
Positive Deduction modulo Regular Theories ?Laurent VigneronCRIN-CNRS & INRIA LorraineB.P.239, 54506 Vand�uvre-l�es-Nancy Cedex, FranceE-mail: Vigneron@Loria.FrAbstract. We propose a new technique for dealing with an equationaltheory E in the clausal framework. This consists of the de�nition of twoinference rules called contextual superposition and extended superposi-tion, and of an algorithm for computing the only needed applications ofthese last inference rules only by examining the axioms of E. We provethe refutational completeness of this technique for a class of theories Ethat include all the regular theories, i.e. any theory whose axioms pre-serve variables. This generalizes the results of Wertz [31] and Paul [17]who could not prove the refutational completeness of their superposition-based systems for any regular theory.We also combine a collection of strategies that decrease the numberof possible deductions, without loss of completeness: the superpositionstrategy, the positive ordering strategy, and a simpli�cation strategy.These results have been implemented in a theorem prover called DATAC,for the case of commutative, and associative and commutative theories.It is an interesting tool for comparing the e�ciency of strategies, andpractical results will follow.1 IntroductionThe paramodulation rule permits one to deal with the equality predicate with-out explicitly describing its properties of re
exivity, symmetry, transitivity andfunctional re
exivity. It is also based on a notion of replacement. Over time, sev-eral re�nements have been added to this rule. Brand [6] has shown that only there
exivity axiom x'x is needed. Peterson [18] has shown that paramodulationsinto variables are useless. Hsiang and Rusinowitch [10] have introduced orderingrestrictions to the application of these rules, and have proved the completenessof the following ordering strategy : each inference step has to be applied betweenmaximal (w.r.t. an ordering) literals in clauses, and in each paramodulation step,a term cannot be replaced by a bigger one.Other re�nements, such as the superposition strategy which applies replace-ments only in biggest sides of equations, and clausal simpli�cations which deleteredundant clauses, have followed [4].? This work was done during a fellowship at the University of Stony Brook (NY, USA),funded by the Institut National de Recherche en Informatique et en Automatique(France).

The complete Hsiang-Rusinowitch strategy and others are unfortunately of-ten ine�cient in the presence of clauses such as the associativity property of anoperator f , f(f(x; y); z)' f(x; f(y; z)), which produces the divergence of deriva-tions by successive superpositions into the subterm f(x; y). Other properties,such as the commutativity of an operator, induce problems with the superposi-tion rule because they cannot be oriented.The most established solution was proposed by Plotkin [20]. He proposedto de�ne an equational theory E , by extracting the above properties from theset of clauses, and to de�ne a uni�cation algorithm modulo E . This result hasbeen the basis of much work: Lankford and Ballantyne [14] for the particularcase of associative and commutative theories, and Peterson and Stickel [19] forcompletion. When applying ordering strategies to theorem proving in equationaltheories, we need to add various additional techniques. The techniques usuallyproposed in equational deduction are:1. either to add an inference rule applying replacements into axioms of E , andtherefore generating extensions of these axioms,2. or to associate to each equation the set of its possible extensions, which maybe used later by the superposition rule.These extensions have been studied by Jouannaud and Kirchner [13], and Bach-mair and Dershowitz [1]. Both techniques have been used by Wertz [31]; the sec-ond has been used by Paul [17] too.We propose in this paper a new technique for dealing with these extensionsin the clausal framework, by de�ning two inference rules called contextual super-position and extended superposition. We also de�ne an algorithm for computingthe only needed applications of these last inference rules, only by examining theaxioms of E and generalizing the E-redundant context notions of Jouannaud andKirchner [13] de�ned for equational completion. Our inference system is de�nedby combining the superposition strategy and the positive ordering strategy; it isalso compatible with the simpli�cation strategy.The positive strategy was initially proposed by Robinson [21] and has beentransformed many times later. Our de�nition of this strategy, whose �rst versionwas presented in [25], is a much more attractive one. The usual condition is toapply superposition steps from a positive clause. Here, we mention that wheneverwe want to use a positive literal, it has to belong to a positive clause. A similarstrategy has also been independently de�ned by Paul in [17].Our positive strategy uses a particular case of the superposition calculuswith selection, de�ned by Bachmair and Ganzinger in [3], for selecting negativeliterals. But in addition we de�ne a new kind of selection on positive literals: apositive literal can be used in a deduction if it belongs to a positive clause andif it is maximal in this clause (for a given ordering).We prove the refutational completeness of our inference system for all theequational theories E allowed by Wertz [31] and Paul [17], but in addition weprove it for any regular theory E , i.e. any theory whose axioms preserve variables.

