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Abstract: The notion of rough equality was introduced by Pawlak in [17]. Tt
was extensively examined in [14], [4], [16], and the most recently in [2], [27],
and [28]. The rough R5 and R4 algebras investigated here are particular cases of
topological rough algebras introduced in [26]. We examine and discuss here some
of their most interesting properties, their relationship with each other, and with
the topological Boolean S4 and S5 algebras, which are algebraic models for modal
logics S4 and S5, respectively. The presented properties were chosen out of over
seven hundred theorems which were discovered and proved automatically by the
theorem prover dalac (Déduction Automatique dans des Théories Associatives
et Commutatives). This prover was developed at Loria, Nancy (France), by the
second author.

1 Introduction

It is difficult to establish who was the first to use the algebraic methods. The
investigations in logic of Boole himself led to the notion which we now call
Boolean algebra, but one of the turning points in the algebraic study of logic
was the introduction by Lindenbaum and in a slight different form by Tarski (in
[24]) of the method of treating formulas, or equivalence classes of formulas as
elements of an abstract algebra, called now the Lindenbaum-Tarski algebra.

In our work we use the algebraic logic techniques to link rough set theory
with logic, abstract algebras and topology. In particular, we have shown in [26]
that the notion of rough equality of sets leads, via logic and a Lindenbaum-
Tarski like construction of an algebra of formulas, to a definition of new classes
of algebras, called here topological quasi-Boolean algebras and topological rough
algebras. These algebras are a non-classical (quasi-Boolean instead of Boolean)
version of topological Boolean algebras. The topological Boolean algebras were
introduced in [10], [11] under the name of closure algebras. They were first (al-
gebraic) models for modal logics, as opposed to Kripke models invented some 20
years later [7].

This paper is a continuation of investigations of [2], [27], [28], and [26]. The
organization of the paper is as follows.



2 Anita Wasilewska and Laurent Vigneron

In Section 2 we introduce some basic definitions and facts in order to make
the paper self contained. We also give a short overview of the work by Banerjee
and Chakraborty [2] and Wasilewska [26].

In Section 3 we introduce and investigate two of the topological Boolean alge-
bras, named S4 and S5 because they are models for modal logics S4 and S5,
respectively. The topological rough algebras considered here are called, accord-
ingly, R4 and R5 algebras, where "R” stands for their rough equality origins.
In Section 4 we examine the properties and relationship between the R4 and R5
algebras and in Section 4 we discuss the relationship between the rough R4 and
R5 algebras and their Boolean S4 and S5 counterparts.

All presented properties were discovered and proved automatically by a the-
orem prover dalac (Déduction Automatique dans des Théories Associatives et
Commutatives). We give a short presentation of the deduction techniques im-
plemented in dalac in Section 5.

2 Topological Boolean and Topological Rough Algebras

To make our paper self contained we first review in this section some basic
definitions and facts.

Approximation space. Let U be a non-empty set called a universe, and let
R be an equivalence relation on U. The triple (U, (), R) is called an approximation
space.

Lower, upper approximations. Let (U,0, R) and A C U. We denote by
[u] an equivalence class of R. The sets

TA=|J{lul € A/R: [u] C A},

CA=|J{lu] € A/R: [u]nA#0}

are called lower and upper approximations of A, respectively. We use here a
topological notation for the lower and upper approximations because of their
topological interpretation and future considerations.

Rough equality. Given an approximation space (U, ), R) and any A, B C
U. We say that the sets A and B are roughly equal and denote it by A ~g B if
and only if TA =1IB and CA = CB.

Boolean algebra. An abstract algebra (A,1,N, U, ) with unit element 1
is said to be a Boolean algebra if it is a distributive lattice and every element
a € A has a complement —a € A.

Orlowska has shown in [15] that propositional aspects of rough set theory
are adequately captured by the modal system S5. In this case a Kripke model
gives the approximation space (4,0, R) in which the well formed formulas are
interpreted as rough sets.

Following Orlowska result, Banerjee and Chakraborty introduced in [2] a new
binary connective ~ in S5, the intended interpretation of which is the notion of
the rough equality. 1.e, they added to the standard set {U,N,—, <, -, 0,0} of
propositional modal connectives a new binary connective ~ defined in terms of
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standard connectives as follows: for any formulas A, B (of the modal S5 lan-
guage), we write A ~ B for the formula ((0A & OB) N (CA & OB)). In the
next step they have used this new connective to define a construction similar
to the construction of Lindenbaum-Tarski algebra on the set of all formulas of
S5 with additional connective ~. Before describing their construction leading to
the definition of the rough algebra, we include below a description of a standard
construction of a Lindenbaum-Tarski algebra for a given logic.

