 1;f22 ! f44; f12 ! f14; g4 ! 4gthat provides a more ompat representation of E0. Attempts to replaeevery A-rule by two D-rules (introduing a new onstant in the proess)leads to non-terminating derivations.5.1. Constrution of Assoiative-Commutative CongrueneClosureLet U be a set of symbols from whih new names (onstants) are hosen.We need a (partial) AC-ompatible redution ordering whih orientsthe D-rules in the right way, and orients all the C- and A-equations.The preedene-based AC-ompatible ordering � of [26℄, with anypreedene in whih f ��[U , whenever f 2 � and  2 U , servesthe purpose. However, muh simpler partial orderings would suÆetoo, but for onveniene we use the ordering in [26℄. In our ase, thissimply means that, orientation of D-rules is from left to right, andthe orientation of an A-rule is given by omparing the fully attenedterms as follows: f(1; : : : ; i) � f(01; : : : ; 0j) i� either i > j, or i = jand f1; : : : ; ig �mult f01; : : : ; 0jg, i.e., if the two terms have the samenumber of arguments, we ompare the multisets of onstants using amultiset extension �mult of the preedene ��[U , see [13℄.We next present a general method for onstrution of assoiative-ommutative ongruene losures. Our desription is fairly abstrat, interms of transition rules that operate on triples (K;E;R), where K isa set of new onstants that are introdued (the original signature � is�xed); E is a set of ground equations (over �[K) yet to be proessed;and R is a set of C-rules, D-rules and A-rules. Triples represent possi-ble states in the proess of onstruting a losure. The initial state is(;; E; ;), where E is the input set of ground equations.New onstants are introdued by the following transition.Extension: (K;E[t℄; R)(K [ fg; E[℄; R [ ft! g)if t !  is a D-rule,  2 U �K, and t ours in some equation in Ethat is neither an A-equation nor a D-equation.
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28 L. Bahmair, A. Tiwari, and L. VigneronOne a D-rule has been introdued by extension, it an be used tosimplify equations.Simpli�ation: (K;E[s℄; R)(K;E[t℄; R)where s ours in some equation in E, and, s!ACnRe t.It is fairly easy to see that any equation in E an be transformed toa D-, C- or an A-equation by suitable extension and simpli�ation13.Equations are moved from the seond to the third omponent of thestate by orientation. All rules added to the third omponent are eitherC-rules, D-rules or A-rules.Orientation: (K;E [ fs � tg; R)(K;E;R [ fs! tg)if s � t, and, s! t is either a D-rule, or a C-rule, or an A-rule.Deletion allows us to delete trivial equations.Deletion: (K;E [ fs � tg; R)(K;E;R)if s$�AC t.We onsider overlaps between extensions of A-rules in ACSuperpo-sition.ACSuperposition: (K;E;R)(K;E [ ff(s; x�) � f(t; y�)g; R)if f 2 �AC , there existD- or A-rules (fully attened as) f(1; : : : ; k)!s and f(d1; : : : ; dl) ! t in R, the sets C = f1; : : : ; kg and D =fd1; : : : ; dlg are not disjoint, C 6� D, D 6� C, and the substitution � isthe ground substitution in a minimal omplete set of AC-uni�ers forf(1; : : : ; k; x) and f(d1; : : : ; dl; y)14.In the speial ase when one multiset is ontained in the other, weobtain the ACCollapse rule.ACCollapse: (K;E;R [ ft! sg)(K;E [ ft0 � sg; R)if for some u! v 2 R, t!ACnfu!vge t0, and if t$�AC u then s � v.13 We do not need an expliit rule for attening as De�nition 5 allows for non-attened terms to our in A-rules.14 For the speial ase in hand, a minimal omplete set of AC-uni�ers ontainsexatly two substitutions, exatly one of whih is ground.
