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Abstrat: The notion of rough equality was introdued by Pawlak in [17℄. Itwas extensively examined in [14℄, [4℄, [16℄, and the most reently in [2℄, [27℄,and [28℄. The rough R5 and R4 algebras investigated here are partiular ases oftopologial rough algebras introdued in [26℄. We examine and disuss here someof their most interesting properties, their relationship with eah other, and withthe topologial Boolean S4 and S5 algebras, whih are algebrai models for modallogis S4 and S5, respetively. The presented properties were hosen out of overseven hundred theorems whih were disovered and proved automatially by thetheorem prover daTa (D�edution Automatique dans des Th�eories Assoiativeset Commutatives). This prover was developed at Loria, Nany (Frane), by theseond author.1 IntrodutionIt is diÆult to establish who was the �rst to use the algebrai methods. Theinvestigations in logi of Boole himself led to the notion whih we now allBoolean algebra, but one of the turning points in the algebrai study of logiwas the introdution by Lindenbaum and in a slight di�erent form by Tarski (in[24℄) of the method of treating formulas, or equivalene lasses of formulas aselements of an abstrat algebra, alled now the Lindenbaum-Tarski algebra.In our work we use the algebrai logi tehniques to link rough set theorywith logi, abstrat algebras and topology. In partiular, we have shown in [26℄that the notion of rough equality of sets leads, via logi and a Lindenbaum-Tarski like onstrution of an algebra of formulas, to a de�nition of new lassesof algebras, alled here topologial quasi-Boolean algebras and topologial roughalgebras. These algebras are a non-lassial (quasi-Boolean instead of Boolean)version of topologial Boolean algebras. The topologial Boolean algebras wereintrodued in [10℄, [11℄ under the name of losure algebras. They were �rst (al-gebrai) models for modal logis, as opposed to Kripke models invented some 20years later [7℄.This paper is a ontinuation of investigations of [2℄, [27℄, [28℄, and [26℄. Theorganization of the paper is as follows.



2 Anita Wasilewska and Laurent VigneronIn Setion 2 we introdue some basi de�nitions and fats in order to makethe paper self ontained. We also give a short overview of the work by Banerjeeand Chakraborty [2℄ and Wasilewska [26℄.In Setion 3 we introdue and investigate two of the topologial Boolean alge-bras, named S4 and S5 beause they are models for modal logis S4 and S5,respetively. The topologial rough algebras onsidered here are alled, aord-ingly, R4 and R5 algebras, where "R" stands for their rough equality origins.In Setion 4 we examine the properties and relationship between the R4 and R5algebras and in Setion 4 we disuss the relationship between the rough R4 andR5 algebras and their Boolean S4 and S5 ounterparts.All presented properties were disovered and proved automatially by a the-orem prover daTa (D�edution Automatique dans des Th�eories Assoiatives etCommutatives). We give a short presentation of the dedution tehniques im-plemented in daTa in Setion 5.2 Topologial Boolean and Topologial Rough AlgebrasTo make our paper self ontained we �rst review in this setion some baside�nitions and fats.Approximation spae. Let U be a non-empty set alled a universe, and letR be an equivalene relation on U . The triple (U; ;; R) is alled an approximationspae.Lower, upper