Lindenbaum-Tarski construction. Given a propositional logic with a
set F of formulas. We define first two binary relations < and = in the algebra
F of formulas of the given logic as follows. For any A, B € F,

A < B if and only if F (A = B), and
A=~ B ifand only if F (A= B) and F (B = A).

Then we use the set of axioms and rules of inference of the given logic to
prove all facts listed below.

The relation < is a quasi-ordering in F'.

The relation = is an equivalence relation in F'. We denote the equivalence class
containing a formula A by [A].

The quasi-ordering < on F' induces an ordering relation on F/a defined as
follows: [A] < [B] if and only if A < B.

The equivalence relation ~ on F' is a congruence with respect to all logical
connectives.

The resulting algebra with universe F'/~ is called a Lindenbaum-Tarski algebra.

Ezample 1. The Lindenbaum-Tarski algebra for classical propositional logic with
the set of connectives {U,N, =, =} is the following.

ﬁT = (F/%7 U) m) :>) _‘)7

where the operations U, N, = and — are determined by the congruence relation
N[ i]-e- [[A] ]U [B] = [(AuB)], [A]Nn[B] =[(AnB)], [4] = [B] = [(A = B)],
—[A] = [-A].

We prove, in this case (see [19]) that the Lindenbaum-Tarski algebra is a
Boolean algebra with a unit element V. Moreover, for any formula A, + A if
and only if [A]=V.

Example 2. The Lindenbaum-Tarski algebra for modal logic S4 or S5 with the
set of connectives {U,N, =, -, 0, G} is the following.

LT = (F/~,U,N,=,~,1,C),
where the operations U, N, =, =, I and C are determined by the congruence

relation ~, i.e. [A]U[B] = [(AUB)], [A]n[B] = [(ANB)], [4] = [B] = [(A =
B)], —[A] = [-A], TA =[0A], and CA = [0A].
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In the case of modal logic S4 the Lindenbaum-Tarski algebra (see [9], [10], [19])
is a topological Boolean algebra and in the case of S5 it is topological Boolean
algebra such that every open element is closed and every closed element is open.
Moreover, in both cases, for any formula A, F A if and only if [4] =V.

Banerjee, Chakraborty construction. We define a new binary relation
~ on the set F' of formulas of the modal S5 logic as follows. For any A, B € F',

A=~ B if and only if A~ B, i.e.

A=~ B ifand only if F ((O0A < OB)N(CA < OB)).

We prove that the above relation ~, corresponding to the notion of rough
equality is an equivalence relation on the set F' of formulas of S5.

We define a binary relation < on F/= as follows.

[A] < [B] if and only if + ((DA = OB)N (CA = OB)).

We prove that < is an order relation on F'//~ with the greatest element 1 = [A4],
for any formula A, such that F A, and with the least element 0 = [B], such
that + -B.

We prove that = is a congruence relation with respect to the logical connectives
=, O, &, but is not a congruence relation with respect to =, N and U.

We introduce two new operations Ll and M in F/= as follows.
[AJu[B]=[(AUB)N(AuOAUOBU-O(AU B))|,
[AIN[B]=[(ANB)U(ANCANOBN=C(AN B)).

We call the resulting structure a rough algebra (of formulas of logic S5) or S5
rough algebras, for short.

The formal definition of the S5 rough algebra is hence the following.

S5 Rough algebra. An abstract algebra
R = (F/z7 |_|7 |_|7 _I7 I7 07 07 1)7

such that the operations U, M are defined above and the operations -, I, C' are
induced, as in the Lindenbaum-Tarski algebra, by the relation =, i.e. —[A4] =
[~A], TA =[04], and CA = [CA], is called the S5 rough algebra.

In [1], many important properties of the S5 rough algebra were were proved.
They were also reported in [2]. We cite here only those which are relevant to our
future investigations.

P1 (F/=~,<,,M,0,1) is a distributive lattice with 0 and 1.

P2 For any [A], [B] € F/~, ~([A]U[B]) = (-[A]n~[B]),

P3 For any [A] € F/~, ——[A] = [4].