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Abstrat Congruene Closure 29The Dedution inferene rule in Setion 2.1 (for non-AC terms) issubsumed by ACCollapse. Note that we do not expliitly add ACextensions of rules to the set R. Consequently, any rule in R is either aC-rule, or a D-rule, or an A-rule, and not its extension. We impliitlywork with extensions in ACSuperposition.We need additional transition rules to perform simpli�ations onthe left- and right-hand sides of other rules. The use of C-rules tosimplify left-hand sides of rules is aptured by ACCollapse. The simpli-�ation on the right-hand sides is subsumed by the following generalizedomposition rule.Composition: (K;E;R [ ft! sg)(K;E;R [ ft! s0g)if s!ACnRe s0.Example 5. Let E0 = ff(a; ) � a; f(; g(f(b; ))) � b; g(f(b; )) �f(b; )g. We show some intermediate states of a derivation below (su-persripts in the last olumn indiate the number of appliations of therespetive rules). We assume that f is AC and i � j if i < j.i Constants Ki Equations Ei Rules Ri Transitions0 ; E0 ;1 f1; 3g ffgfb � b; fa! 1; ! 3; Ext2 � Sim �gfb � fbg f13 ! 1g Ori2 K1 [ f2; 4g ffgfb � bg R1 [ fb! 2; Sim2 �Ext2�f23 ! 4; g4 ! 4g Sim �Ori3 K2 ; R2 [ ff34 ! 2g Sim6 �Ori4 K2 ; R3 [ ff12 ! f14g ACSup �Ori5 K2 ; R4 [ ff22 ! f44g ACSup �OriThe derivation moves equations, one by one, from the seond om-ponent of the state to the third omponent through simpli�ation,extension and orientation. It an be veri�ed that the set R5 is anAC ongruene losure for E0. There are more ACSuperpositions, butthe resulting equations get deleted. Note that the side-ondition inextension disallows breaking of an A-rule into two D-rules, whih isruial for termination.5.2. Termination and CorretnessDEFINITION 8. We use the symbol ` to denote the one-step transitionrelation on states indued by the above transition rules. A derivation
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30 L. Bahmair, A. Tiwari, and L. Vigneronis a sequene of states (K0; E0; R0) ` (K1; E1; R1) ` � � �. A derivationis said to be fair if any transition rule whih is ontinuously enabled iseventually applied. The set R1 of persisting rules is de�ned as [i \j>iRj; and similarly, K1 = [i \j>i Kj.We shall prove that any fair derivation will only generate �nitelymany persisting rewrite rules (in the third omponent) using Dikson'slemma [8℄. Multisets over K1 an be ompared using the multisetinlusion relation. If K1 is �nite, this relation de�nes a Dikson partialorder.LEMMA 6. Let E be a �nite set of ground equations. The set of per-sisting rules R1 in any fair derivation starting from state (;; E; ;) is�nite.Proof. We �rst laim that K1 is �nite. To see this, note that newonstants are reated by extension. Using �nitely many appliations ofextension, simpli�ation, and orientation, we an move all rules fromthe initial seond omponent E of the state tuple to the third ompo-nent R. Fairness ensures that this will eventually happen. Thereafter,any equations ever added to E an be oriented using orientation, henewe never apply extension subsequently (see the side ondition of theextension rule). Let K1 = f1; : : : ; ng.Next we laim that the set R1 is �nite. Suppose R1 is an in-�nite set. Sine non �AC-symbols have �xed arities, therefore, R1ontains in�nitely many rules with top symbol from �AC . Sine �ACis �nite, one AC-operator, say f 2 �AC , must our in�nitely oftenas the top symbol in the left-hand sides of R1. By Dikson's lemma,there exists an in�nite hain of rules (written as fully attened forsimpliity), f(11; : : : ; 1k1) ! s0; f(21; : : : ; 2k2) ! s1; : : :, suh thatf11; : : : ; 1k1g � f21; : : : ; 2k2g � � � �, where fi1; : : : ; ikig denotes amultiset and � denotes multiset inlusion. But, this ontradits fairness(in appliation of ACCollapse).5.3. Proof OrderingThe orretness of the proedure will be established using proofsimpli�ation tehniques for assoiative-ommutative ompletion, asdesribed by Bahmair [1℄ and Bahmair and Dershowitz [2℄. In fat,we an diretly use the results and the proof measure from [2℄. How-ever, sine all rules in R have a speial form, we an hoose a simplerproof ordering. One other di�erene is that we do not have expliittransition rules to reate extensions of rules in the third omponent.
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Abstrat Congruene Closure 31Instead we use extensions of rules for simpli�ation and omputationof superpositions.Let s = s[u�℄$ s[v�℄ = t be a proof step using the equation (rule)u � v 2 AC [E [R. The omplexity of this proof step is de�ned by(fs; tg;?;?) if u � v 2 E (fsg;?; t) if u � v 2 AC(fsg; u; t) if u! v 2 R (ftg; v; s) if v ! u 2 Rwhere ? is a new symbol. Tuples are ompared lexiographially usingthe multiset extension of the redution ordering� on terms over �[K1in the �rst omponent, and the ordering � in the seond and thirdomponent. The onstant ? is assumed to be minimum. The omplexityof a proof is the multiset of omplexities of its proof steps. The multisetextension of the ordering on tuples yields a proof ordering, denoted bythe symbol �P . The ordering �P on proofs is well founded as it is alexiographi ombination of well founded orderings.LEMMA 7. Suppose (K;E;R) ` (K 0; E0; R0). Then, for any two termss; t 2 T (�), it is the ase that s$�AC[E0[R0 t i� s$�AC[E[R t. Further,for any s0; sk 2 T (� [K), if � is a ground proof s0 $ s1 $ � � � $ skin AC [E [R, then there is a proof �0 s0 = s00 $ s01 $ � � � $ s0l = skin AC [E0 [R0 suh that � �P �0.Proof. The �rst part of the lemma, whih states that the ongru-ene on T (�) remains unhanged, is easily veri�ed by exhaustivelyheking it for eah transition rule. In fat, exept for extension, allthe other transition rules are standard rules for ompletion moduloa ongruene, and hene the result follows. Consider the ase whenthe state (K 0 = K [ fg; E0; R0 = R [ ft ! g) is obtained fromthe state (K;E;R) by extension. Now, if s $�AC[E[R t, then learlys $�AC[E0[R0 t. Conversely, if s $�AC[E0[R0 t, then we replae allourrenes of  in this proof by t to get a proof in AC [E [R.For the seond part, one needs to hek that eah equation in (E �E0) [ (R�R0) has a simpler proof in E0 [R0 [AC for eah transitionrule appliation, see [2℄. In detail, we have the following ases:(i) Extension. The proof s[t℄ $E u is replaed by a proof s[t℄ !R0s[℄ $E0 u and the new proof is smaller as fs[t℄; ug �m fs[t℄g, andfs[t℄; ug �m fs[℄; ug.(ii) Simpli�ation. The proof r[s℄ $E u is replaed by the new proofr[s℄ $�AC r0 !R0 r[t℄ $E0 u15. Now, fr[s℄; ug �m fr00g for every termr00 in the sequene of terms r[s℄$�AC r0, and fr[s℄; ug �m fr[t℄; ug.(iii) ACCollapse. The proof t!R s is transformed to the smaller proof15 Note that we used extended rule in speifying simpli�ation, but for purposesof proof transformations, we only onsider the original (non-extended) rules as beingpresent in the third omponent.