Moreover, our algorithm for detecting E-redundant contexts permits a signi�cantdecreasing of the number of possible deductions.These results have been implemented in a theorem prover called DATAC, forcommutative, and associative and commutative theories. It is an interesting toolfor comparing the e�ciency of strategies, and practical results will follow.The layout of this paper is the following: after introducing the basic notions inSect. 2, we describe our inference rules in Sect. 3. Section 4 presents a procedureto compute useful contexts for extended equations. The proof of refutationalcompleteness of the inference system is sketched in Sect. 5, but it is detailedin [30] (see also [26, 29]). Section 6 presents an example of trace with our systemDATAC.2 Notations and De�nitionsLet us de�ne some basic notions, based on the standard notations and de�nitionsfor term rewriting and uni�cation given in [8, 12].Let E be an equational theory, i.e. a set of equations. The congruence gen-erated by this set E is called E-equality and written =E . A substitution is afunction replacing some variables by terms. A substitution � is said to E-unifytwo terms s and t if s� and t� are E-equal, and if � is a most general E-uni�er ofs and t (see [12]). In this case, � is a solution of the E-uni�cation problem s=?E t.An atom is an equality l' r. A clause is denoted A1; : : : ; An ! B1; : : : ; Bm,where A1, : : : , An, B1, : : : , Bm are atoms; this means A1 and: : :and An impliesB1 or: : :or Bm. A literal is an atom appearing in a clause. A literal is positive(resp. negative) if it appears on the right-hand side (resp. left-hand side) of !.A clause is positive if it contains only positive literals, i.e. if the left-hand sideof ! is empty.To express subterms and substitutions, we use positions. Envision a termrepresented as a tree; a position in a term is a node of this tree. The subtermat position p of a term t is written tjp. A position is a sequence of integers:f(t1; : : : ; tn)ji�p = tijp; the empty sequence (empty position) is denoted � (tj� =t). A position p in a term t is a non-variable position if tjp is not a variable. Theset of all non-variable positions of a term t is denoted FPos(t). The term s[t]prepresents the term s whose subterm at position p is t.To decrease the number of possible deductions, we use an ordering strategy.So, we assume we are given a simpli�cation ordering >, de�ned on terms andatoms. For the sake of completeness, it has to be total on ground E-congruenceclasses and E-compatible, i.e.8s; t ground terms; if s > t and s 6=E t; then 8s0=E s; 8t0=E t; s0 > t0So, in our inference rules, we will use this ordering to orient equations and tocheck the maximality of an equation w.r.t. other equations. However terms maybe incomparable; we will write that a term is maximal w.r.t. another term, if it

is not smaller than or equal to this second term.Given an equality l' r, we will assume l is maximal w.r.t. r.3 Inference RulesWe describe in this section a set of inference rules for applying deductions mod-ulo an equational theory E . These rules are based on the superposition strategy ,a variant of the paramodulation strategy; it applies replacements only in maxi-mal sides of equations. This superposition strategy is combined with a positiveordering strategy to prune the search space. This strategy is described in thenext de�nition, and needs a total simpli�cation ordering for comparing terms.De�nition1 (Positive Ordering Strategy).� If an inference rule uses a positive literal in a clause, this clause has to bepositive. In addition, the positive literal used has to be maximal in the clause.� If an inference rule uses a negative literal in a clause, this literal has to bemaximal w.r.t. the other negative literals of the clause.The �rst inference rule is the Equational Factoring. Its purpose is to deriveclauses in which two positive equations do not have E-equal left-hand sides. Thisinference rule is essential for the completeness of the superposition strategy. Notethat it is applied only on positive clauses.De�nition2 (Equational Factoring). ! l1' r1; l2' r2; Rr1�' r2� ! l2�' r2�;R�where � E-uni�es l1 and l2, l1�' r1� is maximal w.r.t. l2�' r2� and each equa-tion of R�. Moreover, l1� has to be maximal w.r.t. r1�.The next rule stands for avoiding the addition of the re
exivity axiom x'xof the equality predicate. It is the only rule which can derive the empty clause,symbolizing an incoherence in the initial set of clauses, since it is the only rulewhich deletes a literal.De�nition3 (Re
exion). l' r; L! RL� ! R�where � E-uni�es l and r, and l�' r� is maximal w.r.t. each equation of L�.The superposition rule applies the replacement of a term by an equal one,from a positive clause. It is decomposed into a Left and a Right Superpositionrule, respectively de�ned by! l1' r1; R1 l2 ' r2; L2 ! R2l2[r1]p2�' r2�;L2� ! R1�;R2� and ! l1 ' r1; R1 ! l2 ' r2; R2! l2[r1]p2�' r2�;R1�; R2�where � is a E-uni�er of l1 and the subterm at position p2 of l2. But, even withthese two inference rules, the procedure of deduction is not complete, as shownin the next example.

Example 1. Let E = f f(f(x1; x2); x3)' f(x1; f(x2; x3)) g. The following clauses(1) ! f(a; b)' c (2) ! f(a; f(b; d))' e (3) f(c; d)' e!form an incoherent set with E , since: E permits a modi�cation of the parenthesesin the left-hand side of the second clause, to obtain ! f(f(a; b); d)' e, andreplacing f(a; b) by c in this term (thanks to (1)), we deduce ! f(c; d)' ewhich contradicts (3).However, there is no possible inference step between the three initial clauses. 3We solve this problem by applying superpositions from extended equations, i.e.from equations e[l1]p' e[r1]p, where e is a term and p a non-variable position ine. Such a pair (e; p) is called a context. In the previous example, a contradictioncan be derived using the context (f(f(x1 ; x2); x3); 1), producing the extendedequation f(f(a; b); x3)' f(c; x3) from f(a; b)' c.By the Critical Pairs Lemma of Jouannaud and Kirchner [13], we know thatcontexts can be computed. We de�ne in Sect. 4 a procedure to compute all thepossible contexts for a given equational theory E . Given a term l, Cont(l) is theset of all contexts (e; p) for E such that ejp and l are E-uni�able. These contextsare used in three new inference rules.The �rst two rules simulate replacements from an equation or an extendedequation. Indeed, we assume that the context (l; �) belongs to Cont(l). Left andright superposition rules are therefore particular cases of the next inference rules.De�nition4 (Left Contextual Superposition).! l1' r1; R1 l2' r2; L2 ! R2l2[e1[r1]p1]p2�' r2�; L2� ! R1�;R2�where p2 is a non-variable position in l2, (e1; p1) is a context2 in Cont(l1), � E-uni�es l2jp2 and e1[l1]p1 , l1�' r1� is maximal for > in its clause, and l2�' r2�is maximal w.r.t. each atom of L2�. Moreover, l1� has to be maximal w.r.t. r1�,and l2� has to be maximal w.r.t. r2�. The replacing term in the deduced clauseis the extension of the right-hand side, e1[r1]p1 .De�nition5 (Right Contextual Superposition).! l1' r1; R1 ! l2' r2; R2! l2[e1[r1]p1]p2�' r2�;R1�;R2�where the only di�erence with Left Contextual Superposition is that l2�' r2�is maximal in its clause and maximal w.r.t. l1�' r1�.The next inference rule simulates a superposition between two extended equa-tions, at the top of their maximum side.De�nition6 (Extended Superposition).! l1' r1; R1 ! l2' r2; R2! e1[r1]p1�' e2[r2]p2�;R1�;R2�2 (e1; p1) may be an empty context, i.e. p1 = �.