P4 The rough algebra is not a Boolean algebra, i.e. there is a formula A of a
modal logic S5, such that —[A]M[A] #0 and —[A]U[A] # 1.

P5 For any [A],[B] € F/~, I((4]N[B]) = (I[A]NI[B)), I[A] < [A], II[A] =
IT4], 11 =1, and CI[A] = I[A], where C[A] = —I-[A4].

The above, and other properties of the rough algebra lead to some natural
questions and observations.
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By the property P4, the rough algebra’s complement operation (—) is not
a Boolean complement. Let’s call it a rough complement. We can see that the
rough complement is pretty close to the Boolean complement because the other
de Morgan law —([A]M[B]) = (-[A]M—[B]) holds in the rough algebra, as well
as the very Boolean laws =1 =0 and =1 = 0. So what kind of a complement is
the rough complement? The rough algebra is not, by P4, a Boolean algebra, so
which kind of algebra is it? Has such an algebra been discovered and investigated
before?

Observation. A complement operation with similar properties to the rough
complement was introduced in 1935 by Moisil [12] and lead to a definition of a
notion of de Morgan Lattices. De Morgan lattices are distributive lattices sat-
isfying the conditions P2 and P3. In 1957 Bialynicki-Birula and Rasiowa have
used the de Morgan lattices to introduce a notion of a quasi-Boolean algebra.
They defined (in [3]) the quasi-Boolean algebras as de Morgan lattices with unit
element 1. The above led, in [26] to the following definition and observation.

Definition 1 Topological quasi-Boolean algebra. An algebra (4,N,U, ~, 1,
I) is called a topological quasi-Boolean algebra if (A,U,N,~,1) is a quasi-
Boolean algebra and for any a,b € A, I(anNb) = IanIb, IaNa = Ia,
IIa = Ia, and I1=1.

The element Ia is called a quasi-interior of a. The element ~I~gq is called
quasi-closure of a. Tt allows us to define in A an unary operation C' such that
Ca = ~I~a. We can hence represent the topological quasi-Boolean algebra as an
algebra (A4,N,U,~,I,C,0,1) similar to the rough algebra (F/=~,U,M,—,1I,C,
0,1). From P4 we immediately get the following.

Fact 2. A rough algebra R = (F/~,U,N,—,1,C,0,1) is a topological quasi-
Boolean algebra.

Moreover, the property P5 of the rough algebra tells us also that the opera-
tions I and C fulfill an additional property: for any [A] € F/~, CI[A] = I[A].
This justifies the following definition.

Definition 3 Topological rough algebra. A topological quasi-Boolean alge-
bra (4,N,U,~,I,C,0,1) such that for any a € A, Cla = Ia, is called a
topological rough algebra.

3 R5 and R4 Algebras

The R5 and R4 algebras are particular cases of the topological rough alge-
bras [26]. They are not purely mathematical invention. The S5 rough algebra
developed and examined in [2] is an example the R5 algebra. The R4 algebra is
a quasi-Boolean correspondent of the topological Boolean algebra.

The R5 algebra is a quasi-Boolean version of the topological Boolean algebras
such that each open element is closed and each closed element is open.
We adopt here the following formal definition of R4 and R5 algebras.
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Definition4 R4 and R5 algebras. An abstract algebra (A4,1,U,N,~,I,C)
is called a R4 algebra if it is a distributive lattice with unit element 1 and addi-
tionally for all a,b € A the following equations are satisfied:

ql ~~a = a,

q2 ~(aUb) = ~anN~b,
t1 I(anb) = IaNnTb,
t3 Iana = Ia,

t4 Ila = a,

t5 n =1,

t6 Ca = ~I~a.

The algebra obtained from the R4 algebra by adding the following axiom:
CI Cla = Ia

is called a R5 algebra.

Axioms q1, q2 say that R4 is a quasi-Boolean algebra, axioms t1 — t5 are
the axioms of a topological space, t6 defines the rough closure operation, and
axiom CI says that every (roughly) open element is closed.

A natural set theoretical interpretation of the properties of the topological
Boolean algebras is established by the representation theorem. For example,
aNla = Ia means that any set A contains its interior TA. The representation
theorem provides an intuitive motivation for new properties and is an useful
source of counter-examples.

