Positive Deduction modulo Regular Theories *

Laurent Vigneron

CRIN-CNRS & INRIA Lorraine
B.P.239, 54506 Vandoeuvre-les-Nancy Cedex, France
E-mail: Vigneron@Loria.Fr

Abstract. We propose a new technique for dealing with an equational
theory £ in the clausal framework. This consists of the definition of two
inference rules called contextual superposition and extended superposi-
tion, and of an algorithm for computing the only needed applications of
these last inference rules only by examining the axioms of £. We prove
the refutational completeness of this technique for a class of theories &
that include all the regular theories, i.e. any theory whose axioms pre-
serve variables. This generalizes the results of Wertz[31] and Paul [17]
who could not prove the refutational completeness of their superposition-
based systems for any regular theory.

We also combine a collection of strategies that decrease the number
of possible deductions, without loss of completeness: the superposition
strategy, the positive ordering strategy, and a simplification strategy.
These results have been implemented in a theorem prover called DATAC,
for the case of commutative, and associative and commutative theories.
It is an interesting tool for comparing the efficiency of strategies, and
practical results will follow.

1 Introduction

The paramodulation rule permits one to deal with the equality predicate with-
out explicitly describing its properties of reflexivity, symmetry, transitivity and
functional reflexivity. It is also based on a notion of replacement. Over time, sev-
eral refinements have been added to this rule. Brand [6] has shown that only the
reflexivity axiom z ~ x is needed. Peterson [18] has shown that paramodulations
into variables are useless. Hsiang and Rusinowitch [10] have introduced ordering
restrictions to the application of these rules, and have proved the completeness
of the following ordering strategy: each inference step has to be applied between
mazimal (w.r.1. an ordering) literals in clauses, and in each paramodulation step,
a term cannot be replaced by a bigger one.

Other refinements, such as the superposition strategy which applies replace-
ments only in biggest sides of equations, and clausal simplifications which delete
redundant clauses, have followed [4].

* This work was done during a fellowship at the University of Stony Brook (NY, USA),
funded by the Institut National de Recherche en Informatique et en Automatique
(France).

The complete Hsiang-Rusinowitch strategy and others are unfortunately of-
ten inefficient in the presence of clauses such as the associativity property of an
operator f, f(f(z,y),z)~ f(x, f(y, z)), which produces the divergence of deriva-
tions by successive superpositions into the subterm f(z,y). Other properties,
such as the commutativity of an operator, induce problems with the superposi-
tion rule because they cannot be oriented.

The most established solution was proposed by Plotkin [20]. He proposed
to define an equational theory &£, by extracting the above properties from the
set of clauses, and to define a unification algorithm modulo £. This result has
been the basis of much work: Lankford and Ballantyne[14] for the particular
case of associative and commutative theories, and Peterson and Stickel [19] for
completion. When applying ordering strategies to theorem proving in equational
theories, we need to add various additional techniques. The techniques usually
proposed in equational deduction are:

1. either to add an inference rule applying replacements into axioms of &, and
therefore generating extensions of these axioms,

2. or to associate to each equation the set of its possible extensions, which may
be used later by the superposition rule.

These extensions have been studied by Jouannaud and Kirchner [13], and Bach-
mair and Dershowitz [1]. Both techniques have been used by Wertz [31]; the sec-
ond has been used by Paul[17] too.

We propose in this paper a new technique for dealing with these extensions
in the clausal framework, by defining two inference rules called contextual super-
position and extended superposition. We also define an algorithm for computing
the only needed applications of these last inference rules, only by examining the
axioms of £ and generalizing the £-redundant context notions of Jouannaud and
Kirchner [13] defined for equational completion. Our inference system is defined
by combining the superposition strategy and the positive ordering strategy; it is
also compatible with the simplification strategy.

The positive strategy was initially proposed by Robinson [21] and has been
transformed many times later. Our definition of this strategy, whose first version
was presented in [25], is a much more attractive one. The usual condition is to
apply superposition steps from a positive clause. Here, we mention that whenever
we want to use a positive literal, it has to belong to a positive clause. A similar
strategy has also been independently defined by Paul in[17].

Our positive strategy uses a particular case of the superposition calculus
with selection, defined by Bachmair and Ganzinger in[3], for selecting negative
literals. But in addition we define a new kind of selection on positive literals: a
positive literal can be used in a deduction if it belongs to a positive clause and
if it is maximal in this clause (for a given ordering).

We prove the refutational completeness of our inference system for all the
equational theories & allowed by Wertz [31] and Paul [17], but in addition we
prove it for any regular theory £, 1.e. any theory whose axioms preserve variables.

Moreover, our algorithm for detecting £-redundant contexts permits a significant
decreasing of the number of possible deductions.

These results have been implemented in a theorem prover called DATAC, for
commutative, and associative and commutative theories. It is an interesting tool
for comparing the efficiency of strategies, and practical results will follow.

The layout of this paper is the following: after introducing the basic notions in
Sect. 2, we describe our inference rules in Sect. 3. Section 4 presents a procedure
to compute useful contexts for extended equations. The proof of refutational
completeness of the inference system is sketched in Sect.5, but it is detailed
in [30] (see also[26, 29]). Section 6 presents an example of trace with our system
DATAC.

2 Notations and Definitions

Let us define some basic notions, based on the standard notations and definitions
for term rewriting and unification given in[8, 12].

Let £ be an equational theory, i.e. a set of equations. The congruence gen-
erated by this set &£ is called £-equality and written =¢. A substitution is a
function replacing some variables by terms. A substitution ¢ is said to £-unify
two terms s and ¢ if so and to are £-equal, and if ¢ is a most general £-unifier of
s and ¢ (see[12]). In this case, ¢ is a solution of the &-unification problem s =7 ¢.