approximations. Let (U; ;; R) and A � U . We denote by[u℄ an equivalene lass of R. The setsIA = [f[u℄ 2 A=R : [u℄ � Ag;CA = [f[u℄ 2 A=R : [u℄\A 6= ;gare alled lower and upper approximations of A, respetively. We use here atopologial notation for the lower and upper approximations beause of theirtopologial interpretation and future onsiderations.Rough equality. Given an approximation spae (U; ;; R) and any A;B �U . We say that the sets A and B are roughly equal and denote it by A�RB ifand only if IA = IB and CA = CB.Boolean algebra. An abstrat algebra (A; 1;\;[;:) with unit element 1is said to be a Boolean algebra if it is a distributive lattie and every elementa 2 A has a omplement :a 2 A.Orlowska has shown in [15℄ that propositional aspets of rough set theoryare adequately aptured by the modal system S5. In this ase a Kripke modelgives the approximation spae (A; ;; R) in whih the well formed formulas areinterpreted as rough sets.Following Orlowska result, Banerjee and Chakraborty introdued in [2℄ a newbinary onnetive � in S5, the intended interpretation of whih is the notion ofthe rough equality. I.e, they added to the standard set f[;\;!;,;:;2;3g ofpropositional modal onnetives a new binary onnetive � de�ned in terms of



Rough Algebras and Automated Dedution 3standard onnetives as follows: for any formulas A;B (of the modal S5 lan-guage), we write A � B for the formula ((2A , 2B) \ (3A , 3B)). In thenext step they have used this new onnetive to de�ne a onstrution similarto the onstrution of Lindenbaum-Tarski algebra on the set of all formulas ofS5 with additional onnetive �. Before desribing their onstrution leading tothe de�nition of the rough algebra, we inlude below a desription of a standardonstrution of a Lindenbaum-Tarski algebra for a given logi.Lindenbaum-Tarski onstrution. Given a propositional logi with aset F of formulas. We de�ne �rst two binary relations � and � in the algebraF of formulas of the given logi as follows. For any A;B 2 F ,A � B if and only if ` (A) B), andA � B if and only if ` (A) B) and ` (B ) A).Then we use the set of axioms and rules of inferene of the given logi toprove all fats listed below.The relation � is a quasi-ordering in F .The relation � is an equivalene relation in F . We denote the equivalene lassontaining a formula A by [A℄.The quasi-ordering � on F indues an ordering relation on F=� de�ned asfollows: [A℄ � [B℄ if and only if A � B.The equivalene relation � on F is a ongruene with respet to all logialonnetives.The resulting algebra with universe F=� is alled a Lindenbaum-Tarski algebra.Example 1. The Lindenbaum-Tarski algebra for lassial propositional logi withthe set of onnetives f[;\;);:g is the following.LT = (F=�;[;\;);:);where the operations [, \, ) and : are determined by the ongruene relation�, i.e. [A℄ [ [B℄ = [(A [ B)℄, [A℄ \ [B℄ = [(A \ B)℄, [A℄ ) [B℄ = [(A ) B)℄,:[A℄ = [:A℄.We prove, in this ase (see [19℄) that the Lindenbaum-Tarski algebra is aBoolean algebra with a unit element V . Moreover, for any formula A, ` A ifand only if [A℄ = V .Example 2. The Lindenbaum-Tarski algebra for modal logi S4 or S5 with theset of onnetives f[;\;);:;2;3g is the following.LT = (F=�;[;\;);:; I; C);where the operations [, \, ), :, I and C are determined by the ongruenerelation �, i.e. [A℄[ [B℄ = [(A[B)℄, [A℄\ [B℄ = [(A\B)℄, [A℄ ) [B℄ = [(A)B)℄, :[A℄ = [:A℄, IA = [2A℄, and CA = [3A℄.