The case of R4 and R5 algebras is more complicated and much less intu-
itive. While the operations U and N are represented as set theoretical union and
intersection, the operation ~ cannot be represented as a set theoretical comple-
mentation. The set theoretical interpretation of the rough complement depends
on the mapping g : A — A such that for all a € A, g(g(a)) = a, called in-
volution. The representation theorem for R4 or R5 algebras states that their
properties have to hold in R4, R5 algebras (fields) of sets. For example, the set
theoretical meaning of a R4 algebra property aN~1 = ~1 is the following.
Given any non empty set X, given any involution ¢ on X, for any A C X,
AN(X —g(X)) = (X —g(X)). This property is intuitively obvious, because any
involution has to map the set X onto itself.

The set theoretical interpretation of the definition of the closure operation
in R4 is the following: CA = X — g(I(X — g(A))), for any involution g. One
can see that it becomes less intuitive than the "normal” Boolean topological
definition of closure as complement of the interior of the complement of the
set. The situation becomes even more complex when we think about possible
(or impossible) properties. For example, one of the simplest properties of R4
algebras proven by the prover (see Section 3.2) is anNIb C C(anIb)Nb. Its set
theoretical R4 interpretation is that for any A, B C X and for any involution g
on X, ANIB C (X —g(I(X —g(ANIB))))N B.

The above examples show that it is much more difficult to build an intuitive
understanding of properties of R4 and R5 algebras, than it is in classical case
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of topological Boolean algebras. It is not only difficult to prove new properties,
it is also difficult to think how they should look like. We have hence used the
theorem prover dalac as a tool to generate the R4, R5 algebras’ properties (and
their proofs). Moreover, we have also used it as a tool for a study of the rela-
tionship between both algebras. We strongly believe that such a study would be
impossible without the use of the prover.

3.1 Automated Deduction of Properties

The properties of the R4 and R5 algebras presented here are chosen from over
seven hundred which were discovered and proved automatically by the theorem
prover dalac (Déduction Automatique dans des Théories Associatives et Com-
mutatives) developed at Loria, Nancy (France). This software implements a new
technique [21] (see Section 5 for a description of this technique) of automated
deduction in first-order logic, in presence of associative and commutative oper-
ators. This technique combines an ordering strategy [5], a system of deduction
rules based on resolution [20] and paramodulation [22] rules, and techniques for
the deletion of redundant clauses.

dalac proposes either to prove properties by refutation, or by straightforward
deduction from clauses. The refutation technique is a proof existence technique,
i.e. we add the negation of a formula we want to prove to the set of initial formu-
las and we search for a contradiction. In this case, if the proof exists the prover
would say: "yes, it is a theorem”, i.e. the prover acts as a proof existence checker.
Of course, the whole system is, as a classical predicate logic, semi-decidable. In
the straightforward deduction, the prover acts as a deductive system, i.e. the
end product is a set of properties with their formal proof. We have used here
mainly the second technique.

Given the R4 algebra (A4,1,U,N, ~, I, C). As the first step we used the prover
on a non-topological subset of its axioms, i.e. we used as its input only axioms
ql, 2 plus axioms for a distributive lattice. As the fact that the considered
operators U and N are associative and commutative is embeded in the structure
of the prover, we did not need to specify that portion of the distributive lattice
axioms. The prover has immediately deduced the following properties:

aUa = a, aNa = a,
anN~1=~1, aU~1=aq,
~(aNb) = ~aU~b.

We have added them to the set of the initial axioms of R4. We have also added
the definition of the C operator, i.e. the following equation.

Ca=~I~a.

In the paper we use the above, extended version of the definition of the R4
algebra.
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3.2 Properties Common to R4 and R5

The axioms of R4 are strictly included in the set of axioms for R5. Hence all
properties we can prove in R4, we can prove in R5 and there are also pure R5
properties, i.e. the R5 properties which cannot be proved in R4. Of course in
general setting the pure R5 properties are the set theoretical difference between
all R5 properties and those which are common to R4 and R5. In general case
there is a countably infinite number of all properties of the R4 and R5 algebras,
so we never can find all pure R5 properties. In our case all sets of generated
properties are finite and we present here a practical way of finding the common
and pure properties. It is not straightforward because of the nature of the prover
and we discuss the results in this section for the common properties and in
Section 3.3 for the pure ones.

We have used the prover separately for R4 and R5 algebras. All executions
have been arbitrary stopped after 5000 deduced clauses. When we have stopped
the experiments, the prover had kept only 407 properties for R4 and 294 prop-
erties for R5, thanks to the techniques of simplification and deletion used (see
Section 5). The answer to the question which properties from 407 4+ 294 = 701
are common to both algebras is found in the following way: running a matching
program for comparing the properties of R4 and R5, we have found 217 prop-
erties belonging to both sets. The 190 (407 — 217) remaining properties in R4
have been found to be either deduced and simplified properties in R5, or prop-
erties to be deduced in R5 (not yet deduced because of our arbitrary stop of the
execution).

In the 77 remaining properties in R5 (294 — 217), we discovered that 27 would
be derived in R4 later, since their proof uses only axioms of R4.

So, in the 701 properties, 651 are R4 (and also R5). We decomposed these
properties into two categories. The first-one corresponds to intuitively obvious
properties of topological spaces (or modal logics S4 and S5), the second cate-
gory contains all other properties. The properties of the second category seem
to be really not trivial even for topological spaces with normal set theoretical
operations.

Remark. As (A,N,VU) is alattice, we use symbol C for the natural lattice ordering
defined as follows.

a Cbh ifand only if aUb=> and anb = a.

The proved has derived immediately some intuitively obvious properties:

Cl1=1, Ia Ca,
C~1=~1, a C Ca,
I~1=~1, Ia C Ca,

C(aUb) = CaUCh, Ianb C a,
CCa = Ca, andb C Ca,

~Ca=1~a, ~Ia=Cn~a.
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We list below some, much less intuitive properties derived by the prover.

IanbNne C C(Ianb)Na,
anIb C C(anIb)Nb,
I(aUb) C (I(CaUb)Na)U(I(CaUb)Nb),
IanIbNnIc CanbnC(anbne),
Ianb C I(aUc)NC(bNIa),
anIbCanC(anC(anIb))Nb,
bNIa C C(C(bNIa)Na),
CanI(Iaub)NecC IaU(Canb),

(IfaUub)NIcNC(cNa))U(I(aUb)NIcNC(cNb)) =TIcNI(aUb),
(I(aUc)NI(aUb)NC(cNb))U(I(aUc)NI(aUb)NCa) =I(aUb)NI(aUc).

3.3 Purely R5 Properties

After 5000 properties of R5 deduced, our prover has kept only 294 of them. We
subtracted from them the common 217 properties with R4 and the 27 properties
deduced by using only R4 axioms. The 50 properties left are strong candidates
for being purely R5 properties, as their proofs used the additional R5 axiom
Cla = Ia. This does not affirm yet that they are purely R5 properties, because
we have not yet proved they do not have other R4 proof. However for some of
them, we were able to prove that they are purely R5, using the following process:
given a strong candidate P, we have shown that the specific R5 axiom Cla = Ia
is a consequence of R4 plus P. Here are some of these purely R5 properties:

ICa = Ca,
a C I(CaUb),
I(CaUIb) =CaUIb,
C(Canlib) =Canlb.

Observations. The prover has a tendency to generate larger and larger for-
mulas. It hence tries to simplify them into smaller ones. But this is not always
possible and the study of these complicated formulas is sometimes interesting.
For example, we have found (by direct examination of the 50 R5 formulas) the
following 2 variables property:

I(IaUTb) = IaUTb.
We have also found the 3 and 4 variables properties:

I(IaUIbUIc) = IaUIbUIc,
I(IaUIbUIcUId) =ITaUIbUIcUId.

They are in fact the 3 and 4 variables generalizations of the first 2 variables
property. It is easy to see that they follow an obvious pattern listed below (where
m > 0).

I(Ia; U...Ulay) = IagU...Ulay,.
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The proof by mathematical induction that this pattern is an R5 property is

straightforward.
There are many other patterns. For example the following formulas

I(CaUCb) = CaUCh, C(CanCb) = CanCb,
I(CaUIb) = CaUlIb, C(CanlIb) =Canlb,
I(IaUIb) =IaUIb, C(IanIb) =IanIb.

together with their 3 and 4 variables generalizations can be described by the
next two patterns (n +m > 0).

I(C’alLJUC’anUIbluufbm) :C’alu...UC’anUIblu...UIbm,
C(Cain...nCa,NIbyN...NIby)=CarN...NCa,NIbyN...NIby,.

Below is a method of construction of a formal proof in R5 of the first of these
two generalized properties. First we use the following derivation to show how it
is possible to add a m + 15¢ Ia to the union of already obtained m I’s. (In the
first deduction, by is chosen equal to Ta; U las.)