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32 L. Bahmair, A. Tiwari, and L. Vigneront $�AC t0 !fu!vg t00 $E0 s. This new proof is smaller beause therewrite step t!R s is more omplex than (a) all proof steps in t$�AC t0(in the seond omponent), (b) the proof step t0 !fu!vg t00 in theseond omponent if t 6$�AC u, and in the third omponent if t$�AC u(see side ondition in ACCollapse); and, () the proof step t00 $E0 s (inthe �rst omponent).(iv) Orientation. In this ase, s $E t is more omplex than the newproof s!R0 t, and this follows from fs; tg �m fsg.(v) Deletion. We have s $E t more omplex than s $�AC t beausefs; tg �m fs0g for every s0 in s$�AC t.(vi) Composition. We have the proof t!R s transformed to the smallerproof t !R s0  R0 s00 $�AC s. This new proof is smaller beause therewrite step t!R s is more omplex than (a) the rewrite step t!R0 s0in the third omponent, (b) all proof steps in s00 $�AC s in the �rstomponent, and () the rewrite step s00 !R0 s0 in the �rst omponent.The ACSuperposition transition rule does not delete any equation.This ompletes the proof of the lemma.Note that in any derivation, extensions of rules are not added ex-pliitly, and hene, they are never deleted either. One we onverge toR1, we introdue extensions to take are of li�s in proofs.LEMMA 8. If R1 is a set of persisting rules of a fair derivation start-ing from the state (;; E; ;), then, Re1 is a ground onvergent (moduloAC) rewrite system. Furthermore, E1 = ;.Proof. Fairness implies that all ritial pairs (modulo AC) betweenrules in Re1 are ontained in the set [iEi. Sine a fair derivation isnon failing, E1 = ;. Sine the proof ordering is well-founded, for everyproof in Ei[Ri[AC, there exists a minimal proof � in E1[R1[AC.We argue by ontradition that ertain proof patterns an not ourin the minimal proof �: spei�ally, there an be no peaks s  Re1u!ACnRe1 t, non-overlap li�s or variable overlap li�s.(i) Peaks. A peak aused by a non-overlap or a variable overlaps Re1 u!ACnRe1 t an be transformed to a simpler proof s!�ACnRe1v  �ACnRe1 t. The new proof is simpler beause u is bigger than eahterm in the new proof. Next suppose that the above pattern is aused bya proper overlap. In this ase, it is easy to see that s$�AC s0 $CPAC(Re1)t0 $�AC t, where CPAC(Re1) denotes the set of all equations reatedby ACSuperposition and ACCollapse transition rules applied on therules in Re1. Sine by fairness CPAC(Re1) � [kEk, there is a proofs $�AC s0 $Ek t0 $�AC t for some k � 0. This proof, whih we name�, is stritly smaller than the original peak. Using Lemma 7, we may
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Abstrat Congruene Closure 33infer that there is a proof �0 in AC[R1 suh that �0 is stritly smallerthan the original peak, a ontradition.(ii) Cli�s. A non-overlap li� w[v; s℄ $AC w[u; s℄ !ACnRe1 w[u; t℄an be transformed to the following less omplex proof: w[v; s℄!ACnRe1w[v; t℄ $AC w[u; t℄. Clearly, w[v; s℄ � w[v; t℄ and hene the proofw[v; t℄$AC w[u; t℄ is smaller than the proof w[v; s℄$AC w[u; s℄ (in the�rst omponent). The omplexity of the proof w[u; s℄ !ACnRe1 w[u; t℄is idential to the omplexity of the proof w[v; s℄!ACnRe1 w[v; t℄.In the ase of AC, a variable overlap li� s $AC u !ACnRe1 t anbe eliminated in favour of the proof s !ACnRe1 t0 $AC t. Note thatthe proof u !ACnRe1 t and the proof s !ACnRe1 t0 are of the sameomplexity, and additionally the proof s $AC u is larger than theproof t0 $AC t as all terms in the latter proof are smaller than u.In summary, the proof � an not ontain peaks s Re1 u!ACnRe1 ,or, non-overlap or variable overlap li�s s $AC u !ACnRe1 t. Theli�s arising from proper overlaps an be replaed by extended rules,as (Re1)e = Re1. The minimal proof � in R1[AC an, therefore, onlybe of the form s !�ACnRe1 s0 $�AC t0  �ACnRe1 t; whih is a rewriteproof.Note that we did not de�ne the proof omplexities for the extendedrules as the extended rules are introdued only at the end. Hene, theargument given here is not idential to the one in [2℄, though it issimilar. Using Lemmas 7 and 8, we an easily prove the following.THEOREM 5. Let R1 be the set of persisting rules of a fair derivationstarting from state (;; E; ;). Then, the set Re1 is an assoiative-ommutative ongruene losure for E.Proof. In order to show that R1 is an assoiative-ommutativeongruene losure for E0, we need to prove the three onditions inDe�nition 7.1. The transition rules ensure that R1 onsists of only D-rules, C-rules, and A-rules. We prove that every onstant represents someterm in T (�) by indution. Let  be any onstant in K1. Sine allonstants are added by extension, let f(1; : : : ; k)!  be the ruleintrodued by extension when  was added. As indution hypothesiswe an assume that all onstants added before  represent a term inT (�) via R1. Therefore, there exist terms s1; : : : ; sk 2 T (�) suhthat si $�ACnRe1 i and hene,f(s1; : : : ; sk)$�ACnRe1 f(1; : : : ; k)![iRi :Using Lemma 7, f(s1; : : : ; sk)$�Re1[E1[AC . Lemma 8 shows thatE1 = ;, and f(s1; : : : ; sk)$�ACnRe1 .