4 Anita Wasilewska and Laurent VigneronIn the ase of modal logi S4 the Lindenbaum-Tarski algebra (see [9℄, [10℄, [19℄)is a topologial Boolean algebra and in the ase of S5 it is topologial Booleanalgebra suh that every open element is losed and every losed element is open.Moreover, in both ases, for any formula A, ` A if and only if [A℄ = V .Banerjee, Chakraborty onstrution. We de�ne a new binary relation� on the set F of formulas of the modal S5 logi as follows. For any A;B 2 F ,A � B if and only if A � B, i.e.A � B if and only if ` ((2A, 2B) \ (3A, 3B)).We prove that the above relation �, orresponding to the notion of roughequality is an equivalene relation on the set F of formulas of S5.We de�ne a binary relation � on F=� as follows.[A℄ � [B℄ if and only if ` ((2A) 2B) \ (3A) 3B)).We prove that � is an order relation on F=� with the greatest element 1 = [A℄,for any formula A, suh that ` A, and with the least element 0 = [B℄, suhthat ` :B.We prove that � is a ongruene relation with respet to the logial onnetives:, 2, 3, but is not a ongruene relation with respet to ), \ and [.We introdue two new operations t and u in F=� as follows.[A℄ t [B℄ = [(A [B) \ (A [ 2A [2B [ :2(A [ B))℄,[A℄ u [B℄ = [(A \B) [ (A \3A \3B \ :3(A \ B))℄.We all the resulting struture a rough algebra (of formulas of logi S5) or S5rough algebras, for short.The formal de�nition of the S5 rough algebra is hene the following.S5 Rough algebra. An abstrat algebraR = (F=�;t;u;:; I; C; 0; 1);suh that the operations t, u are de�ned above and the operations :, I , C areindued, as in the Lindenbaum-Tarski algebra, by the relation �, i.e. :[A℄ =[:A℄, IA = [2A℄, and CA = [3A℄, is alled the S5 rough algebra.In [1℄, many important properties of the S5 rough algebra were were proved.They were also reported in [2℄. We ite here only those whih are relevant to ourfuture investigations.P1 (F=�;�;t;u; 0; 1) is a distributive lattie with 0 and 1.P2 For any [A℄; [B℄ 2 F=�, :([A℄ t [B℄) = (:[A℄ u :[B℄),P3 For any [A℄ 2 F=�, ::[A℄ = [A℄.P4 The rough algebra is not a Boolean algebra, i.e. there is a formula A of amodal logi S5, suh that :[A℄ u [A℄ 6= 0 and :[A℄ t [A℄ 6= 1.P5 For any [A℄; [B℄ 2 F=�, I([A℄ u [B℄) = (I [A℄ u I [B℄), I [A℄ � [A℄, II [A℄ =I [A℄, I1 = 1, and CI [A℄ = I [A℄, where C[A℄ = :I:[A℄.The above, and other properties of the rough algebra lead to some naturalquestions and observations.



Rough Algebras and Automated Dedution 5By the property P4, the rough algebra's omplement operation (:) is nota Boolean omplement. Let's all it a rough omplement. We an see that therough omplement is pretty lose to the Boolean omplement beause the otherde Morgan law :([A℄u [B℄) = (:[A℄u:[B℄) holds in the rough algebra, as wellas the very Boolean laws :1 = 0 and :1 = 0. So what kind of a omplement isthe rough omplement? The rough algebra is not, by P4, a Boolean algebra, sowhih kind of algebra is it? Has suh an algebra been disovered and investigatedbefore?Observation. A omplement operation with similar properties to the roughomplement was introdued in 1935 by Moisil [12℄ and lead to a de�nition of anotion of de Morgan Latties. De Morgan latties are distributive latties sat-isfying the onditions P2 and P3. In 1957 Bia lyniki-Birula and Rasiowa haveused the de Morgan latties to introdue a notion of a quasi-Boolean algebra.They de�ned (in [3℄) the quasi-Boolean algebras as de Morgan latties with unitelement 1. The above led, in [26℄ to the following de�nition and observation.De�nition 1 Topologial quasi-Boolean algebra. An algebra (A;\;[;�; 1;I) is alled a topologial quasi-Boolean algebra if (A;[;\;�; 1) is a quasi-Boolean algebra and for any a; b 2 A, I(a \ b) = Ia \ Ib, Ia \ a = Ia,IIa = Ia, and I1 = 1.The element Ia is alled a quasi-interior of a. The element �I�a is alledquasi-losure of a. It allows us to de�ne in A an unary operation C suh thatCa = �I�a. We an hene represent the topologial quasi-Boolean algebra as analgebra (A;\;[;�; I; C; 0; 1) similar to the rough algebra (F=�;t;u;:; I; C,0; 1). From P4 we immediately get the following.Fat 2. A rough algebra R = (F=�;t;u;:; I; C; 0; 1) is a topologial quasi-Boolean algebra.Moreover, the property P5 of the rough algebra tells us also that the opera-tions I and C ful�ll an additional property: for any [A℄ 2 F=�, CI [A℄ = I [A℄.This justi�es the following de�nition.De�nition 3 Topologial rough algebra. A topologial quasi-Boolean alge-bra (A;\;[;�; I; C; 0; 1) suh that for any a 2 A, CIa = Ia, is alled atopologial rough algebra.3 R5 and R4 AlgebrasThe R5 and R4 algebras are partiular ases of the topologial rough alge-bras [26℄. They are not purely mathematial invention. The S5 rough algebradeveloped and examined in [2℄ is an example the R5 algebra. The R4 algebra isa quasi-Boolean orrespondent of the topologial Boolean algebra.The R5 algebra is a quasi-Boolean version of the topologial Boolean algebrassuh that eah open element is losed and eah losed element is open.We adopt here the following formal de�nition of R4 and R5 algebras.



