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Abstra
t: The notion of rough equality was introdu
ed by Pawlak in [17℄. Itwas extensively examined in [14℄, [4℄, [16℄, and the most re
ently in [2℄, [27℄,and [28℄. The rough R5 and R4 algebras investigated here are parti
ular 
ases oftopologi
al rough algebras introdu
ed in [26℄. We examine and dis
uss here someof their most interesting properties, their relationship with ea
h other, and withthe topologi
al Boolean S4 and S5 algebras, whi
h are algebrai
 models for modallogi
s S4 and S5, respe
tively. The presented properties were 
hosen out of overseven hundred theorems whi
h were dis
overed and proved automati
ally by thetheorem prover daTa
 (D�edu
tion Automatique dans des Th�eories Asso
iativeset Commutatives). This prover was developed at Loria, Nan
y (Fran
e), by these
ond author.1 Introdu
tionIt is diÆ
ult to establish who was the �rst to use the algebrai
 methods. Theinvestigations in logi
 of Boole himself led to the notion whi
h we now 
allBoolean algebra, but one of the turning points in the algebrai
 study of logi
was the introdu
tion by Lindenbaum and in a slight di�erent form by Tarski (in[24℄) of the method of treating formulas, or equivalen
e 
lasses of formulas aselements of an abstra
t algebra, 
alled now the Lindenbaum-Tarski algebra.In our work we use the algebrai
 logi
 te
hniques to link rough set theorywith logi
, abstra
t algebras and topology. In parti
ular, we have shown in [26℄that the notion of rough equality of sets leads, via logi
 and a Lindenbaum-Tarski like 
onstru
tion of an algebra of formulas, to a de�nition of new 
lassesof algebras, 
alled here topologi
al quasi-Boolean algebras and topologi
al roughalgebras. These algebras are a non-
lassi
al (quasi-Boolean instead of Boolean)version of topologi
al Boolean algebras. The topologi
al Boolean algebras wereintrodu
ed in [10℄, [11℄ under the name of 
losure algebras. They were �rst (al-gebrai
) models for modal logi
s, as opposed to Kripke models invented some 20years later [7℄.This paper is a 
ontinuation of investigations of [2℄, [27℄, [28℄, and [26℄. Theorganization of the paper is as follows.



2 Anita Wasilewska and Laurent VigneronIn Se
tion 2 we introdu
e some basi
 de�nitions and fa
ts in order to makethe paper self 
ontained. We also give a short overview of the work by Banerjeeand Chakraborty [2℄ and Wasilewska [26℄.In Se
tion 3 we introdu
e and investigate two of the topologi
al Boolean alge-bras, named S4 and S5 be
ause they are models for modal logi
s S4 and S5,respe
tively. The topologi
al rough algebras 
onsidered here are 
alled, a

ord-ingly, R4 and R5 algebras, where "R" stands for their rough equality origins.In Se
tion 4 we examine the properties and relationship between the R4 and R5algebras and in Se
tion 4 we dis
uss the relationship between the rough R4 andR5 algebras and their Boolean S4 and S5 
ounterparts.All presented properties were dis
overed and proved automati
ally by a the-orem prover daTa
 (D�edu
tion Automatique dans des Th�eories Asso
iatives etCommutatives). We give a short presentation of the dedu
tion te
hniques im-plemented in daTa
 in Se
tion 5.2 Topologi
al Boolean and Topologi
al Rough AlgebrasTo make our paper self 
ontained we �rst review in this se
tion some basi
de�nitions and fa
ts.Approximation spa
e. Let U be a non-empty set 
alled a universe, and letR be an equivalen
e relation on U . The triple (U; ;; R) is 
alled an approximationspa