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34 L. Bahmair, A. Tiwari, and L. Vigneron2. Lemma 8 shows that ACnRe1 is ground onvergent.3. Let s; t 2 T (�). Using Lemma 7, we know s $�E[AC t if, andonly if, s $�E1[R1[AC t. Sine E1 = ;, Lemma 8 implies thats!�ACnRe1 Æ $�AC Æ  �ACnRe1 t.Sine R1 is �nite, there exists a k suh that R1 � Rk. Thus, theset of persisting rules an be obtained using only �nite derivations.5.4. OptimizationsThe set of transition rules for omputing an AC ongruene losure anbe further enhaned by additional simpli�ations and optimizations.First, we an atten terms in E.Flattening: (K;E [ fs � tg; R)(K;E [ fu � tg; R)where s!F u.However, now the orretness proof given above, Lemma 7 in par-tiular, fails as the new proof s $AC u $E0 t of the deleted equations � t is larger than the old proof s$E0 t. But we an still establish theorretness of the extended set of inferene rules as follows: Assume thatattening does not delete the equation s � t from E but only marks it.All subsequent derivation steps do not work on the marked equations.One the derivation onverges (ignoring the marked equations), we andelete the marked equations as any suh equation, say s � t, wouldhave a proof s $AC u $AC[R1 t, and hene also a desired rewriteproof (using the persisting set of rewrite rules).As a onsequene of the attening rule, we an onstrut fully at-tened AC ongruene losures, i.e., where eah term in the ongruenelosure is fully attened.As a seond optimization, the extension variable of a rewrite rule anbe onstrained to allow for �ne-grained deletion of instanes of rewriterules. For example, after deduing the ritial pair f12 � f23 thatarises by overlapping the rules f12x! f2x and f11y ! f3y, wean delete the instane f112 ! f32 of the latter rule as it has asmaller proof f112 ! f12 � f23 using the dedued equation.We an delete this instane by replaing the rule f11y ! f3y bythe new rule f11y ! f3y if C, where C is the onstraint that \y isnot of the form f(2; z)". These new onstraints an be arried to newequations generated in a dedution step.Finally, note that, as in the ase of ongruene losure disussedbefore, we an hoose the ordering between two onstants in K on
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Abstrat Congruene Closure 35the y. As an optimization we ould always hoose it in a way so asto minimize the appliations of ACCollapse and omposition later. Inother words, when we need to hoose the orientation for  � d, wean ount the number of ourrenes of  and d in the set of D- andA-rules (in the R-omponent of the state), and the onstant with fewerourrenes is made larger.5.5. PropertiesThe results in the previous setions establish the deidability of theword problem for ground theories presented over a signature ontain-ing �nitely many assoiative-ommutative symbols. Note that we areimpliitly deomposing the equations (over a signature onsisting ofseveral symbols) into equations over exatly one funtion symbol anda set of new onstants. A set of equations over exatly one AC symboland �nitely many onstants de�nes a �nitely presented ommutativesemigroup.The word problem for ommutative semigroups is known to beomplete for deterministi EXP spae [9℄. It is a simple observationthat the word problem for ommutative semigroups an be redued tothe ideal membership problem for binomial ideals. In fat, an optimalexponential spae algorithm for generating the redued Gr�obner basisof binomial ideals was presented in [19℄, but that algorithm was notbased on ritial pair ompletion.Thus, using the approah proposed in our paper, we an onstrutan AC ongruene losure in time O(nj�jT (n)) and spae O(n2+S(n))using an algorithm for onstruting Gr�obner bases for binomial idealsthat uses O(T (n)) time and S(n) spae. We have not worked out thetime omplexity of the ritial pair ompletion based algorithm (aspresented in our paper) for onstruting Gr�obner bases for binomialideals and that remains as future work.6. Constrution of Ground Convergent Rewrite SystemsWe have presented transition rules for onstruting a onvergent pre-sentation in an extended signature for a set of ground equations. Wenext disuss the problem of obtaining a ground onvergent (AC) rewritesystem for the given ground (AC-) theory in the original signature.Hene, now we fous our attention on the problem of transforming aonvergent system over an extended signature to a onvergent systemin the original signature.The basi idea of transforming bak is elimination of onstants fromthe presentation R as follows: (i) if a onstant  is not redundant (Def-