where, given a non-empty context (e1; p1) in Cont(l1) and a non-empty context(e2; p2) in Cont(l2), � E-uni�es e1[l1]p1 and e2[l2]p2 . Each equation has to bemaximal in its clause, and their left-hand side has to be maximal w.r.t. theirright-hand side.3.1 About the Superposition StrategyThe principle of the superposition strategy is to apply replacements only intomaximal sides of equations, and has been extensively used for term rewriting andcompletion. But, the completeness of inference systems representing this strategyhas been a longstanding open problem. For completeness, either some deductionsusing non-maximal literals [24], or some replacements into minimal sides of equa-tions [3], were needed. Bachmair and Ganzinger [2] have proved the completenessin the empty theory of the entire superposition strategy by adding two Equa-tional Factoring rules (one for negative and one for positive literals). De�ninga particular ordering for comparing negative and positive literals, Nieuwenhuisand Rubio [16] have proved that the rule on negative literals is useless.In our inference rules, we never need to compare such literals: we alwayscompare literals of the same sign. So for us, specifying a special ordering onliterals is useless.3.2 Other Predicate SymbolsOur �ve inference rules have been de�ned for deduction in �rst-order logic witha unique predicate, the equality predicate. This restriction has been decided onlyfor simplifying notations, but it is easy to adapt the inference rules to the pres-ence of other predicate symbols. And we have to add a Factoring rule (appliedonly on positive clauses) and a Resolution rule (applied with a positive clause)for dealing with the non-equational literals (see [26]). The new system of deduc-tion remains complete if the equality symbol is minimal in precedence.Now that we have de�ned all the inference rules, let us show how to computeextended equations with contexts.4 Extended EquationsAn extension of an equation l' r is an equation e[l]p' e[r]p, also called anextended equation of l' r, where e is a term, p a non variable position in thisterm. The subterm at position p in e is E-uni�able with l, the maximum side ofthe equation. The couple (e; p) is called the context of this extension.The set of all possible contexts for a theory E , written CE , is de�ned bySk�0 Contk, where the sets Contk are inductively de�ned by:Cont0 = f (e; p) j 9e' e0 or e0' e 2 E ; p 2 FPos(e) and p 6= � gContk+1 = f (e1[e2]p1 ; p1�p2) j (e1; p1) 2 Cont0; (e2; p2) 2 Contk;and e1jp1 and e2 are E-uni�able g

Then, given an equation l' r where l is maximal w.r.t. r, the set of all possiblecontexts which can extend l' r is de�ned by:Cont(l) = f (e; p) 2 CE j ejp and l are E-uni�able g [f (l; �) gWe have added (l; �) for avoiding the de�nition of special inference rules, applyingsuperpositions without context.Let l ! r be a ground rewrite rule. Let Cl be the set of all ground instancesof contexts of Cont(l). We de�ne the relation �!Cl;E by:t1 �!Cl;E t2 if 9(el; pl) 2 Cl; 9q 2 FPos(t1); t1jq =E el; t2 = t1[el[r]pl]qThis relation �!Cl;E satis�es a property called E-closure if: whenever a term tis reducible into a term t1 by the relation �!Cl;E , then for each term t2, E-equalto t, t2 and t1 are reducible by �!Cl;E into two E-equal terms.A set of contexts C is said to be E-covering if, for any ground term l, the relation�!Cl;E satis�es the property of E-closure, where Cl = C \ Cont(l).Proposition7. Let E be an equational theory. The set of contexts CE is E-covering.This Proposition means that the role of the equations of E is entirely simulatedby superpositions with contexts of CE . Its proof is similar to the proof of theCritical Pairs Lemma of Jouannaud and Kirchner [13] (see [29]), and consists ofsimple case analyses.However, the de�nition of CE is very general, and for e�ciency we combine itwith a procedure deleting redundant contexts. Before describing this procedure,let us introduce some de�nitions.De�nition8. A context (e1; p1) is redundant at a position p w.r.t. a set ofcontexts C, if p is a non-variable position in e1 and p1 = p�q (where q 6= �), andif there is a context (e2; p2) in C and a substitution � such that:1. e2[�]p2�=E (e1jp)[�]q for guaranteeing the equivalence of terms e2� and e1jp,2. (e2jp2)�=E e1jp1 for guaranteeing the equivalence of subterms where replace-ments will apply.where the symbol � is a new constant. (e1; p1) is said to be redundant at p w.r.t.C, by (e2�; p2). If p is �, the context (e1; p1) is said to be top-redundant.De�nition9. Let (e1; p1) be a context. Let e01 be a ground term and � a groundsubstitution such that e01 is E-equal to e1�. The representation e01 of the context(e1; p1) is said to be E-redundant at a position p w.r.t. a set of contexts C,if there is a term e2 E-equal to e01jp and a non-variable position p2 in e2, s.t. :1. (e2; p2) is top-redundant w.r.t. C, by a context (e3; p3),2. (e1�; p1) is top-redundant by (e01[e3]p; p�p3).Note that the position p may be the empty position.