e.Lower, upper approximations. Let (U; ;; R) and A � U . We denote by[u℄ an equivalen
e 
lass of R. The setsIA = [f[u℄ 2 A=R : [u℄ � Ag;CA = [f[u℄ 2 A=R : [u℄\A 6= ;gare 
alled lower and upper approximations of A, respe
tively. We use here atopologi
al notation for the lower and upper approximations be
ause of theirtopologi
al interpretation and future 
onsiderations.Rough equality. Given an approximation spa
e (U; ;; R) and any A;B �U . We say that the sets A and B are roughly equal and denote it by A�RB ifand only if IA = IB and CA = CB.Boolean algebra. An abstra
t algebra (A; 1;\;[;:) with unit element 1is said to be a Boolean algebra if it is a distributive latti
e and every elementa 2 A has a 
omplement :a 2 A.Orlowska has shown in [15℄ that propositional aspe
ts of rough set theoryare adequately 
aptured by the modal system S5. In this 
ase a Kripke modelgives the approximation spa
e (A; ;; R) in whi
h the well formed formulas areinterpreted as rough sets.Following Orlowska result, Banerjee and Chakraborty introdu
ed in [2℄ a newbinary 
onne
tive � in S5, the intended interpretation of whi
h is the notion ofthe rough equality. I.e, they added to the standard set f[;\;!;,;:;2;3g ofpropositional modal 
onne
tives a new binary 
onne
tive � de�ned in terms of



Rough Algebras and Automated Dedu
tion 3standard 
onne
tives as follows: for any formulas A;B (of the modal S5 lan-guage), we write A � B for the formula ((2A , 2B) \ (3A , 3B)). In thenext step they have used this new 
onne
tive to de�ne a 
onstru
tion similarto the 
onstru
tion of Lindenbaum-Tarski algebra on the set of all formulas ofS5 with additional 
onne
tive �. Before des
ribing their 
onstru
tion leading tothe de�nition of the rough algebra, we in
lude below a des
ription of a standard
onstru
tion of a Lindenbaum-Tarski algebra for a given logi
.Lindenbaum-Tarski 
onstru
tion. Given a propositional logi
 with aset F of formulas. We de�ne �rst two binary relations � and � in the algebraF of formulas of the given logi
 as follows. For any A;B 2 F ,A � B if and only if ` (A) B), andA � B if and only if ` (A) B) and ` (B ) A).Then we use the set of axioms and rules of inferen
e of the given logi
 toprove all fa
ts listed below.The relation � is a quasi-ordering in F .The relation � is an equivalen
e relation in F . We denote the equivalen
e 
lass
ontaining a formula A by [A℄.The quasi-ordering � on F indu
es an ordering relation on F=� de�ned asfollows: [A℄ � [B℄ if and only if A � B.The equivalen
e relation � on F is a 
ongruen
e with respe
t to all logi
al
onne
tives.The resulting algebra with universe F=� is 
alled a Lindenbaum-Tarski algebra.Example 1. The Lindenbaum-Tarski algebra for 
lassi
al propositional logi
 withthe set of 
onne
tives f[;\;);:g is the following.LT = (F=�;[;\;);:);where the operations [, \, ) and : are determined by the 
ongruen
e relation�, i.e. [A℄ [ [B℄ = [(A [ B)℄, [A℄ \ [B℄ = [(A \ B)℄, [A℄ ) [B℄ = [(A ) B)℄,:[A℄ = [:A℄.We prove, in this 
ase (see [19℄) that the Lindenbaum-Tarski algebra is aBoolean algebra with a unit element V . Moreover, for any formula A, ` A ifand only if [A℄ = V .Example 2. The Lindenbaum-Tarski algebra for modal logi
 S4 or S5 with theset of 
onne
tives f[;\;);:;2;3g is the following.LT = (F=�;[;\;);:; I; C);where the operations [, \, ), :, I and C are determined by the 
ongruen
erelation �, i.e. [A℄[ [B℄ = [(A[B)℄, [A℄\ [B℄ = [(A\B)℄, [A℄ ) [B℄ = [(A)B)℄, :[A℄ = [:A℄, IA = [2A℄, and CA = [3A℄.