final.tex; 9/02/2002; 14:52; p.35



36 L. Bahmair, A. Tiwari, and L. Vigneroninition 3), then we pik a term t 2 T (�) that is represented by , andreplae all ourrenes of  by t in R; (ii) if a onstant  is redundant(and say ! d is a C-rule in whih  ours as the left-hand side term),then all ourrenes of  an be replaed by d in R.In the ase when there are no AC-symbols in the signature, the abovemethod generates a ground onvergent system from any given abstratongruene losure. This gives an indiret way to onstrut ground on-vergent systems equivalent to a given set of ground equations. However,we run into problems when we use the same method for translation inpresene of AC-symbols. Typially, after translating bak, the set ofrules obtained is non-terminating modulo AC (see Example 6). But ifwe suitably de�ne the notion of AC-rewriting, the rules are seen to beonvergent in the new de�nition. This is useful in two ways: (i) the newnotion of AC-rewriting seems to be more pratial, in the sense that itinvolves stritly less work than a usual ACnRe redution; and, (ii) ithelps to larify the advantage o�ered by the use of extended signatureswhen dealing with a set of ground equations over a signature ontainingassoiative and ommutative symbols.6.1. Transition RulesWe desribe the proess of transforming a rewrite system over an ex-tended signature �[K to a rewrite system over the original signature �by transformation rules on states (K;R), whereK is the set of onstantsto be eliminated, and R is a set of rewrite rules over � [ K to betransformed.Redundant onstants an be easily eliminated by the ompressionrule.Compression: (K [ fg; R [ f! tg)(K;Rh 7! ti)where h 7! ti denotes the (homomorphi extension of the) mapping 7! t, and Rh 7! ti denotes the appliation of this homomorphism toeah term in the set R.The basi idea for eliminating a onstant  that is not redundant inR involves piking a representative term t (over the signature �) in theequivalene lass of , and replaing  by t everywhere in R.Seletion: (K [ fg; R [ ft! g)(K;Rh 7! ti [R0)if (i)  is not redundant in R, (ii) t 2 T (�), and (iii) if t � f(t1; : : : ; tk)with f 2 �AC then R0 = ff(t1; : : : ; tk;X) ! f(f(t1; : : : ; tk);X)g,otherwise R0 = ;.
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Abstrat Congruene Closure 37In ase �AC = ;, we note that R0 will always be empty. We alsorequire that terms are not attened after the appliation of mappingRh 7! ti. The variable X is a speial sequene variable whih an onlybe instantiated by non-empty sequenes. We shall formally de�ne itsrole later.Example 6. Consider the problem of onstruting a ground onver-gent system for the set E0 from Example 5. A fully-redued ongruenelosure for E0 is given by the set R0a ! 1 b ! 2  ! 3 f23 ! 4f34 ! 2 f13 ! 1 f22 ! f44 f12 ! f14g4 ! 4under the ordering 2 � 4 between onstants. For the onstants 1; 2and 3 we have no hoie but to hoose a; b and  as representativesrespetively. Thus after three appliations of seletion, we getf4 ! b fa ! a fbb ! f44fb ! 4 g4 ! 4 fab ! fa4Next we are fored to hoose fb as the representative for the lass 4.This gives us the transformed set R1,f(fb) ! b fa ! a fbb ! f(fb)(fb)fbX ! f(fb)X gfb ! fb fab ! fa(fb)The relation !ACnRe1 is learly non-terminating (with the variable Xonsidered as a regular term variable).6.2. Rewriting with Sequene Extensions moduloPermutation CongrueneLet X denote a variable ranging over non-empty sequenes of terms.A sequene substitution � is a substitution that maps variables to thesequenes. If � is a sequene substitution that maps X to the sequenehs01; : : : ; s0mi, then f(s1; : : : ; sk;X)� is the term f(s1; : : : ; sk; s01; : : : ; s0m).DEFINITION 9. Let � be a ground rule of the form f(t1; : : : ; tk) !g(s1; : : : ; sm) where f 2 �AC. We de�ne the sequene extension�s of � as f(t1; : : : ; tk;X) ! f(s1; : : : ; sm;X) if f = g, and asf(t1; : : : ; tk;X)! f(g(s1; : : : ; sm);X) if f 6= g.Now we are ready to de�ne the notion of rewriting we use. Reallthat P denotes the equations de�ning the permutation ongruene,and that AC = F [ P . Given a set R, we denote by Rs the set R plussequene extensions of all ground rules in R.