6 Anita Wasilewska and Laurent VigneronDe�nition 4 R4 and R5 algebras. An abstrat algebra (A; 1;[;\;�; I; C)is alled a R4 algebra if it is a distributive lattie with unit element 1 and addi-tionally for all a; b 2 A the following equations are satis�ed:q1 ��a = a,q2 �(a[ b) = � a\� b,t1 I(a\ b) = Ia\ Ib,t3 Ia\ a = Ia,t4 IIa = a,t5 I1 = 1,t6 Ca = � I �a.The algebra obtained from the R4 algebra by adding the following axiom:CI CIa = Iais alled a R5 algebra.Axioms q1, q2 say that R4 is a quasi-Boolean algebra, axioms t1 { t5 arethe axioms of a topologial spae, t6 de�nes the rough losure operation, andaxiom CI says that every (roughly) open element is losed.A natural set theoretial interpretation of the properties of the topologialBoolean algebras is established by the representation theorem. For example,a\ Ia = Ia means that any set A ontains its interior IA. The representationtheorem provides an intuitive motivation for new properties and is an usefulsoure of ounter-examples.The ase of R4 and R5 algebras is more ompliated and muh less intu-itive. While the operations [ and \ are represented as set theoretial union andintersetion, the operation � annot be represented as a set theoretial omple-mentation. The set theoretial interpretation of the rough omplement dependson the mapping g : A �! A suh that for all a 2 A, g(g(a)) = a, alled in-volution. The representation theorem for R4 or R5 algebras states that theirproperties have to hold in R4, R5 algebras (�elds) of sets. For example, the settheoretial meaning of a R4 algebra property a\� 1 = � 1 is the following.Given any non empty set X , given any involution g on X , for any A � X ,A\(X � g(X)) = (X � g(X)). This property is intuitively obvious, beause anyinvolution has to map the set X onto itself.The set theoretial interpretation of the de�nition of the losure operationin R4 is the following: CA = X � g(I(X � g(A))), for any involution g. Onean see that it beomes less intuitive than the "normal" Boolean topologialde�nition of losure as omplement of the interior of the omplement of theset. The situation beomes even more omplex when we think about possible(or impossible) properties. For example, one of the simplest properties of R4algebras proven by the prover (see Setion 3.2) is a\ Ib � C(a\ Ib)\ b. Its settheoretial R4 interpretation is that for any A;B � X and for any involution gon X , A\ IB � (X � g(I(X � g(A\ IB))))\B.The above examples show that it is muh more diÆult to build an intuitiveunderstanding of properties of R4 and R5 algebras, than it is in lassial ase



Rough Algebras and Automated Dedution 7of topologial Boolean algebras. It is not only diÆult to prove new properties,it is also diÆult to think how they should look like. We have hene used thetheorem prover daTa as a tool to generate the R4, R5 algebras' properties (andtheir proofs). Moreover, we have also used it as a tool for a study of the rela-tionship between both algebras. We strongly believe that suh a study would beimpossible without the use of the prover.3.1 Automated Dedution of PropertiesThe properties of the R4 and R5 algebras presented here are hosen from overseven hundred whih were disovered and proved automatially by the theoremprover daTa (D�edution Automatique dans des Th�eories Assoiatives et Com-mutatives) developed at Loria, Nany (Frane). This software implements a newtehnique [21℄ (see Setion 5 for a desription of this tehnique) of automateddedution in �rst-order logi, in presene of assoiative and ommutