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t. We des
ribe the 
on
ept of an abstra
t 
ongruen
e 
losure and provideequational inferen
e rules for its 
onstru
tion. The length of any maximal derivationusing these inferen
e rules for 
onstru
ting an abstra
t 
ongruen
e 
losure is at mostquadrati
 in the input size. The framework is used to des
ribe the logi
al aspe
tsof some well-known algorithms for 
ongruen
e 
losure. It is also used to obtainan eÆ
ient implementation of 
ongruen
e 
losure. We present experimental resultsthat illustrate the relative di�eren
es in performan
e of the di�erent algorithms. Thenotion is extended to handle asso
iative and 
ommutative fun
tion symbols, thusproviding the 
on
ept of an asso
iative-
ommutative 
ongruen
e 
losure. Congruen
e
losure (modulo asso
iativity and 
ommutativity) 
an be used to 
onstru
t ground
onvergent rewrite systems 
orresponding to a set of ground equations (
ontainingAC symbols).Keywords: Term Rewriting, Congruen
e Closure, Asso
iative-Commutative The-ories 1. Introdu
tionTerm rewriting systems provide a simple and very general me
hanismfor 
omputing with equations. The Knuth-Bendix 
ompletion methodand its extensions to equational term rewriting systems 
an be usedon a variety of problems. However, 
ompletion based methods yieldsemi-de
ision pro
edures usually, and in the few 
ases where they pro-vide de
ision pro
edures, the time 
omplexity is 
onsiderably worsethan 
ertain other eÆ
ient algorithms for solving the same problem.On the other hand, the spe
ialized de
ision algorithms for parti
ularproblems are not very useful when 
onsidered for integration withgeneral-purpose theorem proving systems. Moreover, the logi
al as-� The resear
h des
ribed in this paper was supported in part by the NationalS
ien
e Foundation under grant CCR-9902031. Some of the results des
ribed in thispaper also appeared in [5, 4℄.
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2 L. Ba
hmair, A. Tiwari, and L. Vigneronpe
ts inherent in the problem and the algorithm seem to get lost indes
riptions of spe
i�
 algorithms.We are interested in developing eÆ
ient pro
edures for a large 
lassof de
idable problems using standard and general te
hniques from the-orem proving so as to bridge the gap alluded to above. We �rst 
onsiderequational theories indu
ed by systems of ground equations. EÆ
ientalgorithms for 
omputing 
ongruen
e 
losure 
an be used to de
ideif a ground equation is an equational 
onsequen
e of a set of groundequations. All algorithms for 
ongruen
e 
losure 
omputation rely onthe use of 
ertain data-stru
tures, in the pro
ess obs
uring any inherentlogi
al aspe
ts.In general, a system of ground equations 
an be 
ompleted intoa 
onvergent ground term rewriting system using a total terminationordering. However, this pro
ess 
an in the worst 
ase take exponen-tial time unless the rules are pro
essed using a 
ertain strategy [25℄.Even under the spe
i�
 strategy, the resulting 
ompletion pro
edureis quadrati
 and the O(n log(n)) eÆ
ien
y of 
ongruen
e 
losure algo-rithms is not attained. There are known te
hniques [29℄ to 
onstru
tground 
onvergent systems that use graph based 
ongruen
e 
losurealgorithms.We attempt to 
apture the essen
e of some of the eÆ
ient 
ongruen
e
losure algorithms using standard te
hniques from term rewriting. Wedo so by introdu
ing symbols and extending the signature to abstra
tlyrepresent sharing that is inherent in the use of term dire
ted a
y
li
graph data stru
tures. We thus de�ne a notion of abstra
t 
ongruen
e
losure and provide transition rules that 
an be used to 
onstru
tsu
h abstra
t 
ongruen
e 
losures. A whole 
lass of 
ongruen
e 
lo-sure algorithms 
an be obtained by 
hoosing suitable strategies (andimplementations) for the abstra
t transition rules. The 
omplexity ofany su
h 
ongruen
e 
losure algorithm is dire
tly related to the lengthof derivation (using these transition rules) required to 
ompute an ab-stra
t 
ongruen
e 
losure with the 
hosen strategy. We give bounds onthe length of arbitrary maximal derivations and show its relationshipwith the 
hoi
e of ordering used for 
ompletion.We des
ribe some of the spe
i�
 well-known 
ongruen
e 
losure algo-rithms in the framework of abstra
t 
ongruen
e 
losure, and show thatthe abstra
t framework suitably 
aptures the sour
es of eÆ
ien
y insome of these algorithms. The des
ription separates the logi
al aspe
tsinherent in these algorithms from implementation details.The 
on
ept of an abstra
t 
ongruen
e 
losure is useful in more thanone way. Many other algorithms, like those for synta
ti
 uni�
ation andrigid E-uni�
ation, that rely either on 
ongruen
e 
losure 
omputationor on the use of term dag representation for eÆ
ien
y, also admit
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Abstra
t Congruen
e Closure 3simpler and more abstra
t des
riptions using an abstra
t 
ongruen
e
losure [6, 5℄.Furthermore, if 
ertain fun
tion symbols in the signature are as-sumed to be asso
iative and 
ommutative, we 
an introdu
e standardte
hniques from rewriting modulo an equational theory to handle it.Thus, we obtain a notion of 
ongruen
e 
losure modulo asso
iativ-ity and 
ommutativity. As an additional appli
ation, we 
onsider theproblem of 
onstru
ting ground 
onvergent systems (in the originalsignature) for a set of ground equations. We show how to eliminatethe new 
onstants introdu
ed earlier to transform all equations ba
k tothe original signature while preserving some of the ni
e properties ofthe system over the extended signature, thus generalizing the resultsin [29℄.1.1. PreliminariesLet � be a set, 
alled a signature, with an asso
iated arity fun
tion� : �!2IN and let V be a disjoint (denumerable) set. We de�ne T (�;V)as the smallest set 
ontaining V and su
h that f(t1; : : : ; tn) 2 T (�;V)whenever f 2 �; n 2 �(f) and t1; : : : ; tn 2 T (�;V). The elements of thesets �, V and T (�;V) are respe
tively 
alled fun
tion symbols, variablesand terms (over � and V). Elements 
 in � for whi
h �(
) = f0g are
alled 
onstants. By T (�) we denote the set T (�; ;) of all variable-free, or ground terms. The symbols s; t; u; : : : are used to denote terms;f; g; : : :, fun
tion symbols; and x; y; z; : : :, variables. We write t[s℄ toindi
ate that a term t 
ontains s as a subterm and (ambiguously) denoteby t[u℄ the result of repla
ing a parti
ular o

urren
e of s by u.An equation is a pair of terms, written s � t. The repla
ementrelation !Eg indu
ed by a set of equations E is de�ned by: u !Eg vif, and only if, u = u[l℄ 
ontains l as a subterm and v = u[r℄ is obtainedby repla
ing l by r in u, where l � r is in E. The rewrite relation !Eindu
ed by a set of equations E is de�ned by: u !E v if, and only if,u = u[l�℄, v = u[r�℄, l � r is in E, and � is some substitution.If! is a binary relation, then denotes its inverse,$ its symmetri

losure,!+ its transitive 
losure and!� its re
exive-transitive 
losure.Thus, $�Eg denotes the 
ongruen
e relation1 indu
ed by E. We willmostly be interested in sets E of ground equations when
e the dis-tin
tion between rewrite relation and repla
ement relation disappears.The equational theory of E is de�ned as the relation $�E . Equationsare often 
alled rewrite rules, and a set E a rewrite system, if one1 A 
ongruen
e relation is a re
exive, symmetri
 and transitive relation on termsthat is also a repla
ement relation.
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4 L. Ba
hmair, A. Tiwari, and L. Vigneronis interested parti
ularly in the rewrite relation !�E rather than theequational theory $�E .A term t is irredu
ible, or in normal form, with respe
t to a rewritesystem R, if there is no term u, su
h that t!R u. We write s!!R t toindi
ate that t is an R-normal form of s.A rewrite system R is said to be (ground) 
on
uent if for everypair s; s0 of (ground) terms, if there exists a (ground) term t su
h thats  �R t !�R s0, then there exists a (ground) term t0 su
h that s !�Rt0  �R s0. Thus, if R is (ground) 
on
uent, then every (ground) termt has at most one normal form. A rewrite system R is terminating ifthere exists no in�nite redu
tion sequen
e s0 !R s1 !R s2 � � � of terms.Clearly, if R is terminating, then every term t has at least one normalform. Rewrite systems that are (ground) 
on
uent and terminating are
alled (ground) 
onvergent.A rewrite system R is left-redu
ed if every left-hand side term (ofany rule in R) is irredu
ible by all other rules in R. A rewrite systemR is right-redu
ed if every right-hand side term (of any rule in R) is inR-normal form. A rewrite system that is both left-redu
ed and right-redu
ed is said to be fully redu
ed.2. Abstra
t Congruen
e ClosureWe �rst des
ribe the form of terms and equations that will be usedin the des
ription of an abstra
t 
ongruen
e 
losure. De�nitions thatintrodu
e similar 
on
epts also appear in [16, 17, 18, 27℄.DEFINITION 1. Let � be a signature and K be a set of 
onstantsdisjoint from �. A D-rule (with respe
t to � and K) is a rewrite ruleof the form f(
1; : : : ; 
k) ! 
where f 2 � is a k-ary fun
tion symbol and 
1; : : : ; 
k; 
 are 
onstantsin set K.A C-rule (with respe
t to K) is a rule 
 ! d, where 
 and d are
onstants in K.For example, if �0 = fa; b; fg, and E0 = fa � b; ffa � fbg2 thenD0 = fa! 
0; b! 
1; f
0 ! 
2; f
2 ! 
3; f
1 ! 
4gis a set of D-rules over �0 and K0 = f
0; 
1; 
2; 
3; 
4g. Using theseD-rules we 
an simplify the original equations in E0. For example, the2 When writing a term, we remove parentheses wherever possible for 
larity.
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Abstra
t Congruen
e Closure 5term ffa 
an be rewritten to 
3 as ffa !D0 ff
0 !D0 f
2 !D0 
3.Original equations in E0 
an thus be simpli�ed using D0 to give C0 =f
0 � 
1; 
3 � 
4g. The set D0 [ C0 may be viewed as an alternativerepresentation of E0 over an extended signature. The equational theorypresented by D0[C0 is a 
onservative extension of the theory E0. Thisreformulation of the equations E0 in terms of an extended signature is(impli
itly) present in all 
ongruen
e 
losure algorithms, see Se
tion 3.The 
onstants in the set K 
an be thought of as names for equiv-alen
e 
lasses of terms. A D-rule f(
1; : : : ; 
k) ! 
0 indi
ates thata term with top fun
tion symbol f and arguments belonging to theequivalen
e 
lasses 
1; : : : ; 
k itself belongs to the equivalen
e 
lass 
0.In this sense, a set of D-rules 
an be thought of as de�ning a bottom-uptree automaton [10℄. Other interpretations for the 
onstants in K arepossible too, espe
ially in the 
ontext of term dire
ted a
y
li
 graph(dag) representation, see Se
tion 3 for details.A 
onstant 
 in K is said to represent a term t in T (� [ K) (viathe rewrite system R) if t $�R 
. A term t is represented by R if it isrepresented by some 
onstant in K via R. For example, the 
onstant
3 represents the term ffa via D0.DEFINITION 2 (Abstra
t 
ongruen
e 
losure). Let � be a signatureand K be a set of 
onstants disjoint from �. A ground rewrite systemR = D [ C of D-rules and C-rules (with respe
t to � and K) is saidto be an (abstra
t) 
ongruen
e 
losure if(i) ea
h 
onstant 
 2 K represents some term t 2 T (�) via R, and(ii) R is ground 
onvergent.If E is a set of ground equations over T (� [K) and in addition R issu
h that(iii) for all terms s and t in T (�), s $�E t if, and only if, s !�RÆ  �R t,then R will be 
alled an (abstra
t) 
ongruen
e 
losure for E.Condition (i) essentially states that K 
ontains no super
uous 
on-stants; 
ondition (ii) ensures that equivalent terms have the samerepresentative (whi
h usually also implies that 
ongruen
e of terms 
anbe tested eÆ
iently); and 
ondition (iii) implies that R is a 
onservativeextension of the equational theory indu
ed by E over T (�).The rewrite system R0 = D0 [ f
0 ! 
1; 
3 ! 
4g above is not a
ongruen
e 
losure for E0, as it is not ground 
onvergent. But we 
antransform R0 into a suitable rewrite system, using a 
ompletion-likepro
ess des
ribed in more detail below, to obtain a 
ongruen
e 
losureR1 = fa! 
1; b! 
1; f
1 ! 
4; f
4 ! 
4;
0 ! 
1; 
2 ! 
4; 
3 ! 
4g:
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6 L. Ba
hmair, A. Tiwari, and L. Vigneron2.1. Constru
tion of Abstra
t Congruen
e ClosuresWe next present a general method for 
onstru
tion of an abstra
t 
on-gruen
e 
losure. Our des
ription is fairly abstra
t, in terms of transitionrules that manipulate triples (K;E;R), where K is the set of 
onstantsthat extend the original �xed signature �, E is the set of ground equa-tions (over �[K) yet to be pro
essed, and R is the set of C-rules andD-rules that have been derived so far. Triples represent states in thepro
ess of 
onstru
ting a 
ongruen
e 
losure. Constru
tion starts froman initial state (;; E; ;), where E is a given set of ground equations.The transition rules 
an be derived from those for standard 
omple-tion as des
ribed in [3℄, with some di�eren
es so that (i) appli
ationof the transition rules is guaranteed to terminate and (ii) a 
onvergentsystem is 
onstru
ted over an extended signature. The transition rulesdo not require a total redu
tion ordering3 on terms in T (�), but simplyan ordering on T (�[U) (that is, terms in T (�) need not be 
omparablein this ordering) where U is an in�nite set disjoint from � from whi
hnew 
onstants K � U are 
hosen. In parti
ular, we assume �U is anyordering on the set U and de�ne � by: 
 � d if 
 �U d and t � 
 ift! 
 is a D-rule. For simpli
ity, we take U to be the set f
0; 
1; 
2; : : :gand assume that 
i �U 
j if, and only if, i < j.A key transition rule introdu
es new 
onstants as names forsubterms.Extension: (K;E[t℄; R)(K [ f
g; E[
℄; R [ ft! 
g)where t! 
 is a D-rule, t is a term o