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38 L. Bahmair, A. Tiwari, and L. VigneronDEFINITION 10. Let R be a set of rewrite rules. For ground termss; t 2 T (�), we say that s !PnRs t if there exists a rule l ! r 2 Rsand a sequene substitution � suh that s = C[l0℄, l0 $�P l�, r0 = r�,and t = C[r0℄.Note that the di�erene with standard rewriting modulo AC is thatinstead of performing mathing modulo AC, we do mathing modulo P .For example, if � is fa! a, then the term f(f(a; b); ) is not reduibleby!Pn�s , although it is reduible by!ACn�e . The term f(f(a; b); ; a)an be rewritten by !Pn�s to f(f(a; b); a).Example 7. Following up on Example 6, we note that the relationPnRs1 is onvergent. For instane, a normalizing rewrite derivation forthe term fab is,fab !PnRs1 fa(fb) !PnRs1 fab !PnRs1 fa(fb):On loser inspetion, we �nd that we are essentially doing a derivationin the original rewrite system R0 (over the extended signature),f123 !PnRs0 f143 !PnRs0 f12 !PnRs0 f14:A PnRs0 proof step an be projeted onto a PnRs1 proof step, seeLemma 9(a) and Lemma 10(a). This is at the ore of the proof oforretness, see Theorem 6.6.3. CorretnessWe shall prove that ompression and seletion transform a fully at-tened AC ongruene losure over �[K into a rewrite system R over� whih is onvergent modulo P and whih de�nes the same equationaltheory over fully attened terms over �. First note that any derivationstarting from the state (K;R), where R is an AC ongruene losureover � and K, is �nite. This is beause K is �nite, and eah applia-tion of ompression and seletion redues the ardinality of K by one.Furthermore, in any intermediate state (K;R), R is always a rewritesystem over � [ K. Hene, in the �nal state (K1; R1), if K1 = ;,then, R1 is a rewrite system over �, the original signature. We willshow that K1 is atually empty, and that the redution relation PnRs1is terminating on T (�) and onuent on fully attened terms in T (�).In this setion, we say R is left-redued (modulo P ) if every left-hand side of any rule in R is irreduible by Pn� and Pn�s for everyother rule � in R; and, R is terminating (modulo P ) if PnRs is.
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Abstrat Congruene Closure 39LEMMA 9. Let (K1; R1 = R00�) be obtained from (K0 = K1[fg; R0 =R00[f! ug) using ompression, where � = h 7! ui. Assume that therewrite system R0 is left-redued and terminating. Then,(a) For any two terms s; t 2 T (� [K0), if s!PnRs0 t, then s� !0;1PnRs1t�.(b) For any two terms s; t 2 T (� [K1), if s!PnRs1 t, then s� $+PnRs0t�, where � = hu 7! i16.() R1 is left-redued and terminating.Proof. To prove (a), let s; t be two terms over � [ K0 suh thats = C[l00℄, l00 $�P l0�s, and t = C[r0�s℄, where l0 ! r0 is (a sequeneextension of) some rule inR0 and �s is a sequene substitution. Clearly,(l0�s)� = (l0�)(�s�) = l1(�s�), and similarly (r0�s)� = (r0�)(�s�) =r1(�s�), where either l1 = r1, or, l1 ! r1 is (a sequene extension of)some rule in R1. In the �rst ase, s� $�P t� and in the seond ase,s� !PnRs1 t�.To prove (b), note that sine R0 is left-redued, a ompressionstep has the same e�et as a sequene of omposition steps followedby deletion of a rule. Hene, if s !Rs1 t, then s $+Rs0 t. Therefore,s�!�f!ug s$+R0 t �f!ug t�.To prove (), note that termination is preserved by omposition anddeletion. Furthermore, the left-hand side terms do not hange, andhene the system ontinues to remain left-redued.LEMMA 10. Let (K1; R1 = R00� [ R0) be obtained from (K0 = K1 [fg; R0 = R00 [ fu ! g) using seletion, where � = h 7! ui. Assumethat the rewrite system R0 is left-redued and terminating. Then,(a) For any two terms s; t 2 T (� [K0), if s!PnRs0 t, then s� !0;1PnRs1t�.(b) For any two terms s; t 2 T (� [K1), if s!PnRs1 t, then s� !+PnRs0t�, where � = hu 7! i.() R1 is left-redued and terminating.Proof. The proof of (a) is idential to the proof of Lemma 9(a).Note that in the ase when u = f(u1; : : : ; uk), where f 2 �AC , s $�PC[f(u1; : : : ; uk;X�s)℄, and t = C[f(;X�s)℄, the proofs� $�P (C�)[f(u1; : : : ; uk;X�s�)℄!PnRs1 (C�)[f(f(u1; : : : ; uk);X�s�)℄ = t�16 Note that if � is de�ned by hfab 7! 0i, then fab� = fab, but f(fab)� = f0.
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40 L. Bahmair, A. Tiwari, and L. Vigneronuses the rule in the set R0.To prove (b), let s; t be two terms over � [ K1 suh that s $�PC[l1�s℄ and t = C[r1�s℄, where l1 ! r1 is (a sequene extension of)some rule in R1. First onsider the ase when l1 = f(u1; : : : ; uk;X)!f(f(u1; : : : ; uk);X) = r1 is the rule in R0, and sine X�s is non-empty,s�$�P (C�)[f(u1; : : : ; uk;X�s�)℄!PnRs0 (C�)[f(;X�s�)℄ = t�:In the other ase, assume l1 = l0� and r1 = r0�, where l0 ! r0 is (anextension of) some rule di�erent from u !  in R0. Sine R0 is left-redued modulo P , s�$�P (C[(l0�)�s℄)� = (C�)[l0(�s�)℄, and thereforewe have,s�$�P (C�)[l0(�s�)℄!R0 (C�)[r0(�s�)℄!�fu!g (C[(r0�)�s℄)� = t�:Sine R0 is terminating, it follows from (b) that R1 is also terminat-ing. Finally, to prove that R1 = R00�[R0 is left-redued, note that R00�is left-redued beause R0 is. Furthermore, Condition (i) in seletionand the fat that R0 is left-redued together imply that R00� [ R0 isleft-redued too.The seond step in the orretness argument involves showing thatif Ki 6= ;, then we an always apply either seletion or ompression toget to a new state.LEMMA 11. Let (Ki; Ri) be a state in the derivation starting from(K0; R0), where R0 = D0 [ C0 [ A0 is a left-redued (modulo AC)assoiative-ommutative ongruene losure over the signature �[K0.Assume that for every onstant  in K0, there exists a term t inT (�) suh that17 t !�D0=C0 18. If Ki 6= ;, then either seletion orompression is appliable to the state (Ki; Ri).Proof. Sine Ki 6= ;, let  be some onstant in Ki. By assumption represents some term t 2 T (�) suh that t!�D0=C0  19. It follows fromonvergene of ACnR0 that,t !�D0[C0 0  �C0 :Sine R0 is a left-redued (modulo AC) ongruene losure, thereforeR0 is left-redued and terminating modulo P , and hene Lemma 9 and17 !D=C= ($�C Æ !D Æ $�C).18 If �AC = ;, then this ondition is satis�ed by any abstrat ongruene losure.19 Note that if the non-extended form of an A-rule is a D-rule, it is inluded inthe set D0.
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Abstrat Congruene Closure 41Lemma 10 are appliable. As none of the onstants in K0 �Ki ourin the terms t and , using Lemma 9(a) and Lemma 10(a), we havet !�PnRsi Æ  �PnRsi ;where the right-hand side of eah rule used in the above proof is eithera onstant or a term in T (�). If it is the ase that  is reduible by Ri,then  is a redundant onstant whih an be eliminated by ompression.If there are no redundant onstants, then the above proof is of the formt !�PnRsi . If l ! d 2 Rsi is the �rst rule used in the above proofthat has a onstant as a right-hand side, then we an hoose l as therepresentative for d and hene seletion is appliable.THEOREM 6. If (K1; R1) is the �nal state of a maximal derivationstarting from state (K;R), where R is a left-redued fully attened ACongruene losure suh that for every onstant  in K0, there exists aterm t in T (�) suh that t !�D0=C0 , then (i) K1 = ;, (ii) !PnRs1is ground onvergent on all fully attened terms over �, and (iii) theequivalene over attened T (�) terms de�ned by this relation is thesame as the equational theory indued by R [ AC over attened T (�)terms.Proof. Statement (i) is a onsequene of Lemma 11. It follows fromLemma 9() and Lemma 10() that !PnRs1 is terminating. Let s; tbe fully attened terms over T (�) suh that s $�P[Rs1 t. UsingLemma 9(b) and Lemma 10(b), it follows that s$�AC[R t. This, in turn,implies that s !�ACnRe Æ $�AC Æ  �ACnRe t, and hene, by projetingthis proof onto fully attened terms (normalize eah term in the proofby F ), we obtain a proof s!�PnRs Æ $�P Æ  �PnRs t, as R is assumed tobe fully attened. Using Lemma 9(a) and Lemma 10(a), this normalform proof an be projeted onto a proof s!�PnRs1 Æ $�P Æ  �PnRs1 t.This establishes laims (ii) and (iii).Note that in the speial ase when �AC is empty, the notionof rewriting orresponds to the standard notion, and hene R1 isonvergent in the standard sense by this theorem.7. ConlusionAbstrat Congruene ClosureKapur [18℄ onsidered the problem of asting Shostak's ongruene lo-sure [28℄ algorithm in the framework of ground ompletion on rewrite