A context (e1; p1) is E-redundant w.r.t. a set of contexts C if,1. either (e1; p1) is top-redundant w.r.t. C,2. or, for each term e01, E-equal to a ground instance e1� of e1,(a) either there is a non-variable position p01 in e01 such that (e01; p01) istop-redundant by (e1; p1),(b) or the representation e01 of the context (e1; p1) is E-redundant at aposition p0 w.r.t. C.Fig. 1. Redundancy criteria of a context in E.Proposition10. Let E be an equational theory. The set of contexts CE , con-structed with the E-redundancy criteria described in Fig. 1, is E-covering.Proof. Uselessness of redundant contexts is easily derived from the algorithmdescribed in Fig. 1 as follows:1. If there is a context (e2; p2) in C such that any replacement with the context(e1; p1) is an instance of a replacement with this context (e2; p2), then to use(e2; p2) instead of (e1; p1) generates the same result, or a more general one.2. Let us study the terms in which the context (e1; p1) could be applied. A �rstremark is there is no need to use this context with terms that are instancesof e1; the replacement can be applied directly at the position p1. We cangeneralize this remark: (e1; p1) is useless if all terms in which it could beapplied can be treated without context or with another context of C. But totest this for each term E-equal to e1 is not su�cient, because a term E-equalto an instance of e1 may not be an instance of a term E-equal to e1. So,the context (e1; p1) is E-redundant if, for each term e01 E-equal to a groundinstance e1� of e1,(a) either a term E-equal to e1jp1 appears at a position p01 of e01, i.e. thereplacement can be directly done at this position; in addition, we haveto check that the result is identical to the one obtained with the context(e1; p1),(b) or a context of C can be applied at a position p0 of e01, producing the sameresult as applying the context (e1; p1) to the top of e01.In practice, to check the second point does not consist of studying all the groundinstances of e1, but of enumerating the di�erent forms that can have these in-stances. And we can note that if the context (e1; p1) is redundant at a non-emptyposition p by a context (e2; p2), then all its representations e01=E e1� such that9p0 2 FPos(e01); e01jp0 =E(e1jp)� and e01[�]p0 =E e1[�]p�are E-redundant at the position p0 by the context (e2; p2). utA simple algorithm for constructing the contexts with the redundancy crite-ria of Fig. 1 is, for each context newly created, to verify it is not E-redundant

w.r.t. the set C of the contexts already constructed; then, we delete from C thecontexts E-redundant by the addition of this new context. Moreover, it wouldbe interesting, when applying an inference rule involving a context, to check thenon-redundancy of the instance of this context used, and even to check the non-redundancy of the representation of its term in the clause where the replacementis going to apply.Let us give two examples of the construction of contexts.Example 2 (Associativity and Commutativity). If E represents properties of as-sociativity and commutativity of an operator f ,E = f f(f(x1; x2); x3)' f(x1; f(x2; x3)); f(x1; x2)' f(x2; x1) gCont0 contains two contexts, (f(f(x1; x2); x3); 1) and (f(x1; f(x2; x3)); 2), butthe second one is top-redundant by the �rst one. (f(f(f(x1 ; x2); x3); x4); 1�1),the unique context of Cont1, is top-redundant by (f(f(x1; x2); x3); 1) too.Hence, CAC = f (f(f(x1; x2); x3); 1) g, which means that the only possible ex-tension of an equation l' r is f(l; x3)' f(r; x3). 3Example 3 (Associativity). If E contains the property of associativity of f ,E = f f(f(x1; x2); x3)' f(x1; f(x2; x3)) gthe non-redundant contexts areCont0 = f (f(f(x1; x2); x3); 1); (f(x1; f(x2; x3)); 2) gCont1 = f (f(f(x1; f(x2; x3)); x4); 1�2) gSo, there are three useful extensions of an equation l' r where f is the top-symbol of l: to add a new variable, either on the right, f(l; x3)' f(r; x3), or onthe left, f(x1; l)' f(x1; r), or on both sides, f(f(x1 ; l); x4)' f(f(x1 ; r); x4). 34.1 Re�ning the Construction of ContextsIn the construction of the sets of contexts Contk, we have used the notion ofE-uni�ability. For instance, for building a context (e1[e2[e3]p2]p1 ; p1�p2�p3), wehave assumed that e2jp2 and e3 are E-uni�able, and that e1jp1 and e2[e3]p2 areE-uni�able. But, in this last test, we have lost the information that e2jp2 and e3have to be E-uni�able. There may be no substitution satisfying both conditions,and therefore the context may be useless.A simple way for avoiding such cases, is to add a third element to each con-text: the conjunction of the E-uni�cation constraints encountered to constructit. In the previous example, the context would be:(e1[e2[e3]p2]p1 ; p1�p2�p3; fe2jp2 =?E e3 ^ e1jp1 =?E e2[e3]p2g)Hence, a context is created only if its uni�cation problems admit at least onesolution. As a second consequence, for applying an inference rule using a context,