4 Anita Wasilewska and Laurent VigneronIn the 
ase of modal logi
 S4 the Lindenbaum-Tarski algebra (see [9℄, [10℄, [19℄)is a topologi
al Boolean algebra and in the 
ase of S5 it is topologi
al Booleanalgebra su
h that every open element is 
losed and every 
losed element is open.Moreover, in both 
ases, for any formula A, ` A if and only if [A℄ = V .Banerjee, Chakraborty 
onstru
tion. We de�ne a new binary relation� on the set F of formulas of the modal S5 logi
 as follows. For any A;B 2 F ,A � B if and only if A � B, i.e.A � B if and only if ` ((2A, 2B) \ (3A, 3B)).We prove that the above relation �, 
orresponding to the notion of roughequality is an equivalen
e relation on the set F of formulas of S5.We de�ne a binary relation � on F=� as follows.[A℄ � [B℄ if and only if ` ((2A) 2B) \ (3A) 3B)).We prove that � is an order relation on F=� with the greatest element 1 = [A℄,for any formula A, su
h that ` A, and with the least element 0 = [B℄, su
hthat ` :B.We prove that � is a 
ongruen
e relation with respe
t to the logi
al 
onne
tives:, 2, 3, but is not a 
ongruen
e relation with respe
t to ), \ and [.We introdu
e two new operations t and u in F=� as follows.[A℄ t [B℄ = [(A [B) \ (A [ 2A [2B [ :2(A [ B))℄,[A℄ u [B℄ = [(A \B) [ (A \3A \3B \ :3(A \ B))℄.We 
all the resulting stru
ture a rough algebra (of formulas of logi
 S5) or S5rough algebras, for short.The formal de�nition of the S5 rough algebra is hen
e the following.S5 Rough algebra. An abstra
t algebraR = (F=�;t;u;:; I; C; 0; 1);su
h that the operations t, u are de�ned above and the operations :, I , C areindu
ed, as in the Lindenbaum-Tarski algebra, by the relation �, i.e. :[A℄ =[:A℄, IA = [2A℄, and CA = [3A℄, is 
alled the S5 rough algebra.In [1℄, many important properties of the S5 rough algebra were were proved.They were also reported in [2℄. We 
ite here only those whi
h are relevant to ourfuture investigations.P1 (F=�;�;t;u; 0; 1) is a distributive latti
e with 0 and 1.P2 For any [A℄; [B℄ 2 F=�, :([A℄ t [B℄) = (:[A℄ u :[B℄),P3 For any [A℄ 2 F=�, ::[A℄ = [A℄.P4 The rough algebra is not a Boolean algebra, i.e. there is a formula A of amodal logi
 S5, su
h that :[A℄ u [A℄ 6= 0 and :[A℄ t [A℄ 6= 1.P5 For any [A℄; [B℄ 2 F=�, I([A℄ u [B℄) = (I [A℄ u I [B℄), I [A℄ � [A℄, II [A℄ =I [A℄, I1 = 1, and CI [A℄ = I [A℄, where C[A℄ = :I:[A℄.The above, and other properties of the rough algebra lead to some naturalquestions and observations.



Rough Algebras and Automated Dedu
tion 5By the property P4, the rough algebra's 
omplement operation (:) is nota Boolean 
omplement. Let's 
all it a rough 
omplement. We 
an see that therough 
omplement is pretty 
lose to the Boolean 
omplement be
ause the otherde Morgan law :([A℄u [B℄) = (:[A℄u:[B℄) holds in the rough algebra, as wellas the very Boolean laws :1 = 0 and :1 = 0. So what kind of a 
omplement isthe rough 
omplement? The rough algebra is not, by P4, a Boolean algebra, sowhi
h kind of algebra is it? Has su
h an algebra been dis
overed and investigatedbefore?Observation. A 
omplement operation with similar properties to the rough
omplement was introdu
ed in 1935 by Moisil [12℄ and lead to a de�nition of anotion of de Morgan Latti
es. De Morgan latti
es are distributive latti
es sat-isfying the 
onditions P2 and P3. In 1957 Bia lyni
ki-Birula and Rasiowa haveused the de Morgan latti
es to introdu
e a notion of a quasi-Boolean algebra.They de�ned (in [3℄) the quasi-Boolean algebras as de Morgan latti
es with unitelement 1. The above led, in [26℄ to the following de�nition and observation.De�nition 1 Topologi
al quasi-Boolean algebra. An algebra (A;\;[;�; 1;I) is 
alled a topologi
al quasi-Boolean algebra if (A;[;\;�; 1) is a quasi-Boolean algebra and for any a; b 2 A, I(a \ b) = Ia \ Ib, Ia \ a = Ia,IIa = Ia, and I1 = 1.The element Ia is 
alled a quasi-interior of a. The element �I�a is 
alledquasi-
losure of a. It allows us to de�ne in A an unary operation C su
h thatCa = �I�a. We 
an hen
e represent the topologi
al quasi-Boolean algebra as analgebra (A;\;[;�; I; C; 0; 1) similar to the rough algebra (F=�;t;u;:; I; C,0; 1). From P4 we immediately get the following.Fa
t 2. A rough algebra R = (F=�;t;u;:; I; C; 0; 1) is a topologi
al quasi-Boolean algebra.Moreover, the property P5 of the rough algebra tells us also that the opera-tions I and C ful�ll an additional property: for any [A℄ 2 F=�, CI [A℄ = I [A℄.This justi�es the following de�nition.De�nition 3 Topologi
al rough algebra. A topologi
al quasi-Boolean alge-bra (A;\;[;�; I; C; 0; 1) su
h that for any a 2 A, CIa = Ia, is 
alled atopologi
al rough algebra.3 R5 and R4 AlgebrasThe R5 and R4 algebras are parti
ular 
ases of the topologi
al rough alge-bras [26℄. They are not purely mathemati
al invention. The S5 rough algebradeveloped and examined in [2℄ is an example the R5 algebra. The R4 algebra isa quasi-Boolean 
orrespondent of the topologi
al Boolean algebra.The R5 algebra is a quasi-Boolean version of the topologi
al Boolean algebrassu
h that ea
h open element is 
losed and ea
h 
losed element is open.We adopt here the following formal de�nition of R4 and R5 algebras.



6 Anita Wasilewska and Laurent VigneronDe�nition 4 R4 and R5 algebras. An abstra
t algebra (A; 1;[;\;�; I; C)is 
alled a R4 algebra if it is a distributive latti
e with unit element 1 and addi-tionally for all a; b 2 A the following equations are satis�ed:q1 ��a = a,q2 �(a[ b) = � a\� b,t1 I(a\ b) = Ia\ Ib,t3 Ia\ a = Ia,t4 IIa = a,t5 I1 = 1,t6 Ca = � I �a.The algebra obtained from the R4 algebra by adding the following axiom:CI CIa = Iais 
alled a R5 algebra.Axioms q1, q2 say that R4 is a quasi-Boolean algebra, axioms t1 { t5 arethe axioms of a topologi
al spa
e, t6 de�nes the rough 
losure operation, andaxiom CI says that every (roughly) open element is 
losed.A natural set theoreti
al interpretation of the properties of the topologi
alBoolean algebras is established by the representation theorem. For example,a\ Ia = Ia means that any set A 
ontains its interior IA. The representationtheorem provides an intuitive motivation for new properties and is an usefulsour
e of 
ounter-examples.The 
ase of R4 and R5 algebras is more 
ompli
ated and mu
h less intu-itive. While the operations [ and \ are represented as set theoreti
al union andinterse
tion, the operation � 
annot be represented as a set theoreti
al 
omple-mentation. The set theoreti
al interpretation of the rough 
omplement dependson the mapping g : A �! A su
h that for all a 2 A, g(g(a)) = a, 
alled in-volution. The representation theorem for R4 or R5 algebras states that theirproperties have to hold in R4, R5 algebras (�elds) of sets. For example, the settheoreti
al meaning of a R4 algebra property a\� 1 = � 1 is the following.Given any non empty set X , given any involution g on X , for any A � X ,A\(X � g(X)) = (X � g(X)). This property is intuitively obvious, be
ause anyinvolution has to map the set X onto itself.The set theoreti
al interpretation of the de�nition of the 
losure operationin R4 is the following: CA = X � g(I(X � g(A))), for any involution g. One
an see that it be
omes less intuitive than the "normal" Boolean topologi
alde�nition of 
losure as 
omplement of the interior of the 
omplement of theset. The situation be
omes even more 
omplex when we think about possible(or impossible) properties. For example, one of the simplest properties of R4algebras proven by the prover (see Se
tion 3.2) is a\ Ib � C(a\ Ib)\ b. Its settheoreti
al R4 interpretation is that for any A;B � X and for any involution gon X , A\ IB � (X � g(I(X � g(A\ IB))))\B.The above examples show that it is mu
h more diÆ
ult to build an intuitiveunderstanding of properties of R4 and R5 algebras, than it is in 
lassi
al 
ase



Rough Algebras and Automated Dedu
tion 7of topologi
al Boolean algebras. It is not only diÆ
ult to prove new properties,it is also diÆ
ult to think how they should look like. We have hen
e used thetheorem prover daTa
 as a tool to generate the R4, R5 algebras' properties (andtheir proofs). Moreover, we have also used it as a tool for a study of the rela-tionship between both algebras. We strongly believe that su
h a study would beimpossible without the use of the prover.3.1 Automated Dedu
tion of PropertiesThe properties of the R4 and R5 algebras presented here are 
hosen from overseven hundred whi
h were dis
overed and proved automati
ally by the theoremprover daTa
 (D�edu
tion Automatique dans des Th�eories Asso
iatives et Com-mutatives) developed at Loria, Nan
y (Fran
e). This software implements a newte
hnique [21℄ (see Se
tion 5 for a des
ription of this te
hnique) of automateddedu
tion in �rst-order logi
, in presen
e of asso
iative and 
ommutative oper-ators. This te
hnique 
ombines an ordering strategy [5℄, a system of dedu
tionrules based on resolution [20℄ and paramodulation [22℄ rules, and te
hniques forthe deletion of redundant 
lauses.daTa
 proposes either to prove properties by refutation, or by straightforwarddedu
tion from 
lauses. The refutation te
hnique is a proof existen
e te
hnique,i.e. we add the negation of a formula we want to prove to the set of initial formu-las and we sear
h for a 
ontradi
tion. In this 
ase, if the proof exists the proverwould say: "yes, it is a theorem", i.e. the prover a
ts as a proof existen
e 
he
ker.Of 
ourse, the whole system is, as a 
lassi
al predi
ate logi
, semi-de
idable. Inthe straightforward dedu
tion, the prover a
ts as a dedu
tive system, i.e. theend produ
t is a set of properties with their formal proof. We have used heremainly the se
ond te
hnique.Given the R4 algebra (A; 1;[;\;�; I; C). As the �rst step we used the proveron a non-topologi
al subset of its axioms, i.e. we used as its input only axiomsq1, q2 plus axioms for a distributive latti
e. As the fa
t that the 
onsideredoperators [ and \ are asso
iative and 
ommutative is embeded in the stru
tureof the prover, we did not need to spe
ify that portion of the distributive latti
eaxioms. The prover has immediately dedu
ed the following properties:a[ a = a; a\ a = a;a\� 1 = � 1; a[� 1 = a;�(a\ b) = �a[� b:We have added them to the set of the initial axioms of R4. We have also addedthe de�nition of the C operator, i.e. the following equation.Ca = � I � a:In the paper we use the above, extended version of the de�nition of the R4algebra.



8 Anita Wasilewska and Laurent Vigneron3.2 Properties Common to R4 and R5The axioms of R4 are stri
tly in
luded in the set of axioms for R5. Hen
e allproperties we 
an prove in R4, we 
an prove in R5 and there are also pure R5properties, i.e. the R5 properties whi
h 
annot be proved in R4. Of 
ourse ingeneral setting the pure R5 properties are the set theoreti
al di�eren
e betweenall R5 properties and those whi
h are 
ommon to R4 and R5. In general 
asethere is a 
ountably in�nite number of all properties of the R4 and R5 algebras,so we never 
an �nd all pure R5 properties. In our 
ase all sets of generatedproperties are �nite and we present here a pra
ti
al way of �nding the 
ommonand pure properties. It is not straightforward be
ause of the nature of the proverand we dis
uss the results in this se
tion for the 
ommon properties and inSe
tion 3.3 for the pure ones.We have used the prover separately for R4 and R5 algebras. All exe
utionshave been arbitrary stopped after 5000 dedu
ed 
lauses. When we have stoppedthe experiments, the prover had kept only 407 properties for R4 and 294 prop-erties for R5, thanks to the te
hniques of simpli�
ation and deletion used (seeSe
tion 5). The answer to the question whi
h properties from 407 + 294 = 701are 
ommon to both algebras is found in the following way: running a mat
hingprogram for 
omparing the properties of R4 and R5, we have found 217 prop-erties belonging to both sets. The 190 (407 � 217) remaining properties in R4have been found to be either dedu
ed and simpli�ed properties in R5, or prop-erties to be dedu
ed in R5 (not yet dedu
ed be
ause of our arbitrary stop of theexe
ution).In the 77 remaining properties in R5 (294� 217), we dis
overed that 27 wouldbe derived in R4 later, sin
e their proof uses only axioms of R4.So, in the 701 properties, 651 are R4 (and also R5). We de
omposed theseproperties into two 
ategories. The �rst-one 
orresponds to intuitively obviousproperties of topologi
al spa
es (or modal logi
s S4 and S5), the se
ond 
ate-gory 
ontains all other properties. The properties of the se
ond 
ategory seemto be really not trivial even for topologi
al spa
es with normal set theoreti
aloperations.Remark. As (A;\;[) is a latti
e, we use symbol � for the natural latti
e orderingde�ned as follows.a � b if and only if a[ b = b and a\ b = a:The proved has derived immediately some intuitively obvious properties:C1 = 1; Ia � a;C � 1 = � 1; a � Ca;I � 1 = � 1; Ia � Ca;C(a[ b) = Ca[Cb; Ia\ b � a;CCa = Ca; a\ b � Ca;�Ca = I � a; � Ia = C �a:



Rough Algebras and Automated Dedu
tion 9We list below some, mu
h less intuitive properties derived by the prover.Ia\ b\ 
 � C(Ia\ b)\a;a\ Ib � C(a\ Ib)\ b;I(a[ b) � (I(Ca[ b)\ a)[(I(Ca[ b)\ b);Ia\ Ib\ I
 � a\ b\C(a\ b\ 
);Ia\ b � I(a[ 
)\C(b\ Ia);a\ Ib � a\C(a\C(a\ Ib))\ b;b\ Ia � C(C(b\ Ia)\ a);Ca\ I(Ia[ b)\ 
 � Ia[(Ca\ b);(I(a[ b)\ I
\C(
\ a))[(I(a[ b)\ I
\C(
\ b)) = I
\ I(a[ b);(I(a[ 
)\ I(a[ b)\C(
\ b))[(I(a[ 
)\ I(a[ b)\Ca) = I(a[ b)\ I(a[ 
):3.3 Purely R5 PropertiesAfter 5000 properties of R5 dedu
ed, our prover has kept only 294 of them. Wesubtra
ted from them the 
ommon 217 properties with R4 and the 27 propertiesdedu
ed by using only R4 axioms. The 50 properties left are strong 
andidatesfor being purely R5 properties, as their proofs used the additional R5 axiomCIa = Ia. This does not aÆrm yet that they are purely R5 properties, be
ausewe have not yet proved they do not have other R4 proof. However for some ofthem, we were able to prove that they are purely R5, using the following pro
ess:given a strong 
andidate P , we have shown that the spe
i�
 R5 axiom CIa = Iais a 
onsequen
e of R4 plus P . Here are some of these purely R5 properties :ICa = Ca;a � I(Ca[ b);I(Ca[ Ib) = Ca[ Ib;C(Ca\ Ib) = Ca\ Ib:Observations. The prover has a tenden
y to generate larger and larger for-mulas. It hen
e tries to simplify them into smaller ones. But this is not alwayspossible and the study of these 
ompli
ated formulas is sometimes interesting.For example, we have found (by dire
t examination of the 50 R5 formulas) thefollowing 2 variables property:I(Ia[ Ib) = Ia[ Ib:We have also found the 3 and 4 variables properties:I(Ia[ Ib[ I
) = Ia[ Ib[ I
;I(Ia[ Ib[ I
[ Id) = Ia[ Ib[ I
[ Id:They are in fa
t the 3 and 4 variables generalizations of the �rst 2 variablesproperty. It is easy to see that they follow an obvious pattern listed below (wherem > 0). I(Ia1 [ : : :[ Iam) = Ia1 [ : : :[ Iam:



10 Anita Wasilewska and Laurent VigneronThe proof by mathemati
al indu
tion that this pattern is an R5 property isstraightforward.There are many other patterns. For example the following formulasI(Ca[Cb) = Ca[Cb; C(Ca\Cb) = Ca\Cb;I(Ca[ Ib) = Ca[ Ib; C(Ca\ Ib) = Ca\ Ib;I(Ia[ Ib) = Ia[ Ib; C(Ia\ Ib) = Ia\ Ib:together with their 3 and 4 variables generalizations 
an be des
ribed by thenext two patterns (n + m > 0).I(Ca1 [ : : :[Can [ Ib1 [ : : :[ Ibm) = Ca1 [ : : :[Can [ Ib1 [ : : :[ Ibm;C(Ca1 \ : : :\Can \ Ib1 \ : : :\ Ibm) = Ca1 \ : : :\Can \ Ib1 \ : : :\ Ibm:Below is a method of 
onstru
tion of a formal proof in R5 of the �rst of thesetwo generalized properties. First we use the following derivation to show how itis possible to add a m + 1st Ia to the union of already obtained m I 's. (In the�rst dedu
tion, b1 is 
hosen equal to Ia1 [ Ia2.)I(Ia1[ Ia2)| {z } = Ia1 [ Ia2 I( Ib1|{z}[ Ib2 [ : : : Ibm) = Ib1 [ Ib2 [ : : : IbmI(z }| {Ia1 [ Ia2 [ Ib2 [ : : : Ibm) = I(Ia1 [ Ia2)[ Ib2 [ : : : IbmI(Ia1 [ Ia2)| {z } = Ia1 [ Ia2 I(Ia1[ Ia2 [ Ib2 [ : : : Ibm) = I(Ia1 [ Ia2)| {z }[ Ib2 [ : : : IbmI(Ia1 [ Ia2 [ Ib2 [ : : : Ibm) = z }| {Ia1 [ Ia2 [ Ib2 [ : : : IbmSe
ondly, as the below derivation shows, we transform an Ia formula into aCa using the property ICa = Ca and a substitution of Ca for 
1.ICa|{z} = Ca I(Cb1 [ : : : Cbn [ I
1|{z}[ I
2 [ : : : I
m) = Cb1 [ : : : Cbn [ I
1 [ I
2 [ : : : I
mI(Cb1 [ : : : Cbn [ z}|{Ca [ I
2 [ : : : I
m) = Cb1 [ : : : Cbn [ ICa[ I
2 [ : : : I
mICa|{z} = Ca I(Cb1 [ : : : Cbn [Ca[ I
2 [ : : : I
m) = Cb1 [ : : : Cbn [ ICa|{z}[ I
2 [ : : : I
mI(Cb1 [ : : : Cbn [Ca[ I
2 [ : : : I
m) = Cb1 [ : : : Cbn [ z}|{Ca [ I
2 [ : : : I
mIt is obvious from above that on
e we know how to add a I operator andhow to transform it into a C, the general property mentioned earlier is R5.
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tion 114 Rough R4, R5 and Boolean S4, S5 AlgebrasThe rough R4 algebra is the quasi-Boolean version of the topologi
al Booleanalgebra. The topologi
al Boolean algebras are algebrai
 models (see [10℄) for themodal logi
 S4, where the interior I and 
losure C operations 
orrespond tomodal operators 2 and 3, respe
tively.The topologi
al Boolean algebras su
h that ea
h open element is 
losed andea
h 
losed element is open form algebrai
 models for the modal logi
 S5. Thisjusti�es the following de�nition.De�nition 5 Boolean S4, S5 algebras. Any topologi
al Boolean algebra (A,1;\;[;:; I) is 
alled a Boolean S4 algebra.An S4 algebra (A; 1;\;[;:; I) su
h that for any a 2 A, CIa = Ia, whereCa = :I:a, is 
alled a Boolean S5 algebra.It is obvious from the representation theorem for R5 algebras (see Se
tion 2)that the prin
ipal Boolean propertya[� a = 1does not hold neither in R5 nor in R4. It was proved in [18℄ that when weadd the above property to the axioms of the quasi-Boolean algebra we obtain aBoolean algebra. The quasi 
omplementation � be
omes in this 
ase a 
lassi
alset theoreti
al 
omplementation.This proves the following theorem.Theorem6. A R4 (R5) algebra (A; 1;[;\;�; I) with one of the following addi-tional axioms (where 0 denotes � 1)a[�a = 1 or a\�a = 0is 
alled a S4 (S5) topologi
al Boolean algebra.We have added those two axioms to the set of axioms of R4 (R5, respe
tively)and let the prover run.The prover has derived more than 300 properties for these topologi
al S4, S5Boolean algebras. Here are some we �nd interesting.Ia[C �a = 1; Ia\C �a = 0;Ca[ I �a = 1; Ca\ I �a = 0;(Ca\Cb)[(Ca\ 
)[(I � b\� 
)[ I �a = 1;(Ca\ b)[C
[(I � 
\ I � a)[(I � 
\� b) = 1;(C(a\ I � b)\Cb)[(C(a\ I � b)\�a)[(a\ I � b) = C(a\ I � b);(Ia\C(a\C �a))[(a\C � a) = a\C(a\C � a);(I �a\ Ib)[(� a\ b\Ca)[(� a\ b\C � b) = �a\ b;(Ca\� b)[(Ca\ 
)[(b\� 
)[ I �a = 1;(Ia\ b)[C
[(I � 
\C � a)[(I � 
\� b) = 1:
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 | A Tool for Automated Dedu
tionThe theorem prover daTa
3, for D�edu
tion Automatique dans des Th�eories As-so
iatives et Commutatives, has been developed at Loria, Nan
y (Fran
e). Thissoftware is written in CAML Light (18000 lines), a language of the ML family.daTa
 
an be used for theorem proving or for straightforward dedu
tion. It ma-nipulates formulas of �rst order logi
 with equality expressed in a 
lausal formA1 ^ : : : ^ An ) B1 _ : : : _ Bm. The dedu
tion te
hniques implemented aredetailed in [21℄. We present here only a short overview of them.5.1 Dedu
tion Te
hniquesThe prover is based on the �rst order logi
 with equality, hen
e the 
lauses usethe equality predi
ate. But, we do not need to state all equality axioms. The sym-metry, transitivity and fun
tional re
exivity of the equality are simulated by adedu
tion rule 
alled Paramodulation [22℄. Its prin
iple is to apply repla
ementsin 
lauses. A paramodulation step in a positive literal is de�ned byL1 ) l= r _ R1 L2 ) A[l0℄ _ R2( L1 ^ L2 ) A[r℄ _ R1 _ R2 )�where � is a substitution (a mapping repla
ing variables by terms) unifying theterm l and the subterm l0 of A, i.e. l� is equal to l0�. This last subterm is repla
edby the right-hand side r of the equality l= r, and the substitution is applied onthe whole dedu
ed 
lause.A similar paramodulation rule is de�ned for repla
ements in negative literals,i.e. literals on the left-hand side of the ) sign.The re
exivity property of the equality predi
ate is simulated by a rule 
alledRe
exion, de�ned by: l= r ^ L) R( L) R )�where the substitution � uni�es the terms l and r.The Resolution rule [20℄ permits to deal with the other predi
ate symbolsthan the equality: A1 ^ L1 ) R1 L2 ) A2 _ R2( L1 ^ L2 ) R1 _ R2 )�where � uni�es A1 and A2.5.2 StrategiesIn order to limit the number of possible dedu