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42 L. Bahmair, A. Tiwari, and L. Vigneronrules. Our work has been motivated by the goal of formalizing notjust one, but several ongruene losure algorithms, so as to be able tobetter ompare and analyze them.We have suggested that, abstratly, ongruene losure an be de-�ned as a ground onvergent system; and that this de�nition does notrestrit the appliability of ongruene losure. We give strong boundson the length of derivations used to onstrut an abstrat ongruenelosure. This brings out a relationship between derivation lengths andterm orderings used in the derivation. The rule-based abstrat desrip-tion of the logial aspets of the various published ongruene losurealgorithms leads to a better understanding of these methods. It ex-plains the observed behaviour of implementations and also allows oneto identify weaknesses in spei� algorithms.The paper also illustrates the use of an extended signature as aformalism to model and subsequently reason about data strutures likethe term dags, whih are based on the idea of struture sharing. Thisinsight is more generally appliable to other algorithms as well [6℄.Effiient Constrution of Ground Convergent SystemsGraph-based ongruene losure algorithms have also been used toonstrut a onvergent set of ground rewrite rules in polynomial timeby Snyder [29℄. Plaisted et. al. [25℄ gave a diret method, not basedon using ongruene losure, for ompleting a ground rewrite systemin polynomial time. Hene our work ompletes the missing link, byshowing that ongruene losure is nothing but ground ompletion.Snyder [29℄ uses a partiular implementation of ongruene losuredue to whih some postproessing followed by a seond run of ongru-ene losure is required. We, on the other hand, work with abstratongruene losure and are free to hoose any implementation. All thesteps in the algorithm in [29℄ an be desribed using our onstrutionof abstrat ongruene losure steps, and the �nal output of Snyder'salgorithm orresponds to an abstrat ongruene losure. The om-pression and seletion rules for translating bak in our work, atuallyorrespond to what Snyder alls printing-out the redued system andthis is not inluded in the algorithms time omplexity of O(n log(n))as omputed in [29℄. Finally, the approah in [29℄ is to solve theproblem \by abandoning rewriting tehniques altogether and reastingthe problem in graph theoreti terms." On the other hand, we stik torewriting over extensions.Plaisted and Sattler-Klein [25℄ show that ground term-rewriting sys-tems an be ompleted in a polynomial number of rewriting steps byusing an appropriate data struture for terms and proessing the rules
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Abstrat Congruene Closure 43in a ertain way. Our work desribes the onstrution of ground onver-gent systems using ongruene losure as ompletion with extensions,followed by a translating bak phase. Plaisted and Sattler-Klein provea quadrati time omplexity of their ompletion proedure.AC Congruene ClosureThe fat that we an onstrut an AC ongruene losure implies thatthe word problem for �nitely presented ground AC-theories is deid-able, see [20℄, [22℄ and [14℄. Note that we arrive at this result withoutassuming the existene of an AC-simpli�ation ordering that is total onground terms. The existene of suh AC-simpli�ation orderings wasestablished in [22℄, but required a non-trivial proof.Sine we onstrut a onvergent rewrite system, even the problemof determining whether two �nitely presented ground AC-theories areequivalent, is deidable. Sine ommutative semigroups are speialkinds of AC-theories, where the signature onsists of a single AC-symbol and a �nite set of onstants, these results arry over to thisspeial ase [21, 19℄.The idea of using variable abstration to transform a set of equationsover several AC-symbols into a set of equations in whih eah equationontains exatly one AC-symbol appears in [14℄. All equations on-taining the same AC-symbol are separated out, and ompleted into aanonial rewriting system (modulo AC) using the method proposedin [7℄. However, the ombination of ground AC-theories with otherground theories is done di�erently here. In [14℄, the ground theory(non-AC part) is handled using ground ompletion (and uses a reur-sive path ordering during ompletion). We, on the other hand, use aongruene losure. The usefulness of our approah an also be seenfrom the simpliity of the orretness proof and the results we obtainfor transforming a onvergent system over an extended signature to oneover the original signature.The method for ompleting a �nitely presented ommutative semi-group (using what we all A-rules here) has been desribed in variousforms in the literature, e.g. [7℄)20. It is essentially a speialization ofBuhberger's algorithm for polynomial ideals to the ase of binomialideals (i.e. when the ideal is de�ned by polynomials onsisting of exatlytwo monomials with oeÆients +1 and �1).20 Atually there is a subtle di�erene between the proposed method here and thevarious other algorithms for deiding the word problem for ommutative semigroupstoo. For example, working with rule extensions is not the same as working with ruleson equivalene lasses (under AC) of terms. Hene, in our method, we an applyertain optimizations as mentioned in Setion 5.4.
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