An atom is an equality [~ r. A clause is denoted Ay,..., A, — B1,..., Bm,
where Ay, ..., A,, By, ..., By, are atoms; this means A, and...and A, implies
By or...or By,. A literal is an atom appearing in a clause. A literal is positive
(resp. negative) if it appears on the right-hand side (resp. left-hand side) of —.
A clause is positive if it contains only positive literals, i.e. if the left-hand side
of — 1s empty.

To express subterms and substitutions, we use positions. Envision a term
represented as a tree; a position in a term is a node of this tree. The subterm
at position p of a term t is written ¢|,. A position is a sequence of integers:
f(ti, ... tn)]ip = tilp; the empty sequence (empty position) is denoted € (¢ =
t). A position p in a term ¢ is a non-variable position if ¢|, is not a variable. The
set of all non-variable positions of a term ¢ is denoted FPos(t). The term s[t],
represents the term s whose subterm at position p is t.

To decrease the number of possible deductions, we use an ordering strategy.
So, we assume we are given a simplification ordering >, defined on terms and
atoms. For the sake of completeness, it has to be total on ground £-congruence
classes and £-compatible i.e.

Vs,t ground terms, if s > ¢ and s#¢t, then Vs' =g s, Vi'=¢ 1, s’ >

So, in our inference rules, we will use this ordering to orient equations and to
check the maximality of an equation w.r.t. other equations. However terms may
be incomparable; we will write that a term is maximal w.r.t. another term, if it

is not smaller than or equal to this second term.
Given an equality [~ r, we will assume [1s maximal w.r.t. r.

3 Inference Rules

We describe in this section a set of inference rules for applying deductions mod-
ulo an equational theory £. These rules are based on the superposition strategy,
a variant of the paramodulation strategy; it applies replacements only in maxi-
mal sides of equations. This superposition strategy i1s combined with a positive
ordering strategy to prune the search space. This strategy is described in the
next definition, and needs a total simplification ordering for comparing terms.

Definition1 (Positive Ordering Strategy).

e If an inference rule uses a positive literal in a clause, this clause has to be
positive. In addition, the positive literal used has to be maximalin the clause.

e If an inference rule uses a negative literal in a clause, this literal has to be
maximal w.r.t. the other negative literals of the clause.

The first inference rule i1s the Equational Factoring. Its purpose is to derive
clauses in which two positive equations do not have £-equal left-hand sides. This
inference rule is essential for the completeness of the superposition strategy. Note
that it is applied only on positive clauses.

—>11:r1,12:r2,R

Definition2 (Equational Factoring).
(Eq g) rio~re0 — lho~rq0, Ro

where ¢ E-unifies [; and I, [0~ r10 is maximal w.r.t. [so ~ ro0 and each equa-
tion of Ro. Moreover, l;0 has to be maximal w.r.t. rio.

The next rule stands for avoiding the addition of the reflexivity axiom =~z
of the equality predicate. It is the only rule which can derive the empty clause,
symbolizing an incoherence in the initial set of clauses, since it is the only rule
which deletes a literal.

l~r L - R

Definition3 (Reflexion). To SR
o o

where ¢ E-unifies [and r, and [0 ~ ro is maximal w.r.t. each equation of Lo.

The superposition rule applies the replacement of a term by an equal one,
from a positive clause. It is decomposed into a Left and a Right Superposition
rule, respectively defined by

—)l12T1,R1 lQ:TQ,L2—>R2 d —)l12T1,R1 —>122T2,R2
an

Lri)p,0 2120, Loc — Rio, Rao — L[r1]p,o0 =120, R0, Roo

where ¢ is a E-unifier of [; and the subterm at position ps of I>. But, even with
these two inference rules, the procedure of deduction is not complete, as shown
in the next example.

Frample 1. Let £ = { f(f(w1,®2), 23) ~ f(x1, f(x2,23)) }. The following clauses
(1) = fla,b)=c (2) = f(a, f(b,d))~e (3) fle,d)y~e—
form an incoherent set with & since: £ permits a modification of the parentheses
in the left-hand side of the second clause, to obtain — f(f(a,b),d)~e, and
replacing f(a,b) by ¢ in this term (thanks to (1)), we deduce — f(c,d)~e

which contradicts (3).
However, there is no possible inference step between the three initial clauses. &

We solve this problem by applying superpositions from extended equations, i.e.
from equations e[l1], ~e[ri],, where e is a term and p a non-variable position in
e. Such a pair (e, p) is called a context. In the previous example, a contradiction
can be derived using the context (f(f(x1,x2),23),1), producing the extended
equation f(f(a,b),z3)~ f(c,z3) from f(a,b)~c.

By the Critical Pairs Lemma of Jouannaud and Kirchner [13], we know that
contexts can be computed. We define in Sect.4 a procedure to compute all the
possible contexts for a given equational theory £. Given a term !, Cont(l) is the
set of all contexts (e, p) for £ such that e|, and { are &-unifiable. These contexts
are used in three new inference rules.

The first two rules simulate replacements from an equation or an extended
equation. Indeed, we assume that the context (/,¢) belongs to Cont(l). Left and
right superposition rules are therefore particular cases of the next inference rules.

Definition4 (Left Contextual Superposition).