tions and to avoid useless dedu
-tions, the prover uses several strategies of dedu
tion.The �rst one is an ordering strategy [5℄. It uses an ordering for 
omparingthe terms and for orienting the equations. Hen
e, when a paramodulation step3 daTa
 Home Page (in the PROTHEO Group at the Loria):http://www.loria.fr/equipes/protheo/PROJECTS/DATAC/data
.html
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tion 13is applied from an equation l= r, it is 
he
ked that a term is never repla
ed bya bigger one, i.e. that the term r is not greater than the term l for this ordering.This te
hnique is similar to the use of a rewriting rule l ! r.The ordering is also used for sele
tion of literals. For instan
e, it is possible toimpose the 
ondition that ea
h dedu
tion step has to use the maximal literal ofa 
lause.Another essential strategy is the simpli�
ation. We have de�ned some simpli-�
ation rules whose purpose is to repla
e a 
lause by a simpler one, using termrewriting.We have also de�ned some deletion rules. For instan
e, 
lauses whi
h 
ontain apositive equation l= l, or a same atom on the left-hand side and on the right-hand side of the impli
ation sign ), are deleted. Another deletion te
hnique isthe subsumption, whi
h 
an be s
hematized by: if a 
lause L ) R belongs to aset of 
lauses S, then any 
lause of the form L� ^L0 ) R� _R0 
an be removedfrom S.5.3 Dedu
tion modulo EThe most important feature of daTa
 is the dedu
tion modulo a set of equationsE. The motivation for su
h dedu
tion is the following.The 
ommutativity property of an operator f , f(a; b) = f(b; a), 
annot be ori-ented as a rewrite rule. This is a major problem when applying paramodulationsteps.Also, the asso
iativity property of an operator f , f(f(a; b); 
) = f(a; f(b; 
)),has the disadvantage to provoke in�nite sequen
es of paramodulation steps. Forexample, from an equation f(d1; d2) = d3, we 
an derivef(d1; f(d2; e1)) = f(d3; e1)f(d1; f(f(d2; e1); e2)) = f(f(d3; e1); e2)...Moreover, when these two properties (
ommutativity and asso
iativity) are
ombined, it be
omes very diÆ
ult to dedu
e useful 
lauses. For example, thereare 1680 ways to write the term f(a1; f(a2; f(a3; f(a4; a5)))), where f is asso-
iative and 
ommutative. These 1680 terms are all semanti
ally equivalent butnone of them 
an be omitted, for the 
ompleteness of the dedu
tions.So, daTa
 is de�ned for being run modulo a set of equations E, 
omposed of
ommutativity, and asso
iativity and 
ommutativity properties. These equationsdo not appear in the set of initial 
lauses. They are simulated by spe
i�
 algo-rithms for equality 
he
king, pattern mat
hing and uni�
ation, in 
onjun
tionwith some spe
ially adapted paramodulation rules.5.4 Advantages of daTa
daTa
 is an entirely automati
 tool whi
h, given a set of 
lauses, dedu
es newproperties, 
onsequen
es of these 
lauses. daTa
 is refutationally 
omplete: if a
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lauses is in
oherent, it will �nd a 
ontradi
tion. The only reason thatmay it fail in its sear
h for a 
ontradi
tion is the limit of the memory size of the
omputer.The implemented te
hniques involve ordering and simpli�
ation strategies
ombined with a dedu
tion system based on paramodulation and resolution,as mentioned earlier, but other important strategies are also available, as thesuperposition and basi
 strategies [25℄.At the end of an exe
ution, the user 
an ask for a lot of extra information.Espe
ially the prover 
an present a proof of a derived property, or of the 
ontra-di
tion found. Many statisti
s are also available, su
h as the number of dedu
tionsteps, the number of simpli�
ation steps, and the number of deletions.Referen
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