we solve the speci�c uni�cation problem of this rule, but in conjunction with theuni�cation problems of the context.With this additional parameter, less contexts are constructed, less inferencerules are applicable and their uni�cation problems have less solutions.However, even with this optimization, there is an in�nite number of contextsfor a lot of theories, as shown in the next example. This can be dealt with usingthe algorithm building contexts with incrementality.Example 4 (Distributivity). Let E = f f(x1; g(x2; x3))' g(f(x1; x2); f(x1; x3)) g.Cont0 contains the three contexts(f(x1; g(x2; x3)); 2); (g(f(x1; x2); f(x1; x3)); 1); (g(f(x1; x2); f(x1; x3)); 2)The context (f(x1; f(x2; g(x3; x4))); 2�2) belongs to Cont1, and so on... We canbuild an in�nite sequence of contexts of the form:(f(x1; f(x2; : : : f(xn; g(xn+1; xn+2)))); 2n)These contexts are all useful: they permit to recover the subterm g(xn+1; xn+2),where the replacement occurs, from the representation:g(f(x1; f(x2; : : :f(xn; xn+1))); f(x1; f(x2; : : : f(xn; xn+2)))) 35 Refutational CompletenessA set of clauses S is said to be E-incoherent if there is no model such that S [Eis valid in this model. Let us de�ne two properties of a theory E :(P1) Regularity. For any equation e1' e2 in E , each variable of e1 is a variableof e2, and vice-versa.(P2) For any ground term s that is E-equal to one of its strict subterms sjp(p 6= �), for any ground term t, s[t]p has to be E-equal to t.Let INF be the set of the �ve inference rules described in Sect. 3. Let us statethe theorem of refutational completeness of INF .Theorem11 (Completeness). Let E be an equational theory satisfying at leastone of the properties (P1) and (P2), and let S be a set of clauses. If S is E-incoherent, INF will always derive a contradiction from S.This theorem states that our inference system is refutationally complete if Esatis�es (P1) or (P2). This result is an important improvement of previous worksof Wertz [31] and Paul [17], since they proved the completeness of their systemsonly if E satis�es (P2). Moreover, our inference system limits the number ofpossible deductions much more than Wertz' and Paul's systems, thanks to thepositive ordering strategy and the notion of E-redundant contexts.Note that many theories satisfy (P1) but not (P2). For instance, if E isff(x; 0)'xg, E is regular but: given the ground term f(0; 0), it is E-equal to 0;however, for a constant a, f(0; a) is not E-equal to a. (P2) is not satis�ed.

There are also some particular theories E that satisfy (P2) but not (P1).For instance3, if E is ff(x; y)' xg, f is the only functional symbol and a isthe only constant, the term f(a; a) is E-equal to a, and for any ground term t,f(a; t)=E t. Indeed, since f and a are the only symbols, any ground term (a,f(a; a), f(f(a; a); a),: : :) is E-equal to a.We prove the Theorem of Completeness by the trans�nite semantic treemethod of Hsiang and Rusinowitch [10], extended to deduction modulo an equa-tional theory in [26, 29]. Let us give a sketch of this proof, as it is rather similarto the proof for the particular case of associative and commutative theories [26](see [29, 30] for the detailed proofs).Proof. Let E be a theory satisfying (P1) or (P2). Let S be an E-incoherent setof clauses. Let us describe the main steps of the proof of refutational complete-ness. It is realized in the ground case, because each deduction step with groundinstances clauses can be lifted to the general case.Given a total E-compatible ordering on ground atoms, we sort them by in-creasing order, and we construct the trans�nite semantic tree T (in the emptytheory). An interpretation is a node of this tree.As S is E-incoherent, each branch of the semantic tree T has a node that falsi-�es either a ground instance of a clause of S, or a trivial equation t' t0 wheret=E t0. Such nodes are called failure nodes. The maximal subtree of T whichdoes not contain a failure node is called the maximal consistent tree, and writ-ten MCT (S).Our inference system INF is refutationally complete if it is always able to derivea contradiction (the empty clause) from S. Let INF�(S) be the set of all clausesdeduced by INF from S, in any number of steps. For proving that INF�(S) con-tains the empty clause, we show that the maximal consistent tree for INF �(S),MCT (INF�(S)), is reduced to an empty tree.The �rst step is to choose a branch in MCT (INF�(S)) that is consistent withthe theory E . This is done by adding new special failure nodes: distant failurenodes and quasi-failure nodes.{ Let K be a failure node at the level of an atom u'w s.t. u > w, w is re-ducible and u'w is falsi�ed by K. If there is an irreducible atom u' v,smaller than u'w and s.t. K satis�es w' v (therefore K falsi�es u' v),the restriction of K to the level of u'v is a distant failure node.This distant failure node permits to avoid a branch where there is a fail-ure node falsifying an equation in which only the smallest side is reducible(condition of the superposition strategy).{ Let K be an interpretation de�ned on atoms A1; : : : ; An. Let An+1 be anirreducible equation u1' v s.t. u1 > v. K has two extensions: L, satisfyingu1' v, and R, falsifying u1' v. R is a quasi-failure node if there is a termu2, E-equal to u1, s.t. u2' v is reducible by an equation l' r into u2[r]'v,3 This example has been suggested to me by Wayne Snyder.