urring in (some equation in) E,and 
 2 U �K.The following three rules are versions of the 
orresponding rules forstandard 
ompletion spe
ialized to the ground 
ase.Simpli�
ation: (K;E[t℄; R [ ft! 
g)(K;E[
℄; R [ ft! 
g)where t o

urs in some equation in E. (It is fairly easy to see that byrepeated appli
ation of extension and simpli�
ation, any equation inE 
an be redu
ed to an equation that 
an be oriented by the ordering�.)Orientation: (K [ f
g; E [ ft � 
g; R)(K [ f
g; E;R [ ft! 
g)3 By an ordering we mean any irre
exive and transitive relation on terms. Aredu
tion ordering is an ordering that is also a well-founded repla
ement relation.An ordering � is total if for any two distin
t elements s and t, either s � t or t � s.
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Abstra
t Congruen
e Closure 7if t � 
.Trivial equations may be deleted.Deletion: (K;E [ ft � tg; R)(K;E;R)In the 
ase of 
ompletion of ground equations, dedu
tion steps 
anall be repla
ed by suitable simpli�
ation steps, in parti
ular by 
ollapse.However, in order to guarantee termination, we formulate 
ollapse bytwo di�erent spe
ialized transition rules. The usual side 
ondition inthe 
ollapse rule, whi
h refers to the en
ompassment ordering, 
an be
onsiderably simpli�ed in our 
ase.Dedu
tion: (K;E;R [ ft! 
; t! dg)(K;E [ f
 � dg; R [ ft! dg)Collapse: (K;E;R [ fs[
℄! 
0; 
! dg)(K;E;R [ fs[d℄! 
0; 
! dg)if 
 is a proper subterm of s.As in standard 
ompletion the simpli�
ation of right-hand sides ofrules in R by other rules is optional and not ne
essary for 
orre
tness.Right-hand sides of rules in R are always 
onstants.Composition: (K;E;R [ ft! 
; 
! dg)(K;E;R [ ft! d; 
! dg)Various known 
ongruen
e 
losure algorithms 
an be abstra
tly de-s
ribed using di�erent strategies over the above rules. All the abovetransition rules with the ex
eption of the 
omposition rule, 
onstitutethe mandatory set of transition rules.Example 1. Consider the set of equations E0 = fa � b; ffa � fbg.An abstra
t 
ongruen
e 
losure for E0 
an be derived from the initialstate (K0; E0; R0) = (;; E0; ;) as follows:i Constants Ki Equations Ei Rules Ri Transition0 ; E0 ;1 f
0g f
0 � b; ffa � fbg fa! 
0g Ext2 f
0g fffa � fbg fa! 
0; b! 
0g Ori3 f
0g fff
0 � f
0g fa! 
0; b! 
0g Sim (twi
e)4 f
0; 
1g ff
1 � f
0g R3 [ ff
0 ! 
1g Ext5 f
0; 
1g ff
1 � 
1g R3 [ ff
0 ! 
1g Sim6 K5 fg R5 [ ff
1 ! 
1g OriThe rewrite system R6 is an abstra
t 
ongruen
e 
losure for E0.
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8 L. Ba
hmair, A. Tiwari, and L. Vigneron2.2. Corre
tnessWe use the symbol ` to denote the one-step transformation relationon states indu
ed by the above transformation rules. A derivation is asequen
e of states (K0; E0; R0) ` (K1; E1; R1) ` � � �.THEOREM 1 (Soundness). If (K;E;R) ` (K 0; E0; R0), then, for allterms s and t in T (�[K), we have s$�E0[R0 t if, and only if, s$�E[R t.Proof. For simpli�
ation, orientation, deletion and 
omposition, the
laim follows from 
orre
tness result for the standard 
ompletion transi-tion rules [3℄. The 
laim is also easily veri�ed for the spe
ialized 
ollapseand dedu
tion rules.Now, suppose (K 0; E0; R0 = R[fu! 
g) is obtained from (K;E;R)using extension. For s; t 2 T (� [ K), if s $�E[R t, then 
learlys $�E0[R0 t. Conversely, if s $�E0[R0 t, then, s� $�E0�[R0� t�, where� is (homomorphi
 extension of) the mapping 
 7! u. But s� = s andt� = t as 
 62 K. Furthermore, E0� = E, and R0� = R [ fu ! ug.Therefore, s = s� $�E[R t� = t.LEMMA 1. Let K0 be a �nite set of 
onstants (disjoint from �), E0a �nite set of equations (over � [ K) and R0 a �nite set of D-rulesand C-rules su
h that for every C-rule 
 ! d in R0 we have 
 �Ud. Then ea
h derivation starting from the state (K0; E0; R0) is �nite.Furthermore, if (K0; E0; R0) `� (Km; Em; Rm), then the rewrite systemRm is terminating.Proof.We �rst de�ne the measure of a state (K;E;R) to be the num-ber of o

urren
es of symbols from � in E. Two states are 
omparedby 
omparing their measures using the usual \greater-than" orderingon natural numbers. It 
an be easily veri�ed that ea
h transformationrule either redu
es this measure, or leaves it un
hanged. Spe
i�
ally,extension always redu
es this measure.Now, 
onsider a derivation starting from the state (K0; E0; R0). Anysu
h derivation 
an be written as(K0; E0; R0) `� (Kn; En; Rn) ` (Kn+1; En+1; Rn+1) ` � � �where the derivation (Kn; En; Rn) ` (Kn+1; En+1; Rn+1) ` � � � 
ontainsno appli
ations of extension, and hen
e the set Kn = Kn+1 = � � � is�nite. Therefore, the ordering �Kn (de�ned as the restri
tion of theordering �U on Kn) is well-founded.Next we prove that the derivation (Kn; En; Rn) ` (Kn+1; En+1;-Rn+1) ` � � � is �nite. Assign a weight w(
) to ea
h symbol 
 in Kn sothat w(
) > w(d) if, and only if, 
 �Kn d; and set w(f) = maxfw(
) :
 2 Kng + 1, for ea
h f 2 �. Let � be the Knuth-Bendix ordering
final.tex; 9/02/2002; 14:52; p.8



Abstra
t Congruen
e Closure 9using these weights. De�ne a se
ondary measure of a state (K;E;R)as the set fffs; tgg : s � t 2 Eg [ fffsg; ftgg : s! t 2 Rg. Two statesare 
ompared by 
omparing their measures using a two-fold multisetextension4 of the ordering � on terms. It is straight forward to seethat appli
ation of any transition rule (ex
ept extension) to a stateredu
es the se
ondary measure of the state. Moreover, every rule in Rjis redu
ing in the redu
tion ordering�, and hen
e ea
h rewrite systemRj is terminating.The following lemma says that extension introdu
es no super
uous
onstants.LEMMA 2. Suppose (K;E;R) ` (K 0; E0; R0) and that for every 
 2 K,there exists a term s 2 T (�) su
h that 
 $�E[R s. Then, for everyd 2 K 0, there exists a term t 2 T (�) su
h that d$�E0[R0 t.Proof. If d 2 K 0 also belongs to the set K, then the 
laim is easilyproved using Theorem 1. Otherwise let d 2 K 0�K. The only non-trivial
ase is the 
ase when (K 0; E0; R0) is obtained using extension.Let f(
1; : : : ; 
k) ! d be the rule introdu
ed by extension. Sin
e
1; : : : ; 
k 2 K, there exist terms s1; : : : ; sk 2 T (�) su
h that si $�E[R
i and hen
e, using Theorem 1, si $�E0[R0 
i: The term f(s1; : : : ; sk) isthe required term t.We 
all a state (K;E;R) �nal if no mandatory transition rule isappli
able to this state. It follows from Lemma 1 that �nal states 
anbe �nitely derived. The third 
omponent of a �nal state is always anabstra
t 
ongruen
e 
losure.THEOREM 2. Let � be a signature and K1 a �nite set of 
onstantsdisjoint from �. Let E1 be a �nite set of equations over � [ K1 andR1 be a �nite set of D-rules and C-rules su
h that every 
 2 K1represents some term t 2 T (�) via E1 [ R1, and 
 �U d for ev-ery C-rule 
 ! d in R1. If (Kn; En; Rn) is a �nal state su
h that(K1; E1; R1) `� (Kn; En; Rn), then En = ; and Rn is an abstra
t
ongruen
e 
losure for E1 [R1 (over � and Kn).Proof. Sin
e the sets K1, E1, and R1 are �nite and the state(Kn; En; Rn) is obtained from (K1; E1; R1) using a �nite derivation,it follows that Kn, En, and Rn are all �nite sets. If En 6= ;, then either4 A multiset over a set S is a mapping M from S to the natural numbers. Anyordering � on a set S 
an be extended to an ordering �m on multisets over S asfollows: M �m N i� M 6= N and whenever N(x) > M(x) then M(y) > N(y), forsome y � x. The multiset ordering �m (on �nite multisets) is well founded if theordering � is well founded [13℄.
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10 L. Ba
hmair, A. Tiwari, and L. Vigneronextension or orientation will be appli
able. Sin
e (Kn; En; Rn) is a �nalstate, En = ;.In order to show that Rn is an abstra
t 
ongruen
e 
losure for E1 [R1, we need to prove the three 
onditions in De�nition 2.1. Lemma 2 implies that every 
 2 Kn represents some term t 2 T (�)via Rn.2. Using Lemma 1 we know that Rn is terminating. Furthermore, sin
e(Kn; En; Rn) is a �nal state, Rn is left-redu
ed. By the 
riti
al pairlemma [1℄, therefore, Rn is 
on
uent; and hen
e 
onvergent.3. Finally, Theorem 1 establishes that if s $�E1[R1 t for some s; t 2T (�), then s$�En[Rn t. Sin
e En = ; and Rn is 
onvergent, s!�RnÆ  �Rn t.2.3. PropertiesTo summarize, we have presented an abstra
t notion of 
ongruen
e
losure and given a method to 
onstru
t su
h an abstra
t 
ongruen
e
losure for a given set of ground equations. The only parameters re-quired by the pro
edure are a denumerable set U of 
onstants (disjointfrom �) and an ordering (irre
exive and transitive relation) on thisset. It might appear that the abstra
t 
ongruen
e 
losure one obtainsdepends on the ordering �U used. In this se
tion, we �rst show thatwe 
an 
onstru
t an abstra
t 
ongruen
e 
losure that is independent ofthe ordering on 
onstants.In the pro
ess of 
onstru
tion of an abstra
t 
ongruen
e 
losure, wemay dedu
e an equality between two 
onstants inK, and we require anordering�U to deal with su
h equations. Sin
e 
onstants are essentially\names" for equivalen
e 
lasses, it is redundant to have two di�erentnames for the same equivalen
e 
lass. Hen
e, one su
h 
onstant andthe 
orresponding ordering dependen
e 
an be eliminated.DEFINITION 3. Any 
onstant 
 2 K that o

urs as a left-hand sideof a C-rule in R is 
alled redundant in R.Redundant 
onstants in R 
an be eliminated after 
omposition and
ollapse steps with C-rules in R have been applied exhaustively.Compression: (K [ f
; dg; E;R [ f
! dg)(K [ fdg; Eh
 7! di; Rh
 7! di)if 
 o

urs only on
e as a left-hand side term, the notation h
 7! didenotes the homomorphi
 extension of the mapping � de�ned as �(
) =
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Abstra
t Congruen
e Closure 11d and �(x) = x for x 6= 
, and Eh
 7! di denotes the set of equationsobtained by applying the mapping h
 7! di to ea
h term in the set E.Corre
tness of the new enhan
ed set of transition rules for 
on-stru
tion of 
ongruen
e 
losure 
an be established in the same wayas before.THEOREM 3. Let � be a signature and E be a �nite set of equationsover �. Then, there exists an abstra
t 
ongruen
e 
losure D for E (over� and some K) 
onsisting only of D-rules.Proof. Let (;; E; ;) `� (Kn; En; Rn) su
h that none of the mandatorytransition rules nor 
ompression is appli
able to the state (Kn; En; Rn).We observe that the following version of soundness (Theorem 1) isstill true: if (Ki; Ei; Ri) ` (Kj ; Ej ; Rj), then, for all terms s and t inT (� [ (Ki \Kj)), s $�Ej[Rj t i� s $�Ei[Ri t. Additionally, Lemma 1and Lemma 2 
ontinue to hold with the new set of transition rules, andthe proofs remain essentially un
hanged. This establishes that we 
anuse Theorem 2 in this new setting to 
on
lude that Rn is an abstra
t
ongruen
e 
losure. Finally, sin
e 
ompression is not appli
able to the�nal state, there 
an be no C-rules in Rn.Graph-based 
ongruen
e 
losure algorithms 
an be des
ribed usingD-rules; see Se
tion 3. However, we 
an de�ne a generalized D-rule(with respe
t to � and K) as any rule of the form t ! 
 where
 2 K and t 2 T (�;K) � K, as done in [5℄. The transition rulesfor 
onstru
tion of 
ongruen
e 
losure 
an be suitably generalized withminimal 
hanges. The new de�nition of D-rules allows for preservingas mu
h of the original term stru
ture as possible.Choosing an ordering �U on the 
y: As remarked earlier, the set oftransition rules presented in Se
tion 2.15 for 
onstru
tion of abstra
t
ongruen
e 
losure is parameterized by a denumerable set U of 
on-stants and an ordering �U on this set. Sin
e elements of U serve onlyas names, we 
an 
hoose U to be any 
ountable set of symbols. Anordering �U need not be spe
i�ed a priori but 
an be de�ned on the 
yas the derivation pro
eeds. We need to maintain irre
exivity wheneverthe ordering relation is extended. Observe that we only need an orderingwhen there is a C-equation to orient.If we exhaustively apply simpli�
ation before trying to orient a C-equation, any orientation of the fully simpli�edC-equation 
an be used.Given a derivation (K0; E0;D0[C0) ` � � � ` (Ki; Ei;Di[Ci) using thisstrategy, we 
onstru
t a sequen
e of relations �0;�1; : : :, where ea
h �jis de�ned by 
 �j d if 
! d 2 [k�jCk. We 
laim that ea
h �j de�nes5 We ex
lude Compression for rest of the dis
ussion.
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12 L. Ba
hmair, A. Tiwari, and L. Vigneronan ordering. To see this note that �0 de�nes a trivial ordering (in whi
hno two elements in U are 
omparable). Moreover, whenever the relation�j is extended by 
 � d, the 
onstants 
 and d are in
omparable in thetransitive 
losure of the existing relation �j , and hen
e irre
exivity ofthe ordering de�ned by �j+1 is established.Bounding the maximal derivation length: The above observationestablishes that there exist derivations for 
ongruen
e 
losure 
on-stru
tion in whi
h we do not spend any time in 
omparing elements.However, we will shortly show that the length of derivations 
ru
iallydepends on the 
hosen ordering. This reveals a tradeo� between thee�ort spent in 
hoosing an ordering and the lengths of derivationsobtained when using that ordering.DEFINITION 4. An ordering � on the set U is feasible for a state(K;E;R) if there exists an unfailing6 maximal derivation starting fromthe state (K;E;R) that uses the ordering �.The depth or height of an ordering � is the length of the longest
hain. More spe
i�
ally, if the longest 
hain for ordering � is 
0 � 
1 �� � � � 
Æ, then the depth of � is Æ.Congruen
e 
losure 
omputation using spe
ialized data stru
turesis known to be more eÆ
ient than naive standard 
ompletion. We nextshow, by proving a bound on the length of any maximal derivation,that our des
ription 
aptures the 
ause of this eÆ
ien
y.LEMMA 3. Any maximal derivation starting from the state (K0 =;; E0; R0 = ;) is of length O((2k + l)Æ + n), where k is the numberof appli
ations of extension, l is the di�eren
e between the number ofo

urren
es of 0-arity symbols in E0 and number of distin
t 0-aritysymbols in E0, Æ is the depth of ordering �U used to 
onstru
t thederivation, and n is the number of �-symbols in E0.Proof. In order to simplify the argument, we �rst split simpli�
ationand dedu
tion rules as follows (ignoring the K-
omponent):Sim1 : (E[f(: : :)℄; R [ ff(: : :)! 
g)(E[
℄; R [ ff(: : :)! 
g) Sim2 : (E[
℄; R [ f
! dg)(E[d℄; R [ f
! dg)Ded1 : (E;R [ ff(: : :)! 
; f(: : :)! dg)(E [ f
 � dg; R [ ff(: : :)! dg)Ded2 : (E;R [ f
! d; 
! d0g)(E [ fd � d0g; R [ f
! dg)6 By unfailing we mean that the set of unoriented equations in the �nal state isempty.
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Abstra
t Congruen
e Closure 13Next, we bound the number of appli
ations of individual rules inany derivation as follows:(i) a derivation step using either sim2, ded2, 
ollapse, or 
omposition
orresponds to rewriting some 
onstant. Sin
e the length of a rewritingsequen
e 
1 ! 
2 ! � � � is bounded by Æ and 2k + l is an upper boundon the number of o

urren
es of 
onstants (from K1) in Ei [ Ri (forany i), therefore the number of appli
ations of sim2, ded2, 
ollapse,and 
omposition is O((2k + l)Æ);(ii) the number of deletion steps is at most jE0j+ k as ea
h transitionrule, with the ex
eption of extension and deletion, preserves the 
ar-dinality of Ei [ Ri and extension in
reases this number by one whiledeletion de
reases it by one;(iii) the number of sim1 and ded1 steps is at most n as ea
h su
h stepredu
es the number of �-symbols (in E [R);(iv) the number of Extension steps is k; and(v) appli
ation of Orientation at most doubles the length of anyderivation.Thus, the total length of any derivation is O((2k + l)Æ + n).The number k of extension steps used in any maximal derivation isO(n) be
ause the total number of �-symbols in the se
ond 
omponentof the state is non-in
reasing in any derivation and an appli
ation ofextension redu
es this number by one.LEMMA 4. A starting state (K0 = ;; E0; R0 = ;) 
an be transformedinto a state (Km; Em; Rm) in O(n) derivation steps, where n is the totalnumber of symbols in the �nite set E0 of ground equations, su
h that(i) the set Em 
onsists of only C-equations and Rm 
onsists of onlyD-rules, and (ii) the total number of symbols in Em [Rm is O(n).Proof. We 
onstru
t the desired derivation by an exhaustive appli
a-tion of extension and simpli�
ation rules. Clearly, the set Em 
ontainsonly C-equations and Rm 
ontains only D-rules. The length of thisderivation is O(n) as every appli
ation of extension and simpli�
ationredu
es the total number of �-symbols in Ei by at least one. More-over, the total number of symbols in Em [ Rm is O(n) be
ause everyappli
ation of extension and simpli�
ation in
reases the total numberof symbols by a 
onstant.Informally speaking, therefore, sin
e l is 
learly O(n), Lemma 3 givesus an upper bound of O(nÆ) on the length of maximal derivations. Anytotal (linear) order on the set K1 of 
onstants is feasible, but has depthequal to the 
ardinality of K1, whi
h is O(n). This gives a quadrati
bound on the length of a derivation. However, we 
an also show thatthere exist feasible orderings with smaller depth.
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14 L. Ba
hmair, A. Tiwari, and L. VigneronLEMMA 5. Let (Km; Em; Rm) be a state su
h that Em 
onsists ofonly C-equations and Rm 
onsists of only D-rules. Then, there existsa feasible ordering �U for this state with depth O(log(n)), where n isthe number of 
onstants in Km.Proof. We shall exhibit an unfailing derivation that 
onstru
ts therequired ordering on the 
y as dis
ussed before, i.e., during the deriva-tion, we ensure that whenever we apply orientation as (Ki; Ei [ f
 �dg;Di [ Ci) ` (Ki; Ei;Di [ Ci [ f
 ! dg), the 
onstants 
 and d arein Ci-normal form. Additionally, we also impose the requirement thatthe 
ardinality of the set f
0 2 Km : 
0 $�Ci 
g is less than or equal tothe 
ardinality of f
0 2 Km : 
0 $�Ci dg.As argued before, the relation thus built de�nes an ordering. Suppose(K1; E1;D1 [ C1) is the �nal state of this unfailing derivation. If
1 � 
2 � � � � � 
j is a maximal des
ending 
hain, then the 
ardinalityof the set f
0 2 Km : 
0 $�C1 
jg is at least 2j�1. But, sin
e the
ardinality of Km is O(n), therefore, j = O(log(n)).Combining these three lemmas leads to the following result.THEOREM 4. There exists a maximal derivation of length O(n log(n))with starting state (;; E0; ;), where n is the total number of symbols inthe �nite set E0 of ground equations.Proof. We 
onstru
t the derivation in two stages. In the �rst stagewe use the derivation 
onstru
ted in the proof of Lemma 4 to obtainan intermediate state (Km; Em; Rm) from the starting state (K0 =;; E0; R0 = ;). In the se
ond stage, we start with this intermediatestate and 
arry out the derivation in the proof of Lemma 5 to rea
h a�nal state. The 
laim then follows from Lemma 4 and Lemma 3.Theorem 4 establishes the possibility of obtaining short maximalderivations using (simple strategies on) the abstra
t transition rules.However, in order to get an eÆ
ient, say O(n log(n)), algorithm for
omputing a 
ongruen
e 
losure, we need to show that the orderingon 
onstants 
an be eÆ
iently 
omputed and ea
h individual step inthe derivation 
an be applied in (amortized) 
onstant time. The �rstof these is easily a
hieved by extending the state triple (K;E;R) byan additional 
omponent whi
h is a fun
tion, 
ounter, that maps ea
h
onstant in K to a natural number. More pre
isely, 
ounter(
) storesthe 
ardinality of the set[
℄C def= f
0 2 K : 
0 $�C 
gwhere C is the set of C-equations in R. Thus, 
ounter(
) is the numberof 
onstants in the 
urrent equivalen
e 
lass of 
 (see proof of Lemma 5).
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Abstra
t Congruen
e Closure 15The fun
tion 
ounter 
an easily be updated when a C-equation, say
 � d, is oriented into, say 
! d, by setting 
ounter(d) = 
ounter(
)+ 
ounter(d).Se
ondly, eÆ
ient appli
ation of ea
h transition step requires spe-
ialized data stru
tures and/or eÆ
ient indexing me
hanisms. Somesu
h details have been des
ribed in the literature and we dis
uss thesein the next se
tion.We observe here that in the spe
ial 
ase when ea
h 
ongruen
e 
lassmodulo E0 is �nite, feasible orderings with 
onstant depth (in fa
t,depth 1) 
an be 
onstru
ted eÆ
iently on the 
y. During orientation,only those C-equations, whi
h 
ontain 
onstants whose 
ongruen
e
lass [
℄Ci (w.r.t. the set Ci of C-equations in the present state) isknown to not 
hange in subsequent states, are oriented. For example, if
 is one su
h 
onstant and [
℄Ci = f
; 
1; : : : ; 
kg, then we orient so thatwe add rules f
i ! 
 : i = 1; : : : ; kg to the third 
omponent. That su
hC-equations always exist and 
an be eÆ
iently identi�ed is a simple
onsequen
e of the �niteness assumption, see [30, 15℄ for details. Thus,this yields a linear bound on the length of (
ertain) maximal derivationsfor 
onstru
tion of 
ongruen
e 
losure in this spe
ial 
ase.3. Congruen
e Closure StrategiesThe literature abounds with various implementations of 
ongruen
e 
lo-sure algorithms. The general framework of abstra
t 
ongruen
e 
losure
an be used to uniformly des
ribe the logi
al 
hara
teristi
s of su
halgorithms and provides a 
ontext for interpreting di�eren
es in theirperforman
e. We next des
ribe the algorithms proposed by Downey,Sethi and Tarjan [15℄, Nelson and Oppen [23℄, and Shostak [28℄ in thisway. That is, we provide a des
ription of these algorithms (the des
rip-tion does not 
apture 
ertain implementation details) using abstra
t
ongruen
e 
losure transition rules.Dire
ted a
y
li
 graphs (dags) are a 
ommon data stru
ture used toimplement algorithms that work with terms. In fa
t, many 
ongruen
e
losure algorithms assume that the input is an equivalen
e relation onverti
es of a given dag, and the desired output, the 
ongruen
e 
losureof this equivalen
e, is again represented by an equivalen
e on the samedag.A set of C-rules and D-rules may be interpreted as an abstra
tionof a dag representation. The 
onstants in K (or U) represent nodesin a dag. The D-rules spe
ify edges and the C-rules represent a bi-nary relation on the nodes. More pre
isely, a D-rule f(
1; : : : ; 
k) ! 
spe
i�es that the node 
 is labelled by the symbol f and has pointers
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f f

g gh

ha b c

d

D-rules representing the term dag:a ! 
1 g
1
1 ! 
2b ! 
4 f
1
2 ! 
3
 ! 
6 g
6
8 ! 
9d ! 
7 h
7 ! 
8h
4 ! 
5 f
5
9 ! 
10C-rules representing the relationon verti
es:
1 � 
5 
2 � 
9 
3 � 
10
4 � 
7 
6 � 
5 
5 � 
8Figure 1. A term dag and a relation on its verti
esto the nodes 
1; : : : ; 
k. Conversely, any dag and an asso
iated binaryrelation on its nodes 
an be represented using D-rules and C-rules.Figure 1 illustrates the representation of a set of terms (and a binaryrelation on them) using dags and using D-rules and C-rules. The solidlines represent subterm edges, and the dashed lines represent a binaryrelation on the verti
es. We have a D-rule 
orresponding to ea
h vertex,and a C-rule for ea
h dashed edge. (We note here that generalized D-rules (with respe
t to � and K) as de�ned in Se
tion 2.3 
orrespondto storing 
ontexts, rather than just symbols from �, in ea
h node ofthe term dag. We do not pursue this optimization in this paper.)Traditional 
ongruen
e 
losure algorithms employ data stru
tureswhi
h are suitably abstra
ted in our presentation as follows:(i) To obtain a representation via D-rules and C-equations for theinput dag 
orresponding to equation set E0, we start from the state(;; E0; ;), and repeatedly apply a single extension step followed by anexhaustive appli
ation of simpli�
ation (represented using the expres-sion (Ext � Sim�)�). In the resulting state (K1; E1;D1), the set D1represents the input dag and the set E1 
ontains only C-equationsrepresenting the input equivalen
e on nodes of this dag. Note thatdue to eager simpli�
ation, we obtain representation of a dag withmaximum possible sharing. For example, if E0 = fa � b; ffa � fbg,then K1 = f
0; 
1; 
2; 
3; 
4g, E1 = f
0 � 
1; 
3 � 
4g and R1 = fa !
0; b! 
1; f
0 ! 
2; f
2 ! 
3; f
1 ! 
4g.(ii) The signature of a term f(t1; : : : ; tk) is de�ned as f(
1; : : : ; 
k)where 
i is the name of the equivalen
e 
lass 
ontaining term ti. Asignature table (indexed by verti
es of the input dag) stores a signaturefor some or all verti
es. A signature table spe
i�es a set of fully left-
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Abstra
t Congruen
e Closure 17redu
ed D-rules.(iii) The use table (also 
alled prede
essor list) is a mapping from the
onstant 
 to the set of all nodes whose signature 
ontains 
. In ourpresentation this translates to a method of indexing the set of D-rules.(iv) A union-�nd data stru
ture is used to maintain equivalen
e 
lasseson the set of nodes of the input dag. In the abstra
t representation, C-rules des
ribe equivalen
e relations on 
onstants in K. Operations onthe union-�nd stru
ture exhibit as transitions on C-rules. For instan
e,appli
ation of 
omposition spe
i�es path-
ompression on the union-�ndstru
ture.We note that D-rules serve a two-fold purpose: they represent a termdag, and also a signature table.3.1. Shostak's AlgorithmWe show that Shostak's 
ongruen
e 
losure pro
edure is a spe
i�
strategy over the general transition rules for abstra
t 
ongruen
e
losure.Shostak's 
ongruen
e 
losure is dynami
 in that equations are pro-
essed one at a time. The strategy underlying Shostak's pro
edure 
anbe des
ribed by the following regular expression:((Sim� �Ext�)� � (Del [Ori) � (Col �Ded�)�)�This expression should be interpreted as follows. Given a (start) state(K;E;R) (i) pi
k an equation s � t from the set E, (ii) apply sim-pli�
ation to this state to normalize s, i.e., s !!R s0, (iii) exhaustivelyapply extension to 
reate D-rules for subterms of s0 until s0 redu
es toa 
onstant, say 
. Perform steps (ii) and (iii) on the other term t aswell to get a 
onstant d. (iv) if 
 and d are identi
al then apply deletion(and 
ontinue with (i)), and if not, 
reate a C-rule, say 
 ! d, usingorientation. (v) Repla
e 
 by d using 
ollapse and follow it by exhaustiveappli
ation of dedu
tion. Repeat this until there are no more possible
ollapse steps. Finally, the steps (i) through (v) are repeatedly applied.Shostak's pro
edure halts if no unoriented equations remain.Shostak's pro
edure uses indexing based on the idea of the use()list. This use() based indexing helps in identifying all possible 
ollapseappli
ations.It is fairly easy to observe that a maximal derivation starting fromstate (;; E0; ;) and using the above strategy ends in a �nal state. Hen
e,Theorem 2 establishes that the third 
omponent of Shostak's haltingstate is 
onvergent and an abstra
t 
ongruen
e 
losure (for E0).
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18 L. Ba
hmair, A. Tiwari, and L. VigneronExample 2. We use the set E0 from Example 1 to illustrate Shostak'smethod, showing the essential intermediate steps in the derivation.i Cnsts Ki Equations Ei Rules Ri Transition0 ; E0 ;1 f
0; 
1g fffa � fbg fa! 
0; b! 
1; Ext �Ext�
0 ! 
1g Ori2 f
0; 
1g fff
1 � fbg fa! 
0; b! 
1; 
0 ! 
1g Sim � Sim3 f
0; : : : ; 
3g f
3 � fbg R2 [ ff
1 ! 
2; f
2 ! 
3g Ext �Ext4 f
0; : : : ; 
3g f
3 � 
2g R3 Sim � Sim5 f
0; : : : ; 
3g ; R4 [ f
3 ! 
2g Ori3.2. Downey, Sethi, and Tarjan's AlgorithmThis algorithm assumes that the input is a dag and an equivalen
erelation on its verti
es. Thus, the starting state is a triple given by(K1; ;;D1 [ C1), where D1 represents the input dag and C1 the givenequivalen
e. The underlying strategy of this algorithm 
an be des
ribedas: ((Col � (Ded [ f�g))� � (Sim� � (Del [Ori))�)�where � is the null transition rule. This strategy is implemented byrepeating the following steps: (i) Repeatedly apply the 
ollapse rule andany resulting dedu
tion steps until no more 
ollapse steps are possible.(ii) if no 
ollapse steps are possible, repeatedly sele
t a C-equation,fully simplify it and then either delete or orient it.In the Downey, Sethi and Tarjan pro
edure an equation 
 � d isoriented to 
! d if the equivalen
e 
lass 
 
ontains fewer terms (in theset of all subterms in the input set of equations) than the equivalen
e
lass d. This is 
ru
ial in ensuring the O(n log(n)) time 
omplexity forthis algorithm, 
.f. Theorem 4.If (Kn; En;Dn[Cn) is the last state in a derivation from (K1; ;;D1[C1) using the above strategy, then, (Kn; En;Dn [ Cn) is a �nal state,and hen
e the set Dn [ Cn is 
onvergent and an abstra
t 
ongruen
e
losure. The rewrite system Dn represents the information 
ontainedin the signature table, and Cn represents information in the union-�ndstru
ture. The set Cn is usually 
onsidered the output of the Downey,Sethi and Tarjan pro
edure.Example 3. We illustrate the Downey-Sethi-Tarjan algorithm by us-ing the same set of equations E0 as above. The start state is (K1; ;;D1[C1) where K = f
0; : : : ; 
4g, D1 = fa ! 
0; b! 
1; f
0 ! 
2; f
2 !
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3; f
1 ! 
4g, and, C1 = f
0 ! 
1; 
3 ! 
4g.i Consts Ki Eqns Ei Rules Ri Transition1 K1 ; D1 [ C12 K1 ; fa! 
0; b! 
1; f
1 ! 
2; Colf
2 ! 
3; f
1 ! 
4g [C13 K1 f
2 � 
4g R2 � ff
1 ! 
2g Ded4 K1 ; R3 [ f
4 ! 
2g OriNote that 
4 � 
2 was oriented in a way that no further 
ollapses wereneeded thereafter.3.3. Nelson and Oppen's AlgorithmThe Nelson-Oppen pro
edure is not exa
tly a 
ompletion pro
edureand it does not generate a 
ongruen
e 
losure in our sense. The initialstate of the Nelson-Oppen pro
edure is given by the tuple (K1; E1;D1),where D1 is the input dag, and E1 represents an equivalen
e on verti
esof this dag. The sets K1 and D1 remain un
hanged in the Nelson-Oppen pro
edure. In parti
ular, the inferen
e rule used for dedu
tionis di�erent from the 
onventional dedu
tion rule7.NODedu
tion: (K;E;D [ C)(K;E [ f
 � dg;D [ C)if there exist two D-rules f(
1; : : : ; 
k) ! 
, and, f(d1; : : : ; dk) ! d inthe set D; and, 
i !!C Æ  !C di, for i = 1; : : : ; k.The Nelson-Oppen pro
edure 
an now be (at a 
ertain abstra
t level)represented as:NO = (Sim� � (Ori [Del) �NODed�)�whi
h is applied in the following sense: (i) sele
t a C-equation 
 � dfrom the E-
omponent, (ii) simplify the terms 
 and d using simpli�-
ation steps until the terms 
an't be simpli�ed any more, (iii) eitherdelete, or orient the simpli�ed C-equation, (iv) apply the NODedu
tionrule until there are no more non-redundant appli
ations of this rule, (v)if the E-
omponent is empty, then we stop, otherwise 
ontinue withstep (i).7 This rule performs dedu
tion modulo C-equations, i.e., we 
ompute 
riti
al pairsbetween D-rules modulo the 
ongruen
e indu
ed by C-equations. Hen
e, the Nelson-Oppen pro
edure 
an be des
ribed as an extended 
ompletion [12℄ (or 
ompletionmodulo C-equations) method over an extended signature.
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20 L. Ba
hmair, A. Tiwari, and L. VigneronUsing the Nelson-Oppen strategy, assume we get a derivation(K1; E1;D1) `�NO (Kn; En;Dn [ Cn). One 
onsequen
e of using anon-standard dedu
tion rule, NODedu
tion, is that the resulting setDn [ Cn = D1 [ Cn need not ne
essarily be 
onvergent, although therewrite relation Dn=Cn [12℄ is 
onvergent.Example 4. Using the same set E0 as equations, we illustrate theNelson-Oppen pro
edure. The initial state is given by (K1; E1;D1)where K1 = f
0; 
1; 
2; 
3; 
4g; E1 = f
0 � 
1; 
3 � 
4g; and,D1 = fa! 
0; b! 
1; f
0 ! 
2; f
2 ! 
3; f
1 ! 
4g.i Constants Ki Equations Ei Rules Ri Transition1 K1 E1 D12 K1 f
3 � 
4g D1 [ f
0 ! 
1g Ori3 K1 f
2 � 
4; 
3 � 
4g R2 NODed4 K1 f
3 � 
4g R2 [ f
2 ! 
4g Ori5 K1 ; R4 [ f
3 ! 
4g OriConsider de
iding the equality fa � ffb. Even though fa $�E0 ffb,the terms fa and ffb have distin
t normal forms with respe
t to R5.But terms in the original term universe have identi
al normal forms.4. Experimental ResultsWe have implemented several 
ongruen
e 
losure algorithms, in
ludingthose proposed by Nelson and Oppen (NO) [23℄, Downey, Sethi andTarjan (DST) [15℄, and Shostak (SHO) [28℄, and two algorithms basedon 
ompletion|one with an indexing me
hanism (IND) and the otherwithout (COM). Implementation of the �rst three pro
edures is basedon the representation of terms by dire
ted a
y
li
 graphs and therepresentation of equivalen
e 
lasses by a union-�nd data stru
ture.Union-�nd data stru
ture uses path 
ompression, and the same 
ode(with only minor variations) is used in all three implementations.NO is an implementation of the pseudo
ode given on page 358 (withsome details on page 359) of [23℄. In parti
ular, the prede
essor listsare kept sorted and dupli
ates are removed whenever two prede
essorlists are merged. Furthermore, the double loop des
ribed in step 4 ofthe algorithm is implemented as an optimized linear sear
h (with a\sorting" overhead) as suggested in [23℄. We tested other minor variantstoo. The one variant in whi
h spli
ing the prede
essor list was done in
onstant time (allowing for dupli
ates in the pro
ess) and step 4 was
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Abstra
t Congruen
e Closure 21implemented as a nested loop, gave the best running times on ourexamples, whi
h we report here.The DST implementation 
orresponds exa
tly to the pseudo
odeon page 761 of [15℄. In parti
ular, the signature table is implementedas a hash table, equivalen
e 
lasses are represented in union-�nd, andthe sets pending and 
ombine are implemented as singly linked lists ofpointers to graph nodes and to graph edges respe
tively.Implementation SHO of Shostak's algorithm is based on the spe-
ialization to the pure theory of equality of the 
ombination methoddes
ribed on page 8 of [28℄. The main data stru
tures in the imple-mentation are the union-�nd, use lists, and sig whi
h stores a signaturefor ea
h vertex. The manipulation of these data stru
tures, espe
iallythe use lists, and the sequen
e of 
alls to merge is exa
tly as des
ribedin [28℄. A des
ription of this algorithm (with only a slight di�eren
e inthe order of 
alls to subroutine merge) is also present in [11, 18℄.The 
ompletion pro
edure COM uses the following strategy:((Sim� �Ext�)� � (Del[Ori) � ((Com� �Col�) �Ded � (Del[Ori))�)�:More spe
i�
ally, we pro
ess one equation at a time, fully simplify it andif ne
essary use extension to generate a C-equation. The C-equationis oriented and 
omposition and 
ollapse are applied exhaustively,followed by a dedu
tion step. The generated C-equation is similarlyhandled. When no more C-equations 
an be produ
ed, we pro
ess thenext equation. In short, this strategy is based on eager elimination ofredundant 
onstants.The indexed variant IND uses a slightly di�erent strategy((Sim� � Ext�)� � ((Del [Ori) � (Col� �Com? �Ded?)� � Sim�)�)�:As before, using Sim� �Ext� we 
onvert one equation to a C-equation.This equation is oriented and individually on every D-rule, we per-form all simpli�
ations using this C-rule, viz 
ollapse, 
omposition,followed by any dedu
tion step (Col� � Com? � Ded?). Subsequently,simpli�
ation of equations using the oriented C-rule are done. All theC-equations are pro
essed this way before we take up the next equationto pro
ess. Indexing refers to the use of suitable data stru
tures toeÆ
iently identify whi
hD-rules 
ontain spe
i�ed 
onstants, thus mak-ing the pro
ess of identifying 
ollapse, 
omposition and superpositioneÆ
ient.In all our implementations, input is read from a �le 
ontaining equa-tions in a spe
i�ed syntax. It is parsed and represented internally asa list of tree node pairs (representing terms with no sharing). Thereis a prepro
essing step in the NO and DST algorithms to 
onvert this
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22 L. Ba
hmair, A. Tiwari, and L. VigneronTable I. Total running time (in millise
onds) for Examples 11{14. Eqns refersto the number of equations; Vert to the number of verti
es in the initial dag;and Class to the number of equivalen
e 
lasses indu
ed on the dag.Eqns Vert Class DST NO SHO COM INDEx.11 5 27 1 1.286 1.640 0.281 0.606 0.409Ex.12 20 27 1 2.912 2.772 0.794 1.858 0.901Ex.13 12 20 6 1.255 0.733 0.515 0.325 0.323Ex.14 34 105 2 10.556 22.488 7.275 12.077 4.416representation into a dag and to initialize the other required data stru
-tures. In DST we 
onstru
t a dag in whi
h all verti
es have outdegreeat most two. The other three algorithms interleave 
onstru
tion of adag with dedu
tion steps. The published des
riptions of DST and NOdo not address 
onstru
tion of a dag. Our implementation maintainsthe list of terms that have been represented in the dag in a hash tableand 
reates a new node for ea
h term not yet represented.The input set of equations E 
an be 
lassi�ed based on: (i) thesize of the input and the number of equations, (ii) the number ofequivalen
e 
lasses on terms and subterms of E, and, (iii) the averagenumber of o

urren
es of a 
onstant in the set of D- and C-rules, whi
hroughly speaking 
orresponds to average size of use lists in most of theimplementations. The �rst set of examples are relatively simple anddeveloped by hand to highlight strengths and weaknesses of the variousalgorithms. Example 11 
ontains �ve equations that indu
e a singleequivalen
e 
lass8. Example 12 is the same as 11, ex
ept that it 
ontains�ve 
opies of all the equations. Example 13 requires slightly larger uselists9. Finally, example 14 
onsists of equations that are oriented in the\wrong" way10.In a �rst set of experiments, we assume that the input is a setof equations presented as pairs of trees (representing terms). Thus,the total running time given in
ludes time spent on prepro
essing and
onstru
tion of the dag (for NO and DST). In Table I the times shownare the averages of several runs on a Sun Ultra workstation undersimilar load 
onditions. The time was 
omputed using the gettimeofdaysystem 
all.8 The equation set is ff2(a) � a; f10a � f15b; b � f5b; a � f3a; f5b � bg.9 The equation set is fg(a; a; b) � f(a; b); gabb � fba; gaab � gbaa; gbab �gabb; gbba � gbab; gaaa � faa; a � 
; 
 � d; d � e; b � 
1; 
1 � d1; d1 � e1g.10 The set is fg(f i(a); h10(b)) � g(a; b); i = f1; � � � ; 25g; h47(b) � b; b �h29(b); h(b) � 
0; 
0 � 
1; 
1 � 
2; 
2 � 
3; 
3 � 
4; 
4 � a; a � f(a)g.
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Abstra
t Congruen
e Closure 23Table II. Total running time (in se
onds) for randomly generated sets ofequations.Eqns Vert �0;�1;�2, d Class DST NO SHO INDEx.21 10000 17604 2, 0, 2, 3 7472 11.1 3.19 10.2 13.0Ex.22 5000 4163 2, 1, 1, 3 3 2.28 306 3.09 0.77Ex.23 5000 7869 3, 0, 1, 3 2745 2.44 1.36 3.52 3.99Ex.24 6000 8885 3, 0, 1, 3 9 3.55 1152 52.4 7.07Ex.25 7000 9818 3, 0, 1, 3 1 4.63 1682 47.8 5.47Ex.26 5000 645 4, 2, 0, 23 77 1.22 1.58 0.37 0.36Ex.27 5000 1438 10, 2, 0, 23 290 1.45 3.67 0.39 0.37Table II 
ontains similar 
omparisons for 
onsiderably larger ex-amples 
onsisting of randomly generated equations over a spe
i�edsignature. The equations are obtained by �xing a signature and a boundon the depth of terms and randomly pi
king 2n terms from the set of allbounded depth terms in the given signature. We generate n equationsby pairing the 2n terms thus obtained. The 
hoi
e of signatures anddepth bound was governed by the need to randomly generate interest-ing instan
es (i.e. where there are a fair number of dedu
tions). The
olumns �i denote the number of fun
tion symbols of arity i in thesignature and d denotes the maximum term depth. The total runningtime in
ludes the prepro
essing time11.In Table III we show the time for 
omputing a 
ongruen
e 
losureassuming terms are already represented by a dag. In other words, wedo not in
lude the time it takes to 
reate a dag. Note that we in
ludeno 
omparison with Shostak's method, as the dynami
 
onstru
tion ofa dag from given term equations is inherent in this pro
edure. However,a 
omparison with a suitable strategy (in whi
h all extension steps areapplied before any dedu
tion steps) of IND is possible. We denote byIND* indexed 
ompletion based on a strategy that �rst 
onstru
ts adag. The examples are the same as in Table II.Several observations 
an be drawn from these results. First, theNelson-Oppen pro
edure NO is 
ompetitive only when dedu
tion stepsare few and the number of equivalen
e 
lasses is large. In logi
alterms, this is be
ause it uses a non-standard dedu
tion rule (see [5℄),whi
h may for
e the pro
edure to unne
essarily repeat the same de-du
tion steps many times over a single exe
ution. Not surprisingly,straight-forward 
ompletion without indexing is also ineÆ
ient when11 Times for COM are not in
luded as indexing is indispensable for largerexamples.
final.tex; 9/02/2002; 14:52; p.23



24 L. Ba
hmair, A. Tiwari, and L. VigneronTable III. Running time (in se
onds) when input is in a dag form.DST NO IND* DST NO IND*Ex.21 0.919 0.296 0.076 Ex.25 0.958 1614.961 9.770Ex.22 0.309 319.112 1.971 Ex.26 0.026 0.781 0.060Ex.23 0.241 0.166 0.030 Ex.27 0.048 2.470 0.176Ex.24 0.776 1117.239 7.301
many dedu
tion steps are ne
essary. Indexing is of 
ourse a standardte
hnique employed in all pra
ti
al implementations of 
ompletion.The running time of the DST pro
edure 
riti
ally depends on thesize of the hash table that 
ontains the signatures of all verti
es. If thehash table size is large, enough potential dedu
tions 
an be dete
tedin (almost) 
onstant time. If the hash table size is redu
ed, to say 100,then the running time in
reases by a fa
tor of up to 50. A hash tablewith 1000 entries was suÆ
ient for our examples (whi
h 
ontained fewerthan 10000 verti
es). Larger tables did not improve the running timessubstantially.Indexed Completion, DST and Shostak's method are roughly 
ompa-rable in performan
e, though Shostak's algorithm has some drawba
ks.For instan
e, equations are always oriented from left to right. In 
on-trast, Indexed Completion always orients equations in a way so as tominimize the number of appli
ations of the 
ollapse rule, an idea thatis also impli
it in Downey, Sethi and Tarjan's algorithm. Example 12illustrates this fa
t. More 
ru
ially, the manipulation of the use listsin Shostak's method is done in a 
onvoluted manner due to whi
hredundant inferen
es may be done when sear
hing for the 
orre
t non-redundant ones. As a 
onsequen
e, Shostak's algorithm performs poorlyon instan
es where use lists are large and dedu
tion steps are many su
has in Examples 13, 24 and 25.Finally, we note that the indexing te
hnique used in our implemen-tation of 
ompletion is simple|with every 
onstant 
 we asso
iate alist of D-rules that 
ontain 
 as a subterm. On the other hand DSTmaintains at least two di�erent ways of indexing the signatures, whi
hmakes it more eÆ
ient when the examples are large and dedu
tionsteps are plenty. On small examples, the overhead to maintain thedata stru
tures dominates. This also suggests that the use of moresophisti
ated indexing s
hemes for indexed 
ompletion might improveits performan
e.
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Abstra
t Congruen
e Closure 255. Asso
iative-Commutative Congruen
e ClosureWe next 
onsider the problem of 
onstru
ting a 
ongruen
e 
losure fora set of ground equations over a signature 
onsisting of binary fun
-tion symbols that are asso
iative and 
ommutative. It is not obvioushow the traditional dag-based algorithms 
an be modi�ed to handleasso
iativity and 
ommutativity of 
ertain fun
tion symbols, though
ommutativity alone is easily handled by simple modi�
ations, see
omments on page 767 of [15℄.Let � be a signature with arity fun
tion �, and E a set of groundequations over �. Let �AC be some subset of �, 
ontaining all theasso
iative-
ommutative operators. We denote by P the identitiesf(x1; ::: ; xk; s; y1; ::: ; yl; t; z1; ::: ; zm) �f(x1; ::: ; xk; t; y1; ::: ; yl; s; z1; ::: ; zm)where f 2 �AC , k; l;m � 0, and k + l +m + 2 2 �(f); and by F theset of identitiesf(x1; : : : ; xm; f(y1; : : : ; yr); z1; : : : ; zn) �f(x1; : : : ; xm; y1; : : : ; yr; z1; : : : ; zn)where f 2 �AC and fm + n + 1;m + n + r; rg � �(f). The 
on-gruen
e indu
ed by all ground instan
es of P is 
alled a permutation
ongruen
e. Flattening refers to normalizing a term with respe
t tothe set F (
onsidered as a rewrite rule). The set AC = F [ P de�nesan AC-theory. The symbols in �AC are 
alled asso
iative-
ommutativeoperators12. We require that �(f) be a singleton set for all f 2 ���ACand �(f) = f2; 3; 4; : : :g for all f 2 �AC .We note that apart from the D-rules and the C-rules, in the presen
eof AC-symbols we additionally need A-rules.DEFINITION 5. Let � be a signature and K be a set of 
on-stants disjoint from �. Equations, whi
h when fully 
attened areof the form f(
1; : : : ; 
k) � f(d1; : : : ; dl), where f 2 �AC , and
1; � � � ; 
k; d1; � � � ; dl 2 K, will be 
alled A-equations. Dire
ted A-equations are 
alled A-rules.We 
an now generalize all de�nitions made in Se
tion 2 to the 
asewhen 
ertain fun
tion symbols are known to be asso
iative and 
om-mutative. By ACnR we denote the rewrite system 
onsisting of all rules12 The equations F[P de�ne a 
onservative extension of the theory of asso
iativityand 
ommutativity to varyadi
 terms. For a �xed arity binary fun
tion symbol, theequations f(x; y) � f(y; x) and f(f(x; y); z) � f(x; f(y; z)) de�ne an AC-theory.
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26 L. Ba
hmair, A. Tiwari, and L. Vigneronu ! v su
h that u $�AC u0� and v = v0�, for some rule u0 ! v0 in Rand some substitution �. We say that ACnR is 
on
uent modulo AC iffor all terms s; t su
h that s$�R[AC t, there exist terms w and w0 su
hthat s !�ACnR w $�AC w0  �ACnR t. We speak of ground 
on
uen
e ifthis 
ondition is true for all ground terms s and t. The other de�nitionsare analogous.Part of the 
ondition for 
on
uen
e modulo AC 
an be satis�edby the in
lusion of so-
alled extensions of rules [24℄. Given an AC-operator f and a rewrite rule � : f(
1; 
2)! 
, we 
onsider its extension�e : f(f(
1; 
2); x) ! f(
; x). Given a set of rewrite rules R, by Re wedenote the set R plus extensions of rules in R. Extensions have to beused for rewriting terms and 
omputing 
riti
al pairs when workingwith AC-symbols. The key property of extended rules is that whenevera term t is redu
ible by ACnRe and t$�AC t0, then t0 is also redu
ibleby ACnRe.DEFINITION 6. Let R be a set of D-rules, C-rules and A-rules (withrespe
t to � and K). We say that a 
onstant 
 in K represents a termt in T (� [K) (via the rewrite system R) if t $�ACnRe 
. A term t isalso said to be represented by R if it is represented by some 
onstantvia R.DEFINITION 7. Let � be a signature and K be a set of 
onstantsdisjoint from �. A ground rewrite system R = A [D [C is said to bean asso
iative-
ommutative 
ongruen
e 
losure (with respe
t to � andK) if(i) D is a set of D-rules, C is a set of C-rules, A is a set of A-rules,and every 
onstant 
 2 K represents at least one term t 2 T (�) via R,and(ii) ACnRe is ground 
onvergent modulo AC over T (� [K).In addition, if E is a set of ground equations over T (�[K) su
h that,(iii) If s and t are terms over T (�), then s $�AC[E t if, and onlyif, s!�ACnRe Æ $�AC Æ  �ACnRe t,then R will be 
alled an asso
iative-
ommutative 
ongruen
e 
losure forE.When �AC is empty this de�nition spe
ializes to that of an abstra
t
ongruen
e 
losure in De�nition 2.For example, let � 
onsist of fun
tion symbols, a; b; 
; f and g, (f isAC) and letE0 be a set of three equations f(a; 
) � a; f(
; g(f(b; 
))) �b and g(f(b; 
)) � f(b; 
). Using extension and orientation we 
an obtaina representation of the equations in E0 using D-rules and C-rules as:R1 = fa! 
1; b! 
2; 
! 
3; f(
2; 
3)! 
4;g(
4)! 
5; f(
1; 
3)! 
1; f(
3; 
5)! 
2; 
5 ! 
4g:
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Abstra
t Congruen
e Closure 27However, the rewrite system R1 above is not a 
ongruen
e 
losurefor E0, as it is not a ground 
onvergent rewrite system. But we 
antransform R1 into a suitable rewrite system, using a 
ompletion-like(modulo AC) pro
ess des
ribed in more detail in the next se
tion, toobtain a 
ongruen
e 
losure (details are given in Example 5),R0 = fa! 
1; b! 
2; 
! 
3; f
2
3 ! 
4; f
3
4 ! 
2; f
1
3 ! 
1;f
2
2 ! f
4
4; f
1
2 ! f
1
4; g
4 ! 
4gthat provides a more 
ompa
t representation of E0. Attempts to repla
eevery A-rule by two D-rules (introdu
ing a new 
onstant in the pro
ess)leads to non-terminating derivations.5.1. Constru
tion of Asso
iative-Commutative Congruen
eClosureLet U be a set of symbols from whi
h new names (
onstants) are 
hosen.We need a (partial) AC-
ompatible redu
tion ordering whi
h orientsthe D-rules in the right way, and orients all the C- and A-equations.The pre
eden
e-based AC-
ompatible ordering � of [26℄, with anypre
eden
e in whi
h f ��[U 
, whenever f 2 � and 
 2 U , servesthe purpose. However, mu
h simpler partial orderings would suÆ
etoo, but for 
onvenien
e we use the ordering in [26℄. In our 
ase, thissimply means that, orientation of D-rules is from left to right, andthe orientation of an A-rule is given by 
omparing the fully 
attenedterms as follows: f(
1; : : : ; 
i) � f(
01; : : : ; 
0j) i� either i > j, or i = jand f
1; : : : ; 
ig �mult f
01; : : : ; 
0jg, i.e., if the two terms have the samenumber of arguments, we 
ompare the multisets of 
onstants using amultiset extension �mult of the pre
eden
e ��[U , see [13℄.We next present a general method for 
onstru
tion of asso
iative-
ommutative 
ongruen
e 
losures. Our des
ription is fairly abstra
t, interms of transition rules that operate on triples (K;E;R), where K isa set of new 
onstants that are introdu
ed (the original signature � is�xed); E is a set of ground equations (over �[K) yet to be pro
essed;and R is a set of C-rules, D-rules and A-rules. Triples represent possi-ble states in the pro
ess of 
onstru
ting a 
losure. The initial state is(;; E; ;), where E is the input set of ground equations.New 
onstants are introdu
ed by the following transition.Extension: (K;E[t℄; R)(K [ f
g; E[
℄; R [ ft! 
g)if t ! 
 is a D-rule, 
 2 U �K, and t o

urs in some equation in Ethat is neither an A-equation nor a D-equation.
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28 L. Ba
hmair, A. Tiwari, and L. VigneronOn
e a D-rule has been introdu
ed by extension, it 
an be used tosimplify equations.Simpli�
ation: (K;E[s℄; R)(K;E[t℄; R)where s o

urs in some equation in E, and, s!ACnRe t.It is fairly easy to see that any equation in E 
an be transformed toa D-, C- or an A-equation by suitable extension and simpli�
ation13.Equations are moved from the se
ond to the third 
omponent of thestate by orientation. All rules added to the third 
omponent are eitherC-rules, D-rules or A-rules.Orientation: (K;E [ fs � tg; R)(K;E;R [ fs! tg)if s � t, and, s! t is either a D-rule, or a C-rule, or an A-rule.Deletion allows us to delete trivial equations.Deletion: (K;E [ fs � tg; R)(K;E;R)if s$�AC t.We 
onsider overlaps between extensions of A-rules in ACSuperpo-sition.ACSuperposition: (K;E;R)(K;E [ ff(s; x�) � f(t; y�)g; R)if f 2 �AC , there existD- or A-rules (fully 
attened as) f(
1; : : : ; 
k)!s and f(d1; : : : ; dl) ! t in R, the sets C = f
1; : : : ; 
kg and D =fd1; : : : ; dlg are not disjoint, C 6� D, D 6� C, and the substitution � isthe ground substitution in a minimal 
omplete set of AC-uni�ers forf(
1; : : : ; 
k; x) and f(d1; : : : ; dl; y)14.In the spe
ial 
ase when one multiset is 
ontained in the other, weobtain the ACCollapse rule.ACCollapse: (K;E;R [ ft! sg)(K;E [ ft0 � sg; R)if for some u! v 2 R, t!ACnfu!vge t0, and if t$�AC u then s � v.13 We do not need an expli
it rule for 
attening as De�nition 5 allows for non-
attened terms to o

ur in A-rules.14 For the spe
ial 
ase in hand, a minimal 
omplete set of AC-uni�ers 
ontainsexa
tly two substitutions, exa
tly one of whi
h is ground.
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Abstra
t Congruen
e Closure 29The Dedu
tion inferen
e rule in Se
tion 2.1 (for non-AC terms) issubsumed by ACCollapse. Note that we do not expli
itly add ACextensions of rules to the set R. Consequently, any rule in R is either aC-rule, or a D-rule, or an A-rule, and not its extension. We impli
itlywork with extensions in ACSuperposition.We need additional transition rules to perform simpli�
ations onthe left- and right-hand sides of other rules. The use of C-rules tosimplify left-hand sides of rules is 
aptured by ACCollapse. The simpli-�
ation on the right-hand sides is subsumed by the following generalized
omposition rule.Composition: (K;E;R [ ft! sg)(K;E;R [ ft! s0g)if s!ACnRe s0.Example 5. Let E0 = ff(a; 
) � a; f(
; g(f(b; 
))) � b; g(f(b; 
)) �f(b; 
)g. We show some intermediate states of a derivation below (su-pers
ripts in the last 
olumn indi
ate the number of appli
ations of therespe
tive rules). We assume that f is AC and 
i � 
j if i < j.i Constants Ki Equations Ei Rules Ri Transitions0 ; E0 ;1 f
1; 
3g ff
gfb
 � b; fa! 
1; 
! 
3; Ext2 � Sim �gfb
 � fb
g f
1
3 ! 
1g Ori2 K1 [ f
2; 
4g ff
gfb
 � bg R1 [ fb! 
2; Sim2 �Ext2�f
2
3 ! 
4; g
4 ! 
4g Sim �Ori3 K2 ; R2 [ ff
3
4 ! 
2g Sim6 �Ori4 K2 ; R3 [ ff
1
2 ! f
1
4g ACSup �Ori5 K2 ; R4 [ ff
2
2 ! f
4
4g ACSup �OriThe derivation moves equations, one by one, from the se
ond 
om-ponent of the state to the third 
omponent through simpli�
ation,extension and orientation. It 
an be veri�ed that the set R5 is anAC 
ongruen
e 
losure for E0. There are more ACSuperpositions, butthe resulting equations get deleted. Note that the side-
ondition inextension disallows breaking of an A-rule into two D-rules, whi
h is
ru
ial for termination.5.2. Termination and Corre
tnessDEFINITION 8. We use the symbol ` to denote the one-step transitionrelation on states indu
ed by the above transition rules. A derivation
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30 L. Ba
hmair, A. Tiwari, and L. Vigneronis a sequen
e of states (K0; E0; R0) ` (K1; E1; R1) ` � � �. A derivationis said to be fair if any transition rule whi
h is 
ontinuously enabled iseventually applied. The set R1 of persisting rules is de�ned as [i \j>iRj; and similarly, K1 = [i \j>i Kj.We shall prove that any fair derivation will only generate �nitelymany persisting rewrite rules (in the third 
omponent) using Di
kson'slemma [8℄. Multisets over K1 
an be 
ompared using the multisetin
lusion relation. If K1 is �nite, this relation de�nes a Di
kson partialorder.LEMMA 6. Let E be a �nite set of ground equations. The set of per-sisting rules R1 in any fair derivation starting from state (;; E; ;) is�nite.Proof. We �rst 
laim that K1 is �nite. To see this, note that new
onstants are 
reated by extension. Using �nitely many appli
ations ofextension, simpli�
ation, and orientation, we 
an move all rules fromthe initial se
ond 
omponent E of the state tuple to the third 
ompo-nent R. Fairness ensures that this will eventually happen. Thereafter,any equations ever added to E 
an be oriented using orientation, hen
ewe never apply extension subsequently (see the side 
ondition of theextension rule). Let K1 = f
1; : : : ; 
ng.Next we 
laim that the set R1 is �nite. Suppose R1 is an in-�nite set. Sin
e non �AC-symbols have �xed arities, therefore, R1
ontains in�nitely many rules with top symbol from �AC . Sin
e �ACis �nite, one AC-operator, say f 2 �AC , must o

ur in�nitely oftenas the top symbol in the left-hand sides of R1. By Di
kson's lemma,there exists an in�nite 
hain of rules (written as fully 
attened forsimpli
ity), f(
11; : : : ; 
1k1) ! s0; f(
21; : : : ; 
2k2) ! s1; : : :, su
h thatf
11; : : : ; 
1k1g � f
21; : : : ; 
2k2g � � � �, where f
i1; : : : ; 
ikig denotes amultiset and � denotes multiset in
lusion. But, this 
ontradi
ts fairness(in appli
ation of ACCollapse).5.3. Proof OrderingThe 
orre
tness of the pro
edure will be established using proofsimpli�
ation te
hniques for asso
iative-
ommutative 
ompletion, asdes
ribed by Ba
hmair [1℄ and Ba
hmair and Dershowitz [2℄. In fa
t,we 
an dire
tly use the results and the proof measure from [2℄. How-ever, sin
e all rules in R have a spe
ial form, we 
an 
hoose a simplerproof ordering. One other di�eren
e is that we do not have expli
ittransition rules to 
reate extensions of rules in the third 
omponent.
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Abstra
t Congruen
e Closure 31Instead we use extensions of rules for simpli�
ation and 
omputationof superpositions.Let s = s[u�℄$ s[v�℄ = t be a proof step using the equation (rule)u � v 2 AC [E [R. The 
omplexity of this proof step is de�ned by(fs; tg;?;?) if u � v 2 E (fsg;?; t) if u � v 2 AC(fsg; u; t) if u! v 2 R (ftg; v; s) if v ! u 2 Rwhere ? is a new symbol. Tuples are 
ompared lexi
ographi
ally usingthe multiset extension of the redu
tion ordering� on terms over �[K1in the �rst 
omponent, and the ordering � in the se
ond and third
omponent. The 
onstant ? is assumed to be minimum. The 
omplexityof a proof is the multiset of 
omplexities of its proof steps. The multisetextension of the ordering on tuples yields a proof ordering, denoted bythe symbol �P . The ordering �P on proofs is well founded as it is alexi
ographi
 
ombination of well founded orderings.LEMMA 7. Suppose (K;E;R) ` (K 0; E0; R0). Then, for any two termss; t 2 T (�), it is the 
ase that s$�AC[E0[R0 t i� s$�AC[E[R t. Further,for any s0; sk 2 T (� [K), if � is a ground proof s0 $ s1 $ � � � $ skin AC [E [R, then there is a proof �0 s0 = s00 $ s01 $ � � � $ s0l = skin AC [E0 [R0 su
h that � �P �0.Proof. The �rst part of the lemma, whi
h states that the 
ongru-en
e on T (�) remains un
hanged, is easily veri�ed by exhaustively
he
king it for ea
h transition rule. In fa
t, ex
ept for extension, allthe other transition rules are standard rules for 
ompletion moduloa 
ongruen
e, and hen
e the result follows. Consider the 
ase whenthe state (K 0 = K [ f
g; E0; R0 = R [ ft ! 
g) is obtained fromthe state (K;E;R) by extension. Now, if s $�AC[E[R t, then 
learlys $�AC[E0[R0 t. Conversely, if s $�AC[E0[R0 t, then we repla
e allo

urren
es of 
 in this proof by t to get a proof in AC [E [R.For the se
ond part, one needs to 
he
k that ea
h equation in (E �E0) [ (R�R0) has a simpler proof in E0 [R0 [AC for ea
h transitionrule appli
ation, see [2℄. In detail, we have the following 
ases:(i) Extension. The proof s[t℄ $E u is repla
ed by a proof s[t℄ !R0s[
℄ $E0 u and the new proof is smaller as fs[t℄; ug �m fs[t℄g, andfs[t℄; ug �m fs[
℄; ug.(ii) Simpli�
ation. The proof r[s℄ $E u is repla
ed by the new proofr[s℄ $�AC r0 !R0 r[t℄ $E0 u15. Now, fr[s℄; ug �m fr00g for every termr00 in the sequen
e of terms r[s℄$�AC r0, and fr[s℄; ug �m fr[t℄; ug.(iii) ACCollapse. The proof t!R s is transformed to the smaller proof15 Note that we used extended rule in spe
ifying simpli�
ation, but for purposesof proof transformations, we only 
onsider the original (non-extended) rules as beingpresent in the third 
omponent.
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32 L. Ba
hmair, A. Tiwari, and L. Vigneront $�AC t0 !fu!vg t00 $E0 s. This new proof is smaller be
ause therewrite step t!R s is more 
omplex than (a) all proof steps in t$�AC t0(in the se
ond 
omponent), (b) the proof step t0 !fu!vg t00 in these
ond 
omponent if t 6$�AC u, and in the third 
omponent if t$�AC u(see side 
ondition in ACCollapse); and, (
) the proof step t00 $E0 s (inthe �rst 
omponent).(iv) Orientation. In this 
ase, s $E t is more 
omplex than the newproof s!R0 t, and this follows from fs; tg �m fsg.(v) Deletion. We have s $E t more 
omplex than s $�AC t be
ausefs; tg �m fs0g for every s0 in s$�AC t.(vi) Composition. We have the proof t!R s transformed to the smallerproof t !R s0  R0 s00 $�AC s. This new proof is smaller be
ause therewrite step t!R s is more 
omplex than (a) the rewrite step t!R0 s0in the third 
omponent, (b) all proof steps in s00 $�AC s in the �rst
omponent, and (
) the rewrite step s00 !R0 s0 in the �rst 
omponent.The ACSuperposition transition rule does not delete any equation.This 
ompletes the proof of the lemma.Note that in any derivation, extensions of rules are not added ex-pli
itly, and hen
e, they are never deleted either. On
e we 
onverge toR1, we introdu
e extensions to take 
are of 
li�s in proofs.LEMMA 8. If R1 is a set of persisting rules of a fair derivation start-ing from the state (;; E; ;), then, Re1 is a ground 
onvergent (moduloAC) rewrite system. Furthermore, E1 = ;.Proof. Fairness implies that all 
riti
al pairs (modulo AC) betweenrules in Re1 are 
ontained in the set [iEi. Sin
e a fair derivation isnon failing, E1 = ;. Sin
e the proof ordering is well-founded, for everyproof in Ei[Ri[AC, there exists a minimal proof � in E1[R1[AC.We argue by 
ontradi
tion that 
ertain proof patterns 
an not o

urin the minimal proof �: spe
i�
ally, there 
an be no peaks s  Re1u!ACnRe1 t, non-overlap 
li�s or variable overlap 
li�s.(i) Peaks. A peak 
aused by a non-overlap or a variable overlaps Re1 u!ACnRe1 t 
an be transformed to a simpler proof s!�ACnRe1v  �ACnRe1 t. The new proof is simpler be
ause u is bigger than ea
hterm in the new proof. Next suppose that the above pattern is 
aused bya proper overlap. In this 
ase, it is easy to see that s$�AC s0 $CPAC(Re1)t0 $�AC t, where CPAC(Re1) denotes the set of all equations 
reatedby ACSuperposition and ACCollapse transition rules applied on therules in Re1. Sin
e by fairness CPAC(Re1) � [kEk, there is a proofs $�AC s0 $Ek t0 $�AC t for some k � 0. This proof, whi
h we name�, is stri
tly smaller than the original peak. Using Lemma 7, we may
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Abstra
t Congruen
e Closure 33infer that there is a proof �0 in AC[R1 su
h that �0 is stri
tly smallerthan the original peak, a 
ontradi
tion.(ii) Cli�s. A non-overlap 
li� w[v; s℄ $AC w[u; s℄ !ACnRe1 w[u; t℄
an be transformed to the following less 
omplex proof: w[v; s℄!ACnRe1w[v; t℄ $AC w[u; t℄. Clearly, w[v; s℄ � w[v; t℄ and hen
e the proofw[v; t℄$AC w[u; t℄ is smaller than the proof w[v; s℄$AC w[u; s℄ (in the�rst 
omponent). The 
omplexity of the proof w[u; s℄ !ACnRe1 w[u; t℄is identi
al to the 
omplexity of the proof w[v; s℄!ACnRe1 w[v; t℄.In the 
ase of AC, a variable overlap 
li� s $AC u !ACnRe1 t 
anbe eliminated in favour of the proof s !ACnRe1 t0 $AC t. Note thatthe proof u !ACnRe1 t and the proof s !ACnRe1 t0 are of the same
omplexity, and additionally the proof s $AC u is larger than theproof t0 $AC t as all terms in the latter proof are smaller than u.In summary, the proof � 
an not 
ontain peaks s Re1 u!ACnRe1 ,or, non-overlap or variable overlap 
li�s s $AC u !ACnRe1 t. The
li�s arising from proper overlaps 
an be repla
ed by extended rules,as (Re1)e = Re1. The minimal proof � in R1[AC 
an, therefore, onlybe of the form s !�ACnRe1 s0 $�AC t0  �ACnRe1 t; whi
h is a rewriteproof.Note that we did not de�ne the proof 
omplexities for the extendedrules as the extended rules are introdu
ed only at the end. Hen
e, theargument given here is not identi
al to the one in [2℄, though it issimilar. Using Lemmas 7 and 8, we 
an easily prove the following.THEOREM 5. Let R1 be the set of persisting rules of a fair derivationstarting from state (;; E; ;). Then, the set Re1 is an asso
iative-
ommutative 
ongruen
e 
losure for E.Proof. In order to show that R1 is an asso
iative-
ommutative
ongruen
e 
losure for E0, we need to prove the three 
onditions inDe�nition 7.1. The transition rules ensure that R1 
onsists of only D-rules, C-rules, and A-rules. We prove that every 
onstant represents someterm in T (�) by indu
tion. Let 
 be any 
onstant in K1. Sin
e all
onstants are added by extension, let f(
1; : : : ; 
k)! 
 be the ruleintrodu
ed by extension when 
 was added. As indu
tion hypothesiswe 
an assume that all 
onstants added before 
 represent a term inT (�) via R1. Therefore, there exist terms s1; : : : ; sk 2 T (�) su
hthat si $�ACnRe1 
i and hen
e,f(s1; : : : ; sk)$�ACnRe1 f(
1; : : : ; 
k)![iRi 
:Using Lemma 7, f(s1; : : : ; sk)$�Re1[E1[AC 
. Lemma 8 shows thatE1 = ;, and f(s1; : : : ; sk)$�ACnRe1 
.
final.tex; 9/02/2002; 14:52; p.33



34 L. Ba
hmair, A. Tiwari, and L. Vigneron2. Lemma 8 shows that ACnRe1 is ground 
onvergent.3. Let s; t 2 T (�). Using Lemma 7, we know s $�E[AC t if, andonly if, s $�E1[R1[AC t. Sin
e E1 = ;, Lemma 8 implies thats!�ACnRe1 Æ $�AC Æ  �ACnRe1 t.Sin
e R1 is �nite, there exists a k su
h that R1 � Rk. Thus, theset of persisting rules 
an be obtained using only �nite derivations.5.4. OptimizationsThe set of transition rules for 
omputing an AC 
ongruen
e 
losure 
anbe further enhan
ed by additional simpli�
ations and optimizations.First, we 
an 
atten terms in E.Flattening: (K;E [ fs � tg; R)(K;E [ fu � tg; R)where s!F u.However, now the 
orre
tness proof given above, Lemma 7 in par-ti
ular, fails as the new proof s $AC u $E0 t of the deleted equations � t is larger than the old proof s$E0 t. But we 
an still establish the
orre
tness of the extended set of inferen
e rules as follows: Assume that
attening does not delete the equation s � t from E but only marks it.All subsequent derivation steps do not work on the marked equations.On
e the derivation 
onverges (ignoring the marked equations), we 
andelete the marked equations as any su
h equation, say s � t, wouldhave a proof s $AC u $AC[R1 t, and hen
e also a desired rewriteproof (using the persisting set of rewrite rules).As a 
onsequen
e of the 
attening rule, we 
an 
onstru
t fully 
at-tened AC 
ongruen
e 
losures, i.e., where ea
h term in the 
ongruen
e
losure is fully 
attened.As a se
ond optimization, the extension variable of a rewrite rule 
anbe 
onstrained to allow for �ne-grained deletion of instan
es of rewriterules. For example, after dedu
ing the 
riti
al pair f
1
2 � f
2
3 thatarises by overlapping the rules f
1
2x! f
2x and f
1
1y ! f
3y, we
an delete the instan
e f
1
1
2 ! f
3
2 of the latter rule as it has asmaller proof f
1
1
2 ! f
1
2 � f
2
3 using the dedu
ed equation.We 
an delete this instan
e by repla
ing the rule f
1
1y ! f
3y bythe new rule f
1
1y ! f
3y if C, where C is the 
onstraint that \y isnot of the form f(
2; z)". These new 
onstraints 
an be 
arried to newequations generated in a dedu
tion step.Finally, note that, as in the 
ase of 
ongruen
e 
losure dis
ussedbefore, we 
an 
hoose the ordering between two 
onstants in K on
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Abstra
t Congruen
e Closure 35the 
y. As an optimization we 
ould always 
hoose it in a way so asto minimize the appli
ations of ACCollapse and 
omposition later. Inother words, when we need to 
hoose the orientation for 
 � d, we
an 
ount the number of o

urren
es of 
 and d in the set of D- andA-rules (in the R-
omponent of the state), and the 
onstant with fewero

urren
es is made larger.5.5. PropertiesThe results in the previous se
tions establish the de
idability of theword problem for ground theories presented over a signature 
ontain-ing �nitely many asso
iative-
ommutative symbols. Note that we areimpli
itly de
omposing the equations (over a signature 
onsisting ofseveral symbols) into equations over exa
tly one fun
tion symbol anda set of new 
onstants. A set of equations over exa
tly one AC symboland �nitely many 
onstants de�nes a �nitely presented 
ommutativesemigroup.The word problem for 
ommutative semigroups is known to be
omplete for deterministi
 EXP spa
e [9℄. It is a simple observationthat the word problem for 
ommutative semigroups 
an be redu
ed tothe ideal membership problem for binomial ideals. In fa
t, an optimalexponential spa
e algorithm for generating the redu
ed Gr�obner basisof binomial ideals was presented in [19℄, but that algorithm was notbased on 
riti
al pair 
ompletion.Thus, using the approa
h proposed in our paper, we 
an 
onstru
tan AC 
ongruen
e 
losure in time O(nj�jT (n)) and spa
e O(n2+S(n))using an algorithm for 
onstru
ting Gr�obner bases for binomial idealsthat uses O(T (n)) time and S(n) spa
e. We have not worked out thetime 
omplexity of the 
riti
al pair 
ompletion based algorithm (aspresented in our paper) for 
onstru
ting Gr�obner bases for binomialideals and that remains as future work.6. Constru
tion of Ground Convergent Rewrite SystemsWe have presented transition rules for 
onstru
ting a 
onvergent pre-sentation in an extended signature for a set of ground equations. Wenext dis
uss the problem of obtaining a ground 
onvergent (AC) rewritesystem for the given ground (AC-) theory in the original signature.Hen
e, now we fo
us our attention on the problem of transforming a
onvergent system over an extended signature to a 
onvergent systemin the original signature.The basi
 idea of transforming ba
k is elimination of 
onstants fromthe presentation R as follows: (i) if a 
onstant 
 is not redundant (Def-
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36 L. Ba
hmair, A. Tiwari, and L. Vigneroninition 3), then we pi
k a term t 2 T (�) that is represented by 
, andrepla
e all o

urren
es of 
 by t in R; (ii) if a 
onstant 
 is redundant(and say 
! d is a C-rule in whi
h 
 o

urs as the left-hand side term),then all o

urren
es of 
 
an be repla
ed by d in R.In the 
ase when there are no AC-symbols in the signature, the abovemethod generates a ground 
onvergent system from any given abstra
t
ongruen
e 
losure. This gives an indire
t way to 
onstru
t ground 
on-vergent systems equivalent to a given set of ground equations. However,we run into problems when we use the same method for translation inpresen
e of AC-symbols. Typi
ally, after translating ba
k, the set ofrules obtained is non-terminating modulo AC (see Example 6). But ifwe suitably de�ne the notion of AC-rewriting, the rules are seen to be
onvergent in the new de�nition. This is useful in two ways: (i) the newnotion of AC-rewriting seems to be more pra
ti
al, in the sense that itinvolves stri
tly less work than a usual ACnRe redu
tion; and, (ii) ithelps to 
larify the advantage o�ered by the use of extended signatureswhen dealing with a set of ground equations over a signature 
ontainingasso
iative and 
ommutative symbols.6.1. Transition RulesWe des
ribe the pro
ess of transforming a rewrite system over an ex-tended signature �[K to a rewrite system over the original signature �by transformation rules on states (K;R), whereK is the set of 
onstantsto be eliminated, and R is a set of rewrite rules over � [ K to betransformed.Redundant 
onstants 
an be easily eliminated by the 
ompressionrule.Compression: (K [ f
g; R [ f
! tg)(K;Rh
 7! ti)where h
 7! ti denotes the (homomorphi
 extension of the) mapping
 7! t, and Rh
 7! ti denotes the appli
ation of this homomorphism toea
h term in the set R.The basi
 idea for eliminating a 
onstant 
 that is not redundant inR involves pi
king a representative term t (over the signature �) in theequivalen
e 
lass of 
, and repla
ing 
 by t everywhere in R.Sele
tion: (K [ f
g; R [ ft! 
g)(K;Rh
 7! ti [R0)if (i) 
 is not redundant in R, (ii) t 2 T (�), and (iii) if t � f(t1; : : : ; tk)with f 2 �AC then R0 = ff(t1; : : : ; tk;X) ! f(f(t1; : : : ; tk);X)g,otherwise R0 = ;.
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Abstra
t Congruen
e Closure 37In 
ase �AC = ;, we note that R0 will always be empty. We alsorequire that terms are not 
attened after the appli
ation of mappingRh
 7! ti. The variable X is a spe
ial sequen
e variable whi
h 
an onlybe instantiated by non-empty sequen
es. We shall formally de�ne itsrole later.Example 6. Consider the problem of 
onstru
ting a ground 
onver-gent system for the set E0 from Example 5. A fully-redu
ed 
ongruen
e
losure for E0 is given by the set R0a ! 
1 b ! 
2 
 ! 
3 f
2
3 ! 
4f
3
4 ! 
2 f
1
3 ! 
1 f
2
2 ! f
4
4 f
1
2 ! f
1
4g
4 ! 
4under the ordering 
2 � 
4 between 
onstants. For the 
onstants 
1; 
2and 
3 we have no 
hoi
e but to 
hoose a; b and 
 as representativesrespe
tively. Thus after three appli
ations of sele
tion, we getf

4 ! b fa
 ! a fbb ! f
4
4fb
 ! 
4 g
4 ! 
4 fab ! fa
4Next we are for
ed to 
hoose fb
 as the representative for the 
lass 
4.This gives us the transformed set R1,f
(fb
) ! b fa
 ! a fbb ! f(fb
)(fb
)fb
X ! f(fb
)X gfb
 ! fb
 fab ! fa(fb
)The relation !ACnRe1 is 
learly non-terminating (with the variable X
onsidered as a regular term variable).6.2. Rewriting with Sequen
e Extensions moduloPermutation Congruen
eLet X denote a variable ranging over non-empty sequen
es of terms.A sequen
e substitution � is a substitution that maps variables to thesequen
es. If � is a sequen
e substitution that maps X to the sequen
ehs01; : : : ; s0mi, then f(s1; : : : ; sk;X)� is the term f(s1; : : : ; sk; s01; : : : ; s0m).DEFINITION 9. Let � be a ground rule of the form f(t1; : : : ; tk) !g(s1; : : : ; sm) where f 2 �AC. We de�ne the sequen
e extension�s of � as f(t1; : : : ; tk;X) ! f(s1; : : : ; sm;X) if f = g, and asf(t1; : : : ; tk;X)! f(g(s1; : : : ; sm);X) if f 6= g.Now we are ready to de�ne the notion of rewriting we use. Re
allthat P denotes the equations de�ning the permutation 
ongruen
e,and that AC = F [ P . Given a set R, we denote by Rs the set R plussequen
e extensions of all ground rules in R.
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38 L. Ba
hmair, A. Tiwari, and L. VigneronDEFINITION 10. Let R be a set of rewrite rules. For ground termss; t 2 T (�), we say that s !PnRs t if there exists a rule l ! r 2 Rsand a sequen
e substitution � su
h that s = C[l0℄, l0 $�P l�, r0 = r�,and t = C[r0℄.Note that the di�eren
e with standard rewriting modulo AC is thatinstead of performing mat
hing modulo AC, we do mat
hing modulo P .For example, if � is fa
! a, then the term f(f(a; b); 
) is not redu
ibleby!Pn�s , although it is redu
ible by!ACn�e . The term f(f(a; b); 
; a)
an be rewritten by !Pn�s to f(f(a; b); a).Example 7. Following up on Example 6, we note that the relationPnRs1 is 
onvergent. For instan
e, a normalizing rewrite derivation forthe term fab
 is,fab
 !PnRs1 fa(fb
)
 !PnRs1 fab !PnRs1 fa(fb
):On 
loser inspe
tion, we �nd that we are essentially doing a derivationin the original rewrite system R0 (over the extended signature),f
1
2
3 !PnRs0 f
1
4
3 !PnRs0 f
1
2 !PnRs0 f
1
4:A PnRs0 proof step 
an be proje
ted onto a PnRs1 proof step, seeLemma 9(a) and Lemma 10(a). This is at the 
ore of the proof of
orre
tness, see Theorem 6.6.3. Corre
tnessWe shall prove that 
ompression and sele
tion transform a fully 
at-tened AC 
ongruen
e 
losure over �[K into a rewrite system R over� whi
h is 
onvergent modulo P and whi
h de�nes the same equationaltheory over fully 
attened terms over �. First note that any derivationstarting from the state (K;R), where R is an AC 
ongruen
e 
losureover � and K, is �nite. This is be
ause K is �nite, and ea
h appli
a-tion of 
ompression and sele
tion redu
es the 
ardinality of K by one.Furthermore, in any intermediate state (K;R), R is always a rewritesystem over � [ K. Hen
e, in the �nal state (K1; R1), if K1 = ;,then, R1 is a rewrite system over �, the original signature. We willshow that K1 is a
tually empty, and that the redu
tion relation PnRs1is terminating on T (�) and 
on
uent on fully 
attened terms in T (�).In this se
tion, we say R is left-redu
ed (modulo P ) if every left-hand side of any rule in R is irredu
ible by Pn� and Pn�s for everyother rule � in R; and, R is terminating (modulo P ) if PnRs is.
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Abstra
t Congruen
e Closure 39LEMMA 9. Let (K1; R1 = R00�) be obtained from (K0 = K1[f
g; R0 =R00[f
! ug) using 
ompression, where � = h
 7! ui. Assume that therewrite system R0 is left-redu
ed and terminating. Then,(a) For any two terms s; t 2 T (� [K0), if s!PnRs0 t, then s� !0;1PnRs1t�.(b) For any two terms s; t 2 T (� [K1), if s!PnRs1 t, then s� $+PnRs0t�, where � = hu 7! 
i16.(
) R1 is left-redu
ed and terminating.Proof. To prove (a), let s; t be two terms over � [ K0 su
h thats = C[l00℄, l00 $�P l0�s, and t = C[r0�s℄, where l0 ! r0 is (a sequen
eextension of) some rule inR0 and �s is a sequen
e substitution. Clearly,(l0�s)� = (l0�)(�s�) = l1(�s�), and similarly (r0�s)� = (r0�)(�s�) =r1(�s�), where either l1 = r1, or, l1 ! r1 is (a sequen
e extension of)some rule in R1. In the �rst 
ase, s� $�P t� and in the se
ond 
ase,s� !PnRs1 t�.To prove (b), note that sin
e R0 is left-redu
ed, a 
ompressionstep has the same e�e
t as a sequen
e of 
omposition steps followedby deletion of a rule. Hen
e, if s !Rs1 t, then s $+Rs0 t. Therefore,s�!�f
!ug s$+R0 t �f
!ug t�.To prove (
), note that termination is preserved by 
omposition anddeletion. Furthermore, the left-hand side terms do not 
hange, andhen
e the system 
ontinues to remain left-redu
ed.LEMMA 10. Let (K1; R1 = R00� [ R0) be obtained from (K0 = K1 [f
g; R0 = R00 [ fu ! 
g) using sele
tion, where � = h
 7! ui. Assumethat the rewrite system R0 is left-redu
ed and terminating. Then,(a) For any two terms s; t 2 T (� [K0), if s!PnRs0 t, then s� !0;1PnRs1t�.(b) For any two terms s; t 2 T (� [K1), if s!PnRs1 t, then s� !+PnRs0t�, where � = hu 7! 
i.(
) R1 is left-redu
ed and terminating.Proof. The proof of (a) is identi
al to the proof of Lemma 9(a).Note that in the 
ase when u = f(u1; : : : ; uk), where f 2 �AC , s $�PC[f(u1; : : : ; uk;X�s)℄, and t = C[f(
;X�s)℄, the proofs� $�P (C�)[f(u1; : : : ; uk;X�s�)℄!PnRs1 (C�)[f(f(u1; : : : ; uk);X�s�)℄ = t�16 Note that if � is de�ned by hfab 7! 
0i, then fab
� = fab
, but f(fab)
� = f
0
.
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40 L. Ba
hmair, A. Tiwari, and L. Vigneronuses the rule in the set R0.To prove (b), let s; t be two terms over � [ K1 su
h that s $�PC[l1�s℄ and t = C[r1�s℄, where l1 ! r1 is (a sequen
e extension of)some rule in R1. First 
onsider the 
ase when l1 = f(u1; : : : ; uk;X)!f(f(u1; : : : ; uk);X) = r1 is the rule in R0, and sin
e X�s is non-empty,s�$�P (C�)[f(u1; : : : ; uk;X�s�)℄!PnRs0 (C�)[f(
;X�s�)℄ = t�:In the other 
ase, assume l1 = l0� and r1 = r0�, where l0 ! r0 is (anextension of) some rule di�erent from u ! 
 in R0. Sin
e R0 is left-redu
ed modulo P , s�$�P (C[(l0�)�s℄)� = (C�)[l0(�s�)℄, and thereforewe have,s�$�P (C�)[l0(�s�)℄!R0 (C�)[r0(�s�)℄!�fu!
g (C[(r0�)�s℄)� = t�:Sin
e R0 is terminating, it follows from (b) that R1 is also terminat-ing. Finally, to prove that R1 = R00�[R0 is left-redu
ed, note that R00�is left-redu
ed be
ause R0 is. Furthermore, Condition (i) in sele
tionand the fa
t that R0 is left-redu
ed together imply that R00� [ R0 isleft-redu
ed too.The se
ond step in the 
orre
tness argument involves showing thatif Ki 6= ;, then we 
an always apply either sele
tion or 
ompression toget to a new state.LEMMA 11. Let (Ki; Ri) be a state in the derivation starting from(K0; R0), where R0 = D0 [ C0 [ A0 is a left-redu
ed (modulo AC)asso
iative-
ommutative 
ongruen
e 
losure over the signature �[K0.Assume that for every 
onstant 
 in K0, there exists a term t inT (�) su
h that17 t !�D0=C0 
18. If Ki 6= ;, then either sele
tion or
ompression is appli
able to the state (Ki; Ri).Proof. Sin
e Ki 6= ;, let 
 be some 
onstant in Ki. By assumption 
represents some term t 2 T (�) su
h that t!�D0=C0 
 19. It follows from
onvergen
e of ACnR0 that,t !�D0[C0 
0  �C0 
:Sin
e R0 is a left-redu
ed (modulo AC) 
ongruen
e 
losure, thereforeR0 is left-redu
ed and terminating modulo P , and hen
e Lemma 9 and17 !D=C= ($�C Æ !D Æ $�C).18 If �AC = ;, then this 
ondition is satis�ed by any abstra
t 
ongruen
e 
losure.19 Note that if the non-extended form of an A-rule is a D-rule, it is in
luded inthe set D0.
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Abstra
t Congruen
e Closure 41Lemma 10 are appli
able. As none of the 
onstants in K0 �Ki o

urin the terms t and 
, using Lemma 9(a) and Lemma 10(a), we havet !�PnRsi Æ  �PnRsi 
;where the right-hand side of ea
h rule used in the above proof is eithera 
onstant or a term in T (�). If it is the 
ase that 
 is redu
ible by Ri,then 
 is a redundant 
onstant whi
h 
an be eliminated by 
ompression.If there are no redundant 
onstants, then the above proof is of the formt !�PnRsi 
. If l ! d 2 Rsi is the �rst rule used in the above proofthat has a 
onstant as a right-hand side, then we 
an 
hoose l as therepresentative for d and hen
e sele
tion is appli
able.THEOREM 6. If (K1; R1) is the �nal state of a maximal derivationstarting from state (K;R), where R is a left-redu
ed fully 
attened AC
ongruen
e 
losure su
h that for every 
onstant 
 in K0, there exists aterm t in T (�) su
h that t !�D0=C0 
, then (i) K1 = ;, (ii) !PnRs1is ground 
onvergent on all fully 
attened terms over �, and (iii) theequivalen
e over 
attened T (�) terms de�ned by this relation is thesame as the equational theory indu
ed by R [ AC over 
attened T (�)terms.Proof. Statement (i) is a 
onsequen
e of Lemma 11. It follows fromLemma 9(
) and Lemma 10(
) that !PnRs1 is terminating. Let s; tbe fully 
attened terms over T (�) su
h that s $�P[Rs1 t. UsingLemma 9(b) and Lemma 10(b), it follows that s$�AC[R t. This, in turn,implies that s !�ACnRe Æ $�AC Æ  �ACnRe t, and hen
e, by proje
tingthis proof onto fully 
attened terms (normalize ea
h term in the proofby F ), we obtain a proof s!�PnRs Æ $�P Æ  �PnRs t, as R is assumed tobe fully 
attened. Using Lemma 9(a) and Lemma 10(a), this normalform proof 
an be proje
ted onto a proof s!�PnRs1 Æ $�P Æ  �PnRs1 t.This establishes 
laims (ii) and (iii).Note that in the spe
ial 
ase when �AC is empty, the notionof rewriting 
orresponds to the standard notion, and hen
e R1 is
onvergent in the standard sense by this theorem.7. Con
lusionAbstra
t Congruen
e ClosureKapur [18℄ 
onsidered the problem of 
asting Shostak's 
ongruen
e 
lo-sure [28℄ algorithm in the framework of ground 
ompletion on rewrite
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42 L. Ba
hmair, A. Tiwari, and L. Vigneronrules. Our work has been motivated by the goal of formalizing notjust one, but several 
ongruen
e 
losure algorithms, so as to be able tobetter 
ompare and analyze them.We have suggested that, abstra
tly, 
ongruen
e 
losure 
an be de-�ned as a ground 
onvergent system; and that this de�nition does notrestri
t the appli
ability of 
ongruen
e 
losure. We give strong boundson the length of derivations used to 
onstru
t an abstra
t 
ongruen
e
losure. This brings out a relationship between derivation lengths andterm orderings used in the derivation. The rule-based abstra
t des
rip-tion of the logi
al aspe
ts of the various published 
ongruen
e 
losurealgorithms leads to a better understanding of these methods. It ex-plains the observed behaviour of implementations and also allows oneto identify weaknesses in spe
i�
 algorithms.The paper also illustrates the use of an extended signature as aformalism to model and subsequently reason about data stru
tures likethe term dags, whi
h are based on the idea of stru
ture sharing. Thisinsight is more generally appli
able to other algorithms as well [6℄.Effi
ient Constru
tion of Ground Convergent SystemsGraph-based 
ongruen
e 
losure algorithms have also been used to
onstru
t a 
onvergent set of ground rewrite rules in polynomial timeby Snyder [29℄. Plaisted et. al. [25℄ gave a dire
t method, not basedon using 
ongruen
e 
losure, for 
ompleting a ground rewrite systemin polynomial time. Hen
e our work 
ompletes the missing link, byshowing that 
ongruen
e 
losure is nothing but ground 
ompletion.Snyder [29℄ uses a parti
ular implementation of 
ongruen
e 
losuredue to whi
h some postpro
essing followed by a se
ond run of 
ongru-en
e 
losure is required. We, on the other hand, work with abstra
t
ongruen
e 
losure and are free to 
hoose any implementation. All thesteps in the algorithm in [29℄ 
an be des
ribed using our 
onstru
tionof abstra
t 
ongruen
e 
losure steps, and the �nal output of Snyder'salgorithm 
orresponds to an abstra
t 
ongruen
e 
losure. The 
om-pression and sele
tion rules for translating ba
k in our work, a
tually
orrespond to what Snyder 
alls printing-out the redu
ed system andthis is not in
luded in the algorithms time 
omplexity of O(n log(n))as 
omputed in [29℄. Finally, the approa
h in [29℄ is to solve theproblem \by abandoning rewriting te
hniques altogether and re
astingthe problem in graph theoreti
 terms." On the other hand, we sti
k torewriting over extensions.Plaisted and Sattler-Klein [25℄ show that ground term-rewriting sys-tems 
an be 
ompleted in a polynomial number of rewriting steps byusing an appropriate data stru
ture for terms and pro
essing the rules
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Abstra
t Congruen
e Closure 43in a 
ertain way. Our work des
ribes the 
onstru
tion of ground 
onver-gent systems using 
ongruen
e 
losure as 
ompletion with extensions,followed by a translating ba
k phase. Plaisted and Sattler-Klein provea quadrati
 time 
omplexity of their 
ompletion pro
edure.AC Congruen
e ClosureThe fa
t that we 
an 
onstru
t an AC 
ongruen
e 
losure implies thatthe word problem for �nitely presented ground AC-theories is de
id-able, see [20℄, [22℄ and [14℄. Note that we arrive at this result withoutassuming the existen
e of an AC-simpli�
ation ordering that is total onground terms. The existen
e of su
h AC-simpli�
ation orderings wasestablished in [22℄, but required a non-trivial proof.Sin
e we 
onstru
t a 
onvergent rewrite system, even the problemof determining whether two �nitely presented ground AC-theories areequivalent, is de
idable. Sin
e 
ommutative semigroups are spe
ialkinds of AC-theories, where the signature 
onsists of a single AC-symbol and a �nite set of 
onstants, these results 
arry over to thisspe
ial 
ase [21, 19℄.The idea of using variable abstra
tion to transform a set of equationsover several AC-symbols into a set of equations in whi
h ea
h equation
ontains exa
tly one AC-symbol appears in [14℄. All equations 
on-taining the same AC-symbol are separated out, and 
ompleted into a
anoni
al rewriting system (modulo AC) using the method proposedin [7℄. However, the 
ombination of ground AC-theories with otherground theories is done di�erently here. In [14℄, the ground theory(non-AC part) is handled using ground 
ompletion (and uses a re
ur-sive path ordering during 
ompletion). We, on the other hand, use a
ongruen
e 
losure. The usefulness of our approa
h 
an also be seenfrom the simpli
ity of the 
orre
tness proof and the results we obtainfor transforming a 
onvergent system over an extended signature to oneover the original signature.The method for 
ompleting a �nitely presented 
ommutative semi-group (using what we 
all A-rules here) has been des
ribed in variousforms in the literature, e.g. [7℄)20. It is essentially a spe
ialization ofBu
hberger's algorithm for polynomial ideals to the 
ase of binomialideals (i.e. when the ideal is de�ned by polynomials 
onsisting of exa
tlytwo monomials with 
oeÆ
ients +1 and �1).20 A
tually there is a subtle di�eren
e between the proposed method here and thevarious other algorithms for de
iding the word problem for 
ommutative semigroupstoo. For example, working with rule extensions is not the same as working with ruleson equivalen
e 
lasses (under AC) of terms. Hen
e, in our method, we 
an apply
ertain optimizations as mentioned in Se
tion 5.4.
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44 L. Ba
hmair, A. Tiwari, and L. VigneronThe basi
 idea behind our 
onstru
tion of asso
iative-
ommutative
ongruen
e 
losure is that we 
onsider only 
ertain ground instantia-tions of the non-groundAC axioms. If we are interested in the E-algebrapresented by E (where E 
onsists of only AC axioms for some fun
-tion symbols in the signature � in our 
ase, and E is a set of groundequations), then sin
e E 
onsists of non-ground axioms, one needs toworry about what instantiations of these axioms to 
onsider. For the
ase when E is a set of AC axioms, we show that we need to 
onsiderground instan
es in whi
h every variable is repla
ed by some subtermo

urring in E. This observation 
an be generalized and one 
an askfor what 
hoi
es of E axioms does 
onsidering su
h restri
ted instanti-ations suÆ
e to de
ide the word problem in E-algebras? Evans [16, 17℄gives a 
hara
terization in terms of embeddability of partial E-algebras.Apart from 
ommutative semigroups, this method works for latti
es,groupoids, quasigroups, loops, et
.A
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