—>11:r1,R1 lzﬁ?“z,Lz—)Rz

12 [61[7°1]p1]p20 ~ro0, LQO' — Rla, RQO'

where p, is a non-variable position in ls, (e1, p1) is a context? in Cont(ly), o &-
unifies 5|, and e1[l1]p,, {10~ ri0 is maximal for > in its clause, and lho ~ry0
is maximal w.r.t. each atom of Lso. Moreover, /10 has to be maximal w.r.t. ri0o,
and ly0 has to be maximal w.r.t. ro0. The replacing term in the deduced clause
is the extension of the right-hand side, eq[r1], .

Definition 5 (Right Contextual Superposition).

—>11:r1,R1 —>12:r2,R2

— 12 [61[7°1]p1]p20 ~ 790, Rla, RZO'

where the only difference with Left Contextual Superposition is that lyo~7rs0
1s maximal in its clause and maximal w.r.t. o ~rio.

The next inference rule simulates a superposition between two extended equa-
tions, at the top of their maximum side.

Definition 6 (Extended Superposition).

—>11:r1,R1 —>12:r2,R2

— e1[r1]p, 0 ~ea[rs]p,0, R10, Roo

% (e1,p1) may be an empty context, i.e. p; = e.

where, given a non-empty context (e1,p1) in Cont(l1) and a non-empty context
(e2,p2) in Cont(ly), o E-unifies e1[l1],, and es[ls],,. Each equation has to be
maximal in its clause, and their left-hand side has to be maximal w.r.t. their

right-hand side.

3.1 About the Superposition Strategy

The principle of the superposition strategy is to apply replacements only into
maximalsides of equations, and has been extensively used for term rewriting and
completion. But, the completeness of inference systems representing this strategy
has been a longstanding open problem. For completeness, either some deductions
using non-maximal literals [24], or some replacements into minimal sides of equa-
tions [3], were needed. Bachmair and Ganzinger [2] have proved the completeness
in the empty theory of the entire superposition strategy by adding two Equa-
tional Factoring rules (one for negative and one for positive literals). Defining
a particular ordering for comparing negative and positive literals, Nieuwenhuis
and Rubio[16] have proved that the rule on negative literals is useless.

In our inference rules, we never need to compare such literals: we always
compare literals of the same sign. So for us, specifying a special ordering on
literals is useless.

3.2 Other Predicate Symbols

Our five inference rules have been defined for deduction in first-order logic with
a unique predicate, the equality predicate. This restriction has been decided only
for simplifying notations, but it is easy to adapt the inference rules to the pres-
ence of other predicate symbols. And we have to add a Factoring rule (applied
only on positive clauses) and a Resolution rule (applied with a positive clause)
for dealing with the non-equational literals (see [26]). The new system of deduc-
tion remains complete if the equality symbol is minimal in precedence.

Now that we have defined all the inference rules, let us show how to compute
extended equations with contexts.

4 Extended Equations

An extension of an equation [~r is an equation e[l], ~e¢[r],, also called an
extended equation of {~r, where e is a term, p a non variable position in this
term. The subterm at position p in e is £-unifiable with /, the maximum side of
the equation. The couple (e, p) is called the context of this extension.

The set of all possible contexts for a theory &, written Cg, is defined by
Ugs>o Conty, where the sets Conty, are inductively defined by:

Conty = {(e,p) | Je~e' ore’~e€ &, pe FPos(e)and p# e}

Contpi1 = { (erlea]p,, p1p2) | (e1,p1) € Conto, (e2,p2) € Conty,
and e1],, and e; are £-unifiable }

Then, given an equation [~ r where [is maximal w.r.t. 7, the set of all possible
contexts which can extend [~r is defined by:

Cont(l) = {(e,;p) € Cs | e|p, and [are E-unifiable } U { ({,¢) }

We have added (/, ¢) for avoiding the definition of special inference rules, applying
superpositions without context.

Let [— r be a ground rewrite rule. Let C; be the set of all ground instances
of contexts of Cont(l). We define the relation —¢, ¢ by:

t1 —c, e to if (e, i) € G, I € FPos(ty), tilg=cer, ta = tileilr]p]q

This relation —¢, ¢ satisfies a property called £-closure if: whenever a term ¢
is reducible into a term ¢; by the relation —¢, ¢, then for each term t,, £-equal
to t, to and ¢, are reducible by —¢, ¢ into two £-equal terms.

A set of contexts C is said to be £-covering if, for any ground term [, the relation
—¢, ¢ satisfies the property of £-closure, where C; = C N Cont({).

Proposition7. Let £ be an equational theory. The set of contexts Ce is E-
covering.

This Proposition means that the role of the equations of £ is entirely simulated
by superpositions with contexts of Cg. Its proof is similar to the proof of the
Critical Pairs Lemma of Jouannaud and Kirchner [13] (see [29]), and consists of
simple case analyses.

However, the definition of C¢ is very general, and for efficiency we combine it
with a procedure deleting redundant contexts. Before describing this procedure,
let us introduce some definitions.

Definition 8. A context (e1,p1) is redundant at a position p w.r.t. a set of
contexts C, if p is a non-variable position in e; and p; = p-¢ (where ¢ # €), and
if there is a context (e2,p2) in C and a substitution ¢ such that:

1. es[]p,0=¢(e1]p)[]q for guaranteeing the equivalence of terms eso and eq|,,
2. (ez|p,)o =¢ e1|p, for guaranteeing the equivalence of subterms where replace-
ments will apply.

where the symbol - is a new constant. (e1, p1) is said to be redundant at p w.r.t.
C, by (ea0,p2). If pis €, the context (e1,p1) is said to be top-redundant.

Definition 9. Let (e1,p1) be a context. Let €] be a ground term and ¢ a ground
substitution such that €| is £-equal to eyo. The representation e} of the context
(e1,p1) is said to be E-redundant at a position p w.r.t. a set of contexts C,
if there is a term ey £-equal to €/, and a non-variable position ps in ey, s.t. :

1. (ez2,p2) is top-redundant w.r.t. C, by a context (ez, ps),
2. (e10,p1) is top-redundant by (¢ [es],, p-p3).

Note that the position p may be the empty position.

A context (e1, p1) is &-redundant w.r.t. a set of contexts C if,

1. either (e1,p1) is top-redundant w.r.t. C,
2. or, for each term e}, £-equal to a ground instance e;o of e,
(a) either there is a non-variable position p} in e} such that (ef,p}) is
top-redundant by (e1, p1),
(b) or the representation ej of the context (e1,p1) is &-redundant at a
position p’ w.r.t. C.

Fig. 1. Redundancy criteria of a context in £.

Proposition10. Let £ be an equational theory. The set of contexts Ce, con-
structed with the £-redundancy criteria described in Fig. 1, is £-covering.

Proof. Uselessness of redundant contexts is eastly derived from the algorithm
described in Fig. 1 as follows:

1. If there is a context (eq,p2) in C such that any replacement with the context
(e1,p1) is an instance of a replacement with this context (e2, p2), then to use
(ea,p2) instead of (e1,p1) generates the same result, or a more general one.

2. Let us study the terms in which the context (e1,p1) could be applied. A first
remark ts there is no need to use this context with terms that are instances
of e1; the replacement can be applied directly at the position py. We can
generalize this remark: (e1,p1) is useless if all terms in which it could be
applied can be treated without contert or with another context of C. But to
test this for each term E-equal to ey is not sufficient, because a term E-equal
to an instance of ey may not be an instance of a term E-equal to e;. So,
the context (e1,p1) is E-redundant if, for each term €| E-equal to a ground
mstance e1o of eq,

(a) either a term E-equal to eq|p, appears at a position p| of €|, ie. the
replacement can be directly done at this position; wn addition, we have
to check that the result s identical to the one obtained with the context
(elap1)7

(b) or a context of C can be applied at a position p' of €}, producing the same
result as applying the context (ey,p1) to the top of €.

In practice, to check the second point does not consist of studying all the ground
wmstances of ey, but of enumerating the different forms that can have these in-
stances. And we can note that if the context (e1,p1) is redundant at a non-empty
position p by a context (ez,pa), then all its representations ¢} =¢ ey such that

3p’ € FPos(e1), eilp =elerlp)o and €\l =¢ er[]po
are E-redundant at the position p’ by the context (ea, p2). O

A simple algorithm for constructing the contexts with the redundancy crite-
ria of Fig.1 is, for each context newly created, to verify it is not £-redundant

w.r.t. the set C of the contexts already constructed; then, we delete from C the
contexts £-redundant by the addition of this new context. Moreover, it would
be interesting, when applying an inference rule involving a context, to check the
non-redundancy of the instance of this context used, and even to check the non-
redundancy of the representation of its term in the clause where the replacement
is going to apply.

Let us give two examples of the construction of contexts.

Frample 2 (Associativity and Commutativity). If £ represents properties of as-
sociativity and commutativity of an operator f,

& = {f(f(l‘l,l‘z),$3)2f(901,f(l‘2,$3)), f($1,$2):f($2,$1)}

Conty contains two contexts, (f(f(x1,2),23),1) and (f(z1, f(®2,23)),2), but
the second one is top-redundant by the first one. (f(f(f(x1,%2),z3),24),1-1),
the unique context of Conty, is top-redundant by (f(f(z1,22),z3), 1) too.

Hence, Cac = { (f(f(#1,22),23),1) }, which means that the only possible ex-
tension of an equation {~ris f(l,z3) ~ f(r, x3). O

Frample 3 (Associativity). If £ contains the property of associativity of f,
E = { f(f(z1,22),23) > f(21, f(x2,23)) }

the non-redundant contexts are

Conty = { (f(f(x1,22),23),1), (f(x1, f(22,23)),2) }
Cont;y = { (f(f(x1, f(za,23)),24),12) }

So, there are three useful extensions of an equation [~r where f is the top-
symbol of : to add a new variable, either on the right, f({, z3) ~ f(r, z3), or on
the left, f(x1,{)~ f(x1,7), or on both sides, f(f(x1,]),x4) = f(f(z1,7),24). O

4.1 Refining the Construction of Contexts

In the construction of the sets of contexts Conty, we have used the notion of
E-unifiability. For instance, for building a context (ei[esles]y,]p,, p1-p2-ps), we
have assumed that e;],, and es are £-unifiable, and that eq|,, and es[es],, are
E-unifiable. But, in this last test, we have lost the information that es|,, and es
have to be £-unifiable. There may be no substitution satisfying both conditions,
and therefore the context may be useless.

A simple way for avoiding such cases, is to add a third element to each con-
text: the conjunction of the £-unification constraints encountered to construct
it. In the previous example, the context would be:

(61[62[63]172]171’ P1-P2P3, {62|P2 :Z' ez N 61|Z71 :Z' 62[63]172})

Hence, a context is created only if its unification problems admit at least one
solution. As a second consequence, for applying an inference rule using a context,

we solve the specific unification problem of this rule, but in conjunction with the
unification problems of the context.
With this additional parameter, less contexts are constructed, less inference
rules are applicable and their unification problems have less solutions.
However, even with this optimization, there 1s an infinite number of contexts
for a lot of theories, as shown in the next example. This can be dealt with using
the algorithm building contexts with incrementality.

Frample | (Distributivity). Let £ = { f(w1, 9(w2, 23)) ~g(f(x1, 22), f(21,23)) }.

Conty contains the three contexts

(f($1’g($2’ $3))’ 2)’ (g(f($1’x2)’ f($1’ $3))’ 1)’ (g(f($1’$2)’ f(xl’ $3))’ 2)

The context (f(z1, f(x2, g(x3,24))),2-2) belongs to Conty, and so on... We can
build an infinite sequence of contexts of the form:

(f($1’ f(l‘z, B .f(xn,g(xn+1, $n+2))))’ 2n)

These contexts are all useful: they permit to recover the subterm g(2, 41, n42),
where the replacement occurs, from the representation:

g(f($1;f($2a . ~f($naxn+1)))a f($1a f($2a . f(l%; xn+2)))) <>

5 Refutational Completeness

A set of clauses S 1s said to be £-incoherent if there 1s no model such that SUE
is valid in this model. Let us define two properties of a theory &:

(P1) Regularity. For any equation ej ~ e5 in &, each variable of e; is a variable
of ey, and vice-versa.

(P2) For any ground term s that is £-equal to one of its strict subterms s|,
(p # ¢€), for any ground term ¢, s[t], has to be £-equal to ¢.

Let INF be the set of the five inference rules described in Sect. 3. Let us state
the theorem of refutational completeness of INF'.

Theorem 11 (Completeness). Let £ be an equational theory salisfying at least
one of the properties (P1) and (P2), and let S be a set of clauses. If S is &-
wmcoherent, INF will always derive a contradiction from S.

This theorem states that our inference system is refutationally complete if £
satisfies (P1) or (P2). This result is an important improvement of previous works
of Wertz [31] and Paul[17], since they proved the completeness of their systems
only if £ satisfies (P2). Moreover, our inference system limits the number of
possible deductions much more than Wertz’ and Paul’s systems, thanks to the
positive ordering strategy and the notion of £-redundant contexts.

Note that many theories satisfy (P1) but not (P2). For instance, if £ is
{f(x,0)~z}, & is regular but: given the ground term f(0,0), it is £-equal to 0;
however, for a constant a, f(0,a) is not £-equal to a. (P2) is not satisfied.

There are also some particular theories £ that satisfy (P2) but not (P1).
For instance®, if £ is {f(z,y)~ =z}, f is the only functional symbol and a is
the only constant, the term f(a,a) is £-equal to a, and for any ground term ¢,
fla,t)=¢t. Indeed, since f and a are the only symbols, any ground term (a,

fla,a), f(f(a,a),a), ..)is E-equal to a.

We prove the Theorem of Completeness by the transfinite semantic tree
method of Hsiang and Rusinowitch [10], extended to deduction modulo an equa-
tional theory in[26, 29]. Let us give a sketch of this proof, as it is rather similar
to the proof for the particular case of associative and commutative theories [26]

(see [29, 30] for the detailed proofs).

Proof. Let £ be a theory satisfying (P1) or (P2). Let S be an E-incoherent set
of clauses. Let us describe the main steps of the proof of refutational complete-
ness. It is realized in the ground case, because each deduction step with ground
mnstances clauses can be lifted to the general case.

Given a total E-compatible ordering on ground atoms, we sort them by in-
creasing order, and we construct the transfinite semantic tree T (in the empty
theory). An interpretation is a node of this tree.

As S 1s E-incoherent, each branch of the semantic tree T has a node that falsi-
fies either a ground instance of a clause of S, or a trivial equation t ~t where
t=¢1t'. Such nodes are called failure nodes. The mazimal subiree of T which
does not contain a failure node is called the maximal consistent tree, and wrii-
ten MCT(S).

Our inference system INF s refutationally complete if it is always able to derive
a contradiction (the empty clause) from S. Let INF*(S) be the set of all clauses
deduced by INF from S, in any number of steps. For proving that INF*(S) con-
tains the empty clause, we show that the mazimal consistent tree for INF*(S),
MCT(INF*(S)), is reduced to an empty tree.

The first step is to choose a branch in MCT(INF*(S)) that is consistent with
the theory £. This is done by adding new special failure nodes: distant failure
nodes and quasi-failure nodes.

— Let K be a failure node at the level of an atom u>~w s.t. u > w, w s re-
ducible and uw~w 1is falsified by K. If there is an irreducible atom u~w,
smaller than u~w and s.t. K satisfies w~v (therefore K falsifies u~v),
the restriction of K to the level of u~wv is a distant failure node.

This distant failure node permits to avoid a branch where there is a fail-
ure node falsifying an equation in which only the smallest side is reducible
(condition of the superposition strategy).

— Let K be an inlerpretation defined on atoms Aq,..., An. Let Appq be an
wrreducible equation up >~v s.t. up > v. K has two extensions: L, satisfying
uy ~v, and R, falsifying uy ~v. R 1s a quasi-failure node if there s a term
ug, E-equal to uy, s.l. ug = v is reducible by an equation l~r into us[r]=v,

? This example has been suggested to me by Wayne Snyder.

and K salisfies ua[r] ~v.
This quasi-failure node avoids to have uy ~ v satisfied and us ~v falsified in
the same branch; this would be inconsistent with €.

In the proof of consistency with £ of this branch, we encounter ¢ major problem;
we have to prove that the following case cannot happen in the chosen branch: two
E-equal atoms uy ~v and uy >~ v are interpreted differently, u; ~v is reducible
m uy by Iy ~ry, and us ~v s reducible in us by lo ~rs. For the case of asso-
ciative and commulative theories [26], we show that the branch falsifies a ground
instance of a clause of INF™(S), produced by an extended superposition between
li =71 and ly ~rs. But, for a general theory £, il is not so easy. The terms uy[lh]
and l; may be E-equal, and in such a situation, we have to prove that uy[r]~rq
15 valid in the chosen branch.