and K satis�es u2[r]'v.This quasi-failure node avoids to have u1' v satis�ed and u2' v falsi�ed inthe same branch; this would be inconsistent with E .In the proof of consistency with E of this branch, we encounter a major problem;we have to prove that the following case cannot happen in the chosen branch: twoE-equal atoms u1' v and u2' v are interpreted di�erently, u1' v is reduciblein u1 by l1' r1, and u2' v is reducible in u2 by l2' r2. For the case of asso-ciative and commutative theories [26], we show that the branch falsi�es a groundinstance of a clause of INF �(S), produced by an extended superposition betweenl1' r1 and l2' r2. But, for a general theory E , it is not so easy. The terms u1[l1]and l1 may be E-equal, and in such a situation, we have to prove that u1[r1]' r1is valid in the chosen branch.Wertz [31] and Paul [17] have decided to only consider theories E such that, when-ever u1[l1] and l1 are E-equal, u1[r1] and r1 are E-equal too (Property (P2)).In addition, studying the transformation of u1[l1] into l1 by E-equality steps, weprove that u1[r1]' r1 is always valid if the theory E is regular (Property (P1)).The last step of the proof is to show that the branch is empty. This implies thatMCT (INF�(S)) is empty, and also that the empty clause belongs to INF�(S).A study of the leaves of this branch, i.e. of failure nodes, distant failure nodesand/or quasi-failure nodes cutting it, shows that this branch falsi�es a clause ofINF �(S), deduced from clauses falsi�ed by the leaves.The �nal solution is that the branch is empty, and therefore the empty clausebelongs to INF �(S).The compatibility with the positive strategy is a consequence of the followingproperty: if a (distant) failure node along the chosen branch, occuring at thelevel of an atom Ai, falsi�es Ai, then it falsi�es a positive clause of INF�(S).The proof of this property is done by induction on the failure and distant failurenodes, as in [23] for the deduction in the empty theory. utOur inference system INF is compatible with the simpli�cation strategy, ifthe derivations are fair, i.e. do not in�nitely forget a possible deduction. Thisstrategy has for purpose the deletion of redundant clauses. Let us give someexamples of simpli�cation rules:{ Simpli�cation (also called Demodulation): it consists of applying a termrewriting step, using a procedure of matching modulo E .{ Clausal Simpli�cation: if there is a clause ! A (resp. A !), then eachclause of the form A0; L ! R (resp. L ! A0; R), where A0 is E-equal toan instance of A, is replaced by L! R .{ Trivial Re
exion: a clause of the form l' r; L ! R , where l is E-equal tor, is replaced by L! R .{ Tautology Deletion: each clause of the form L ! l' r;R where l=E r, orA;L! A0; R where A=E A0, is deleted.

INF is also compatible with the subsumption: if a clause C1 subsumes a clauseC2 thanks to a substitution �, i.e. each literal of C1� is E-equal to a literal ofC2, the clause C2 is deleted.6 ImplementationThe inference system described in this paper is implemented in the system DATACfor the case where E represents properties of commutativity, or associativity andcommutativity (AC), of operators.DATAC is a theorem prover written in CAML Light (18000 lines), a functionallanguage of the ML family; it has a graphical interface written in Tcl/Tk, X11Toolkit based on the language Tcl. It runs on SUN, HP and IBM PC worksta-tions.It uses an AC-uni�cation algorithm based on the algorithm of Stickel [27] andthe technique for solving Diophantine equations of Fortenbacher [9]. The algo-rithm for AC-matching is inspired by the algorithm of Hullot [11]. The orderingfor comparing terms is the APO of Bachmair and Plaisted [5] with the improve-ments of Delor and Puel [7].Let us detail an example of execution in modular lattices, where � denotesthe function meet, + the function join, 1 the greatest element and 0 the least ele-ment. The predicate symbol Comp denotes the complementarity of two elements(Comp is commutative). The equational theory E is the following:E = 8>><>>: (x1 + x2) + x3 ' x1 + (x2 + x3)x1 + x2 ' x2 + x1(x1 � x2) � x3 ' x1 � (x2 � x3)x1 � x2 ' x2 � x1 9>>=>>;There are only two useful contexts for this theory E (cf. Example 2):CE = f ((x1 + x2) + x3; 1); ((x1 � x2) � x3; 1) gThe initial set of clauses is:(1) ! x1 � x1 ' x1 (2) ! x1 + x1 ' x1(3) ! x1 � (x1 + x2) ' x1 (4) ! x1 + (x1 � x2) ' x1(5) ! x1 � 0 ' 0 (6) ! x1 + 0 ' x1(7) ! x1 � 1 ' x1 (8) ! x1 + 1 ' 1(9) x1 � x2 ' x1 ! x2 � (x1 + x3) ' x1 + (x3 � x2)(10) Comp(x1; x2) ! x1 � x2 ' 0 (11) Comp(x1; x2) ! x1 + x2 ' 1(12) x1 + x2 ' 1; x1 � x2 ' 0 ! Comp(x1; x2)The property we want to prove is:For all elements a and b, let c1 be the complement of a � b and let c2 bethe complement of a+ b; then c2 + (c1 � b) is the complement of a.For this purpose, we add three new clauses that represent the negation of thisproperty (A, B, C1 and C2 are new constants):

(13) ! Comp(C1; A �B) (14) ! Comp(C2; A+B)(15) Comp(A;C2 + (C1 �B)) !The theorem prover DATAC is run with these 15 initial clauses, and with theprecedence ordering � > + > B > A > C1 > C2 > 1 > 0 on functional operators,and Comp > ' on predicate operators. Deductions are applied thanks to theinference rules de�ned in Sect. 3, combined with a resolution rule (for dealingwith the predicate Comp). These deduction rules combine the positive orderingstrategy with the superposition strategy. When a contextual superposition usesan empty context, we simply call it a superposition.Note that we are going to use a
attened representation under AC operators,i.e. a term C1 � (A �B) will be written C1 �A �B.DATAC automatically derives a contradiction, the empty clause written 2, in thefollowing way:Resolution between 10 and 13(16) ! A � B �C1 ' 0Resolution between 11 and 13(17) ! (A � B) +C1 ' 1Resolution between 10 and 14(18) ! (A+ B) �C2 ' 0Resolution between 11 and 14(19) ! A+ B + C2 ' 1Left Contextual Superposition from 1 into 9(32) x1 � x2 ' x1 � x2 ! x1 � ((x1 � x2) + x3) ' (x1 � x2) + (x3 � x1)Trivial Reflexion in 32(32) ! x1 � ((x1 � x2) + x3) ' (x1 � x2) + (x3 � x1)Left Contextual Superposition from 3 into 9(63) x1 � x3 ' x1 � x3 ! (x1 + x2) � ((x1 � x3) + x4) ' (x1 � x3) + (x4 � (x1 + x2))Trivial Reflexion in 63(63) ! (x1 + x2) � ((x1 � x3) + x4) ' (x1 � x3) + (x4 � (x1 + x2))Right Superposition from 17 into 32(131) ! (B �A) + (C1 �B) ' B � 1Simplification from 7 into 131(131) ! (B �A) + (C1 �B) ' BExtended Superposition between 3 and 63(197) ! ((x2 � x3) + (x4 � (x2 + x1))) � x1 ' x1 � ((x2 � x3) + x4)Extended Superposition between 4 and 131(267) ! A+ (C1 �B) ' B + ARight Superposition from 18 into 197(397) ! A � ((B � x1) + C2) ' ((B � x1) + 0) � ASimplification from 6 into 397(397) ! A � ((B � x1) + C2) ' B � x1 �A

Left Superposition from 397 into 12(1214) (B � x1) + C2 +A ' 1; B � x1 �A ' 0 ! Comp((B � x1) +C2; A)Left Superposition from 16 into 1214(2541) (B � C1) +C2 + A ' 1; 0 ' 0 ! Comp((B � C1) +C2; A)Trivial Reflexion in 2541(2541) (B � C1) +C2 + A ' 1 ! Comp((B �C1) +C2; A)Clausal Simplification in 2541 thanks to 15(2541) (B � C1) +C2 + A ' 1 !Simplification from 267 into 2541(2541) B +A+ C2 ' 1 !Clausal Simplification in 2541 thanks to 19(2541) 2The following table compares our positive ordering strategy with the clas-sical ordering strategy [10], which requires only that deductions have to applybetween maximal literals of clauses. For this comparison, we applied two linearcompletion steps on the 12 initial clauses of the previous example. A step oflinear completion consists of applying all possible deductions between the initialclauses, but none with one of the deduced clauses. The second step for the or-dering strategy was stopped because of a lack of memory while solving a trickyAC-uni�cation problem.The last column of this table presents statistics for the example traced above.For this example, we have used a simpli�ed version of the AC-uni�cation algo-rithm that permits not to compute all the minimal solutions and not to solvetricky problems. A consequence is the loss of the completeness of the strategy,but the main advantage is that we avoid problems of memory size.Linear Completion First step Second step ExampleOrdering Positive Ordering PositiveInitial Clauses 12 12 53 19 15Generated Clauses 111 63 >3336 240 2526Final Clauses 53 19 >1508 46 258Resolutions 0 0 0 0 4Superpositions 14 12 >554 59 783Cont. Superpositions 20 14 >74 24 125Ext. Superpositions 9 6 >67 12 748Deductions 43 32 >695 95 1660Simpli�cations 132 109 >4410 413 5086Deletions 151 133 �1881 324 3407These statistics give an idea of the advantage of the positive strategy, but theproportions cannot be generalized. Indeed, the positive strategy may be lesspowerful if some initial clauses have several negative literals. In addition, if thepositive strategy reduces the width of the search space, it increases the depth

of the proofs (depth 5 for previous example, while depth 4 with the orderingstrategy).7 ConclusionIn this paper, we have de�ned an inference system for automated deductionmodulo equational theories. This system combines the superposition strategywith a positive ordering strategy to prune the search space. Moreover, we havedescribed a procedure for computing contexts, from the theory E only, i.e. with-out the use of the initial set of clauses.Our system has been proved refutationally complete for a large class of equa-tional theories, including all the regular theories. This and our algorithm forconstructing non-redundant contexts are important improvements of previousresults of Wertz [31] and Paul [17]. One of our further works is to implementthis algorithm and to study theories where there is an in�nity of non-redundantcontexts.Our technique of deduction modulo some equations has shown its interest inour theorem prover DATAC, for the case of associative and commutative theories.However, for testing it on other theories, we need to study orderings for compar-ing terms and uni�cation algorithms, since there are very few in the literature.This lack of orderings may be solved by term rewriting techniques as in [7, 22].Uni�cation algorithms may be solved by term rewriting techniques too, for deal-ing with parts of these theories such as in [15].However, it seems that one of the most interesting ways for dealing with theseproblems of E-uni�cation is to use symbolic constraints, as in [28].Acknowlegments: I would like to thank Prof. Anita Wasilewska of StonyBrook for the numerous discussions we had on the history of the bases of thispaper.I would like to dedicate this paper to the memory of my colleague ValentinAntimirov of INRIA Lorraine (France), with whom I had very interesting dis-cussions while preparing a �rst version of this paper.References1. L. Bachmair and N. Dershowitz. Completion for Rewriting Modulo a Congruence.Theoretical Computer Science, 67(2-3):173{202, October 1989.2. L. Bachmair and H. Ganzinger. On Restrictions of Ordered Paramodulation withSimpli�cation. In M. E. Stickel, editor, Proceedings 10th International Conferenceon Automated Deduction, Kaiserslautern (Germany), volume 449 of Lecture Notesin Computer Science, pages 427{441. Springer-Verlag, July 1990.3. L. Bachmair and H. Ganzinger. Rewrite-based Equational Theorem Proving withSelection and Simpli�cation. Journal of Logic and Computation, 4(3):1{31, 1994.4. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. In-formation and Computation, 121(2):172{192, 1995.

5. L. Bachmair and D. Plaisted. Associative Path Orderings. In Proceedings 1stConference on Rewriting Techniques and Applications, Dijon (France), volume 202of Lecture Notes in Computer Science. Springer-Verlag, 1985.6. D. Brand. Proving Theorems with the Modi�cation Method. SIAM Journal ofComputing, 4:412{430, 1975.7. C. Delor and L. Puel. Extension of the Associative Path Ordering to a Chainof Associative Symbols. In C. Kirchner, editor, Proceedings 5th Conference onRewriting Techniques and Applications, Montreal (Canada), volume 690 of LectureNotes in Computer Science, pages 389{404. Springer-Verlag, 1993.8. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, edi-tor, Handbook of Theoretical Computer Science. Elsevier Science Publishers B. V.(North-Holland), 1990.9. A. Fortenbacher. E�zientes Rechnen in AC-Gleichungstheorien. PhD thesis, Uni-versit�at Karlsruhe (Germany), February 1989.10. J. Hsiang and M. Rusinowitch. Proving Refutational Completeness of TheoremProving Strategies: The Trans�nite Semantic Tree Method. Journal of the ACM,38(3):559{587, July 1991.11. J.-M. Hullot. Compilation de Formes Canoniques dans les Th�eories �equationelles.Th�ese de Doctorat de Troisi�eme Cycle, Universit�e de Paris Sud, Orsay (France),1980.12. J.-P. Jouannaud and C. Kirchner. Solving Equations in Abstract Algebras: a Rule-based Survey of Uni�cation. In Jean-Louis Lassez and G. Plotkin, editors, Compu-tational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257{321. MITPress, Cambridge (MA, USA), 1991.13. J.-P. Jouannaud and H. Kirchner. Completion of a Set of Rules Modulo a Setof Equations. SIAM Journal of Computing, 15(4):1155{1194, 1986. Preliminaryversion in Proceedings 11th ACM Symposium on Principles of Programming Lan-guages, Salt Lake City (USA), 1984.14. D. S. Lankford and A. Ballantyne. Decision Procedures for Simple EquationalTheories with Associative Commutative Axioms: Complete Sets of AssociativeCommutative Reductions. Technical report, Univ. of Texas at Austin, Dept. ofMathematics and Computer Science, 1977.15. C. March�e. R�e�ecriture modulo une th�eorie pr�esent�ee par un syst�eme convergent etd�ecidabilit�e du probl�eme du mot dans certaines classes de th�eories �equationnelles.Th�ese de Doctorat d'Universit�e, Universit�e de Paris-Sud, Orsay (France), October1993.16. R. Nieuwenhuis and A. Rubio. Basic Superposition is Complete. In B. Krieg-Br�uckner, editor, Proceedings of ESOP'92, volume 582 of Lecture Notes in Com-puter Science, pages 371{389. Springer-Verlag, 1992.17. E. Paul (E-mail: etienne.paul@issy.cnet.fr). E-Semantic Tree. Unpublished paper,70 pages, 1994.18. G. E. Peterson. A Technique for Establishing Completeness Results in TheoremProving with Equality. SIAM Journal of Computing, 12(1):82{100, 1983.19. G. E. Peterson and M. E. Stickel. Complete Sets of Reductions for Some Equa-tional Theories. Journal of the ACM, 28:233{264, 1981.20. G. Plotkin. Building-in Equational Theories. Machine Intelligence, 7:73{90, 1972.21. J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.Journal of the ACM, 12:23{41, 1965.22. A. Rubio and R. Nieuwenhuis. A Precedence-Based Total AC-Compatible Order-ing. In C. Kirchner, editor, Proceedings 5th Conference on Rewriting Techniques

and Applications, Montreal (Canada), volume 690 of Lecture Notes in ComputerScience, pages 374{388. Springer-Verlag, 1993.23. M. Rusinowitch. D�emonstration automatique | Techniques de r�e�ecriture. In-terEditions, 1989.24. M. Rusinowitch. Theorem-proving with Resolution and Superposition. Journal ofSymbolic Computation, 11:21{49, 1991.25. M. Rusinowitch and L. Vigneron. Associative Commutative Deduction. InE. Domenjoud and Claude Kirchner, editors, Proceedings of the 1st CCL Work-shop, Le Val d'Ajol (France), October 1992.26. M. Rusinowitch and L. Vigneron. Automated Deduction with Associative-Com-mutative Operators. Applicable Algebra in Engineering, Communication and Com-puting, 6(1):23{56, January 1995.27. M. E. Stickel. A Uni�cation Algorithm for Associative-Commutative Functions.Journal of the ACM, 28:423{434, 1981.28. L. Vigneron. Associative-Commutative Deduction with Constraints. In A. Bundy,editor, Proceedings 12th International Conference on Automated Deduction, Nancy(France), volume 814 of Lecture Notes in Arti�cial Intelligence, pages 530{544.Springer-Verlag, June 1994.29. L. Vigneron. Automated Deduction with Symbolic Constraints in Equational Theo-ries. PhD Thesis, Universit�e Henri Poincar�e - Nancy 1, November 1994. Availableas Research Report CRIN 94-T-266 (in French).30. L. Vigneron. Theorem Proving modulo Regular Theories. Technical report 95-1,Department of Computer Science, SUNY at Stony Brook, Stony Brook, January1995.31. U. Wertz. First-Order Theorem Proving Modulo Equations. Technical ReportMPI-I-92-216, Max Planck Institut f�ur Informatik, April 1992.