I(ICLlUICLQ) :Ia1 UIQQ I( Ibl UIbQUIbm) :Ibl UIbQUIbm
S—— ~—~

——
I(Ia1UIa2UIb2U...Ibm) :I(Ia1UIa2)UIbQU...Ibm

I(Ia1 UICLQ) = JTayUIa> I(Ia1 Ulas UIbgU...Ibm) =I(Ia1 UIag)UIsz...Ibm
S—— N——

—
I(IQ1UIa2UIb2U...Ibm) :Ia1UIa2UIb2U...Ibm

Secondly, as the below derivation shows, we transform an Ia formula into a
C'a using the property ICa = Ca and a substitution of C'a for ¢;.

ICa =Ca I(CbiU...Cb,U Icy UlcaU...Icw)=CbiU...CbyUIciUIcaU...Icy,
~~ ~—

=~
I(Cb1U...Cby,U Ca UlcaU...Icy) =CbiU...CbpyUICaUIcaU...Icy

ICa =Ca I(CbiU...Cb,UCaUIcaU... Ic) =Cbi U...Cb, UICaUIc2U...Icn,
~~ ~~

=~
I(CbU...Cb,UCaUIcoU...Icy) =CbiU...Cb, U Ca UlcaU...Icy,

It is obvious from above that once we know how to add a I operator and
how to transform it into a C, the general property mentioned earlier is R5.
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4 Rough R4, R5 and Boolean S4, S5 Algebras

The rough R4 algebra is the quasi-Boolean version of the topological Boolean
algebra. The topological Boolean algebras are algebraic models (see [10]) for the
modal logic S4, where the interior I and closure C' operations correspond to
modal operators O and <, respectively.

The topological Boolean algebras such that each open element is closed and
each closed element is open form algebraic models for the modal logic S5. This
justifies the following definition.

Definition 5 Boolean S4, S5 algebras. Any topological Boolean algebra (A,
1,n,U,~, 1) is called a Boolean S4 algebra.
An S4 algebra (A,1,N,U,—,T) such that for any a € A, Cla = Ia, where
Ca = —I—a, is called a Boolean S5 algebra.

It is obvious from the representation theorem for R5 algebras (see Section 2)
that the principal Boolean property

aU~a=1

does not hold neither in R5 nor in R4. It was proved in [18] that when we
add the above property to the axioms of the quasi-Boolean algebra we obtain a
Boolean algebra. The quasi complementation ~ becomes in this case a classical
set theoretical complementation.

This proves the following theorem.

Theorem 6. A R/ (R5) algebra (A,1,U,N, ~,I) with one of the following addi-
tional axzioms (where 0 denotes ~1)

aU~a=1 or aN~a=0
is called a S4 (S5) topological Boolean algebra.

We have added those two axioms to the set of axioms of R4 (R5, respectively)
and let the prover run.

The prover has derived more than 300 properties for these topological S4, S5
Boolean algebras. Here are some we find interesting.

IaUC ~a =1, IaNnC~a =0,
CaUl~a=1, Canl~a=0,

(CanCbh)U(Canc)U(I ~bN~c)UIl~a =1,
(Canb)UCcU(I~cNI~a)U(I~cN~b)=1,
(ClanI~b)NCh)U(C(anI~b)N~a)U(anI~b)=C(anI~b),
(IanC(aNnC~a))U(aNnC~a)=anC(aNC ~a),
(I~anIb)U(~anbdbNCa)U(~anNbNC ~b)=~aNb,
(Can~b)U(Canc)UbN~c)Ul~a=1,
(Ianb)UCecU(I ~cNC ~a)U(I~cN~b)=1.
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5 dalac — A Tool for Automated Deduction

The theorem prover dalac?, for Déduction Automatique dans des Théories As-
sociatives et Commutatives, has been developed at Loria, Nancy (France). This
software is written in CAML Light (18000 lines), a language of the ML family.
dalac can be used for theorem proving or for straightforward deduction. It ma-
nipulates formulas of first order logic with equality expressed in a clausal form
AiN...NA, = By V...V B,,. The deduction techniques implemented are
detailed in [21]. We present here only a short overview of them.

5.1 Deduction Techniques

The prover is based on the first order logic with equality, hence the clauses use
the equality predicate. But, we do not need to state all equality axioms. The sym-
metry, transitivity and functional reflexivity of the equality are simulated by a
deduction rule called Paramodulation [22]. Tts principle is to apply replacements
in clauses. A paramodulation step in a positive literal is defined by

Li=1l=rVR LQﬁA[ll]\/RQ
(Ll/\L2=>A[T‘]VR1VR2 )0’

where ¢ is a substitution (a mapping replacing variables by terms) unifying the
term [ and the subterm I’ of A, i.e. lo is equal to I’o. This last subterm is replaced
by the right-hand side r of the equality I =r, and the substitution is applied on
the whole deduced clause.
A similar paramodulation rule is defined for replacements in negative literals,
i.e. literals on the left-hand side of the = sign.

The reflexivity property of the equality predicate is simulated by a rule called
Reflexion, defined by:

I=rAL=R
(L=R)o

where the substitution ¢ unifies the terms [ and r.

The Resolution rule [20] permits to deal with the other predicate symbols
than the equality:

AiNLy = Ry Ly = A>V Ry
(Ll/\L2:>R1 V R» )0’

where o unifies 4; and As.

5.2 Strategies

In order to limit the number of possible deductions and to avoid useless deduc-
tions, the prover uses several strategies of deduction.

The first one is an ordering strategy [5]. It uses an ordering for comparing
the terms and for orienting the equations. Hence, when a paramodulation step

3 dalac Home Page (in the PROTHEO Group at the Loria):
http://www.loria.fr/equipes/protheo/PROJECTS/DATAC/datac.html
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is applied from an equation I =r, it is checked that a term is never replaced by
a bigger one, i.e. that the term r is not greater than the term [ for this ordering.
This technique is similar to the use of a rewriting rule [ — r.

The ordering is also used for selection of literals. For instance, it is possible to
impose the condition that each deduction step has to use the maximal literal of
a clause.

Another essential strategy is the simplification. We have defined some simpli-

fication rules whose purpose is to replace a clause by a simpler one, using term
rewriting.
We have also defined some deletion rules. For instance, clauses which contain a
positive equation | =1, or a same atom on the left-hand side and on the right-
hand side of the implication sign =, are deleted. Another deletion technique is
the subsumption, which can be schematized by: if a clause L = R belongs to a
set of clauses S, then any clause of the form Lo A L' = RoV R' can be removed
from S.

5.3 Deduction modulo FE

The most important feature of dalac is the deduction modulo a set of equations
E. The motivation for such deduction is the following.

The commutativity property of an operator f, f(a,b) = f (b, a), cannot be ori-
ented as a rewrite rule. This is a major problem when applying paramodulation
steps.

Also, the associativity property of an operator f, f(f(a,b),c)= f(a, f(b,c)),
has the disadvantage to provoke infinite sequences of paramodulation steps. For
example, from an equation f(di,d>)=ds3, we can derive

f(dy, f(d2,e1)) = f(d3,e1)
fldi, f(f(dz,e1),e2)) = f(f(ds,e1),e2)

Moreover, when these two properties (commutativity and associativity) are
combined, it becomes very difficult to deduce useful clauses. For example, there
are 1680 ways to write the term f(a1, f(a2, f(as, f(as,as5)))), where f is asso-
ciative and commutative. These 1680 terms are all semantically equivalent but
none of them can be omitted, for the completeness of the deductions.

So, dalac is defined for being run modulo a set of equations E, composed of
commutativity, and associativity and commutativity properties. These equations
do not appear in the set of initial clauses. They are simulated by specific algo-
rithms for equality checking, pattern matching and unification, in conjunction
with some specially adapted paramodulation rules.

5.4 Advantages of dalac

dalac is an entirely automatic tool which, given a set of clauses, deduces new
properties, consequences of these clauses. dalac is refutationally complete: if a
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set of clauses is incoherent, it will find a contradiction. The only reason that
may it fail in its search for a contradiction is the limit of the memory size of the
computer.

The implemented techniques involve ordering and simplification strategies
combined with a deduction system based on paramodulation and resolution,
as mentioned earlier, but other important strategies are also available, as the
superposition and basic strategies [25].

At the end of an execution, the user can ask for a lot of extra information.
Especially the prover can present a proof of a derived property, or of the contra-
diction found. Many statistics are also available, such as the number of deduction
steps, the number of simplification steps, and the number of deletions.
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