Wertz [31] and Paul[17] have decided to only consider theories € such that, when-
ever ui[l1] and 1y are E-equal, ui[r1] and r1 are E-equal too (Property (P2)).
In addition, studying the transformation of ui[l1] into |y by E-equality steps, we
prove that ui[ri] ~ry is always valid if the theory & is reqular (Property (P1}).

The last step of the proof is to show that the branch is empty. This implies that
MCT(INF*(S)) is empty, and also that the empty clause belongs to INF*(S5).
A study of the leaves of this branch, i.e. of fatlure nodes, distant failure nodes
and/or quasi-failure nodes culting il, shows that this branch falsifies a clause of
INF*(S), deduced from clauses falsified by the leaves.

The final solution is that the branch ts empty, and therefore the empty clause
belongs to INF™(S).

The compatibility with the positive strategy is a consequence of the following
property: if a (distant) failure node along the chosen branch, occuring at the
level of an atom A;, falsifies A;, then it falsifies a positive clause of INF*(S).
The proof of this property is done by induction on the failure and distant failure
nodes, as in [23] for the deduction in the emply theory. O

Our inference system INF is compatible with the simplification strategy, if
the derivations are fair, i.e. do not infinitely forget a possible deduction. This
strategy has for purpose the deletion of redundant clauses. Let us give some
examples of simplification rules:

— Simplification (also called Demodulation): it consists of applying a term
rewriting step, using a procedure of matching modulo £.

— Clausal Simplification: if there is a clause — A (resp. A —), then each
clause of the form A, L — R (resp. L — A’ R), where A’ is £-equal to
an instance of A is replaced by L — R .

— Trivial Reflexion: a clause of the form [~r L — R, where [is £-equal to
r,1s replaced by L - R .

— Tautology Deletion: each clause of the form L — l~r R where [=¢r, or
A, L — A’ R where A=¢ A’ is deleted.

INF is also compatible with the subsumption: if a clause C; subsumes a clause
C5 thanks to a substitution o, i.e. each literal of Cio is £-equal to a literal of
'y, the clause C'5 is deleted.

6 Implementation

The inference system described in this paper is implemented in the system DATAC
for the case where &£ represents properties of commutativity, or associativity and
commutativity (AC), of operators.

DATAC is a theorem prover written in CAML Light (18000 lines), a functional

language of the ML family; it has a graphical interface written in Tcl/Tk, X11
Toolkit based on the language Tcl. It runs on SUN, HP and IBM PC worksta-
tions.
It uses an AC-unification algorithm based on the algorithm of Stickel [27] and
the technique for solving Diophantine equations of Fortenbacher [9]. The algo-
rithm for AC-matching is inspired by the algorithm of Hullot [11]. The ordering
for comparing terms is the APO of Bachmair and Plaisted [5] with the improve-
ments of Delor and Puel [7].

Let us detail an example of execution in modular lattices, where - denotes
the function meet, + the function join, 1 the greatest element and 0 the least ele-
ment. The predicate symbol C'omp denotes the complementarity of two elements
(Comp is commutative). The equational theory & is the following:

(14 22) + 23 ~ 21 + (22 + 23)
& = 1+ >~ T2t 21
o (l‘1~l‘2)~l‘3 ~ l‘1~(l‘2~l‘3)
X1 Lo =X X9 X1

There are only two useful contexts for this theory & (cf. Example 2):
Ce = {((x1+x2)+as,1), ((w1-22) 3,1) }

The initial set of clauses is:

(1) — X1-T1 = X (2) — 14+ r ~2x
(3) — l‘1~(l‘1—|—l‘2) ~ I (4) — l‘1—|—(l‘1~l‘2) ~ I
7)) — l‘1~1 ~ X 8) — 1‘1—|—1 ~ 1
(9) T Ty = &1 — l‘2~(l‘1—|—l‘3) ~ l‘1—|—(l‘3~l‘2)
(10) Comp(x1,22) — 1 22 =~ 0 (11) Comp(x1,22) — w1+ 22 =~ 1

(12) 1422 ~ 1, 2122 =~ 0 = Comp(z1,x2)
The property we want to prove 1s:

For all elements a and b, let ¢y be the complement of a - b and let co be
the complement of a + b; then c3 + (¢1 - b) is the complement of a.

For this purpose, we add three new clauses that represent the negation of this
property (A4, B, C1 and C are new constants):

(13) = Comp(Cy, A B) (14) = Comp(Cy, A+ B)
(15) Comp(A.Cy + (C1 - B)) —

The theorem prover DATAC is run with these 15 initial clauses, and with the
precedence ordering - > + > B > A > C7 > C3 > 1 > 0 on functional operators,
and Comp > ~ on predicate operators. Deductions are applied thanks to the
inference rules defined in Sect. 3, combined with a resolution rule (for dealing
with the predicate Comp). These deduction rules combine the positive ordering
strategy with the superposition strategy. When a contextual superposition uses
an empty context, we simply call it a superposition.

Note that we are going to use a flattened representation under AC operators,
ie. aterm Cy - (A - B) will be written Cy - A - B.

DATAC automatically derives a contradiction, the empty clause written O, in the
following way:

Resolution between 10 and 13

(16) — A-B-C; ~ 0

Resolution between 11 and 13

(17) = (A-B)+Cy ~ 1

Resolution between 10 and 14

(18) = (A+B)-Cy ~ 0

Resolution between 11 and 14

(19) - A+ B+4+Cy ~1

Left Contextual Superposition from 1 into 9

(32) w1 32 ~ z1-x2 = x1-((z1-22) +23) = (x1-32) + (23 - 1)
Trivial Reflexion in 32

(32) — #1-((z1-22)+23) =~ (z1-22) + (23 - 1)

Left Contextual Superposition from 3 into 9

(63) w1 33 ~ z1-23 = (14 22) ((x1-23) +24) = (21 -23) + (x4 - (21 + 22))
Trivial Reflexion in 63

(63) — (v14+22) - ((x1-23)+24) =~ (21 -23) + (x4 - (1 + 22))
Right Superposition from 17 into 32

(131) — (B-A)+(Cy-B) ~ B-1

Simplification from 7 into 131

(131) — (B-A)+(C, - B) ~ B

Extended Superposition between 3 and 63

(197) — ((z2-z3)+ (za - (w2 +21))) - 21 ~ 21 - ((x2 - T3) + 24)
Extended Superposition between 4 and 131

(267) — A+(C1-B)~ B+ A

Right Superposition from 18 into 197

(397) — A-(B-21)+Cs) = (B-21)+0)- A

Simplification from 6 into 397

Left Superposition from 397 into 12

(1214) (B z1)+Co+A~1, B-21-A~0 — Comp((B-z1)+Cs, A)
Left Superposition from 16 into 1214

(2541) (B-C1)+Co+A~1,0~0 = Comp((B-Cy)+Cs2, A)
Trivial Reflexion in 2541

(2541) (B-Ci)+Co+ A ~1 — Comp((B-Ci)+ Ca, A)

Clausal Simplification in 2541 thanks to 15

(2541) (B-Ci)+Co+A~1 —

Simplification from 267 into 2541

(2541) B+A+Co ~1 —

Clausal Simplification in 2541 thanks to 19
(2541) O

The following table compares our positive ordering strategy with the clas-

sical ordering strategy [10], which requires only that deductions have to apply
between maximal literals of clauses. For this comparison, we applied two linear
completion steps on the 12 initial clauses of the previous example. A step of
linear completion consists of applying all possible deductions between the initial
clauses, but none with one of the deduced clauses. The second step for the or-
dering strategy was stopped because of a lack of memory while solving a tricky
AC-unification problem.
The last column of this table presents statistics for the example traced above.
For this example, we have used a simplified version of the AC-unification algo-
rithm that permits not to compute all the minimal solutions and not to solve
tricky problems. A consequence is the loss of the completeness of the strategy,
but the main advantage 1s that we avoid problems of memory size.

Linear Completion First step Second step Example
| Ordering | Positive | Ordering | Positive

Initial Clauses 12 12 53 19 15
Generated Clauses 111 63 >3336 240 2526
Final Clauses 53 19 >1508 46 258

Resolutions 0 0 0 0 4
Superpositions 14 12 >554 59 783
Cont. Superpositions 20 14 >T74 24 125
Ext. Superpositions 9 6 >67 12 748
Deductions 43 32 >695 95 1660
Simplifications 132 109 >4410 413 5086
Deletions 151 133 >1881 324 3407

These statistics give an idea of the advantage of the positive strategy, but the
proportions cannot be generalized. Indeed, the positive strategy may be less
powerful if some initial clauses have several negative literals. In addition, if the
positive strategy reduces the width of the search space, it increases the depth

of the proofs (depth 5 for previous example, while depth 4 with the ordering
strategy).

7 Conclusion

In this paper, we have defined an inference system for automated deduction
modulo equational theories. This system combines the superposition strategy
with a positive ordering strategy to prune the search space. Moreover, we have
described a procedure for computing contexts, from the theory £ only, 1.e. with-
out the use of the initial set of clauses.

Our system has been proved refutationally complete for a large class of equa-
tional theories; including all the regular theories. This and our algorithm for
constructing non-redundant contexts are important improvements of previous
results of Wertz [31] and Paul[17]. One of our further works is to implement
this algorithm and to study theories where there is an infinity of non-redundant
contexts.

Our technique of deduction modulo some equations has shown its interest in
our theorem prover DATAC, for the case of associative and commutative theories.
However, for testing it on other theories, we need to study orderings for compar-
ing terms and unification algorithms, since there are very few in the literature.
This lack of orderings may be solved by term rewriting techniques as in[7, 22].
Unification algorithms may be solved by term rewriting techniques too, for deal-
ing with parts of these theories such as in[15].

However, it seems that one of the most interesting ways for dealing with these
problems of £-unification is to use symbolic constraints, as in[28].

Acknowlegments: 1 would like to thank Prof. Anita Wasilewska of Stony
Brook for the numerous discussions we had on the history of the bases of this
paper.

I would like to dedicate this paper to the memory of my colleague Valentin
Antimirov of INRTA Lorraine (France), with whom T had very interesting dis-
cussions while preparing a first version of this paper.

References

1. L. Bachmair and N. Dershowitz. Completion for Rewriting Modulo a Congruence.
Theoretical Computer Science, 67(2-3):173-202, October 1989.

2. L. Bachmair and H. Ganzinger. On Restrictions of Ordered Paramodulation with
Simplification. In M. E. Stickel, editor, Proceedings 10th International Conference
on Automated Deduction, Kaiserslautern (Germany), volume 449 of Lecture Notes
in Computer Science, pages 427-441. Springer-Verlag, July 1990.

3. L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Proving with
Selection and Simplification. Journal of Logic and Computation, 4(3):1-31, 1994.

4. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. In-
formation and Computation, 121(2):172-192, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

L. Bachmair and D. Plaisted. Associative Path Orderings. In Proceedings 1st
Conference on Rewriting Techniques and Applications, Dijon (France), volume 202
of Lecture Notes in Computer Science. Springer-Verlag, 1985.

. D. Brand. Proving Theorems with the Modification Method. SIAM Journal of

Computing, 4:412-430, 1975.

. C. Delor and L. Puel. Extension of the Associative Path Ordering to a Chain

of Associative Symbols. In C. Kirchner, editor, Proceedings 5th Conference on
Rewriting Techniques and Applications, Montreal (Canada), volume 690 of Lecture
Notes in Computer Science, pages 389-404. Springer-Verlag, 1993.

. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, edi-

tor, Handbook of Theoretical Computer Science. Elsevier Science Publishers B. V.
(North-Holland), 1990.

. A. Fortenbacher. Effizientes Rechnen in AC-Gleichungstheorien. PhD thesis, Uni-

versitat Karlsruhe (Germany), February 1989.

J. Hsiang and M. Rusinowitch. Proving Refutational Completeness of Theorem
Proving Strategies: The Transfinite Semantic Tree Method. Journal of the ACM,
38(3):559-587, July 1991.

J.-M. Hullot. Compilation de Formes Canoniques dans les Théories équationelles.
These de Doctorat de Troisitme Cycle, Université de Paris Sud, Orsay (France),
1980.

J.-P. Jouannaud and C. Kirchner. Solving Equations in Abstract Algebras: a Rule-
based Survey of Unification. In Jean-Louis Lassez and G. Plotkin, editors, Compu-
tational Logic. Fssays in honor of Alan Robinson, chapter 8, pages 257-321. MIT
Press, Cambridge (MA, USA), 1991.

J.-P. Jouannaud and H. Kirchner. Completion of a Set of Rules Modulo a Set
of Equations. SIAM Journal of Computing, 15(4):1155-1194, 1986. Preliminary
version in Proceedings 11th ACM Symposium on Principles of Programming Lan-
guages, Salt Lake City (USA), 1984.

D. S. Lankford and A. Ballantyne. Decision Procedures for Simple Equational
Theories with Associative Commutative Axioms: Complete Sets of Associative
Commutative Reductions. Technical report, Univ. of Texas at Austin, Dept. of
Mathematics and Computer Science, 1977.

C. Marché. Réécriture modulo une théorie présentée par un systéme convergent et
décidabilité du probléme du mot dans certaines classes de théories équationnelles.
These de Doctorat d’Université, Université de Paris-Sud, Orsay (France), October
1993.

R. Nieuwenhuis and A. Rubio. Basic Superposition is Complete. In B. Krieg-
Brickner, editor, Proceedings of ESOP’92, volume 582 of Lecture Notes in Com-
puter Science, pages 371-389. Springer-Verlag, 1992.

E. Paul (E-mail: etienne.paul@issy.cnet.fr). E-Semantic Tree. Unpublished paper,
70 pages, 1994.

G. E. Peterson. A Technique for Establishing Completeness Results in Theorem
Proving with Equality. SIAM Journal of Computing, 12(1):82-100, 1983.

G. E. Peterson and M. E. Stickel. Complete Sets of Reductions for Some Equa-
tional Theories. Journal of the ACM, 28:233-264, 1981.

G. Plotkin. Building-in Equational Theories. Machine Intelligence, 7:73-90, 1972.
J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12:23-41, 1965.

A. Rubio and R. Nieuwenhuis. A Precedence-Based Total AC-Compatible Order-

ing. In C. Kirchner, editor, Proceedings 5th Conference on Rewriting Techniques

23.

24.

25.

26.

27.

28.

29.

30.

31.

and Applications, Montreal (Canada), volume 690 of Lecture Notes in Computer
Science, pages 374-388. Springer-Verlag, 1993.

M. Rusinowitch. Démonstration automatique — Techniques de réécriture. In-
terEditions, 1989.

M. Rusinowitch. Theorem-proving with Resolution and Superposition. Journal of
Symbolic Computation, 11:21-49, 1991.

M. Rusinowitch and L. Vigneron. Associative Commutative Deduction. In
E. Domenjoud and Claude Kirchner, editors, Proceedings of the 1st CCL Work-
shop, Le Val d’Ajol (France), October 1992.

M. Rusinowitch and L. Vigneron. Automated Deduction with Associative-Com-
mutative Operators. Applicable Algebra in Engineering, Communication and Com-
puting, 6(1):23-56, January 1995.

M. E. Stickel. A Unification Algorithm for Associative-Commutative Functions.
Journal of the ACM, 28:423-434, 1981.

L. Vigneron. Associative-Commutative Deduction with Constraints. In A. Bundy,
editor, Proceedings 12th International Conference on Automated Deduction, Nancy
(France), volume 814 of Lecture Notes in Artificial Intelligence, pages 530-544.
Springer-Verlag, June 1994.

L. Vigneron. Automated Deduction with Symbolic Constraints in Equational Theo-
ries. PhD Thesis, Université Henri Poincaré - Nancy 1, November 1994. Available
as Research Report CRIN 94-T-266 (in French).

L. Vigneron. Theorem Proving modulo Regular Theories. Technical report 95-1,
Department of Computer Science, SUNY at Stony Brook, Stony Brook, January
1995.

U. Wertz. First-Order Theorem Proving Modulo Equations. Technical Report
MPI-1-92-216, Max Planck Institut fir Informatik, April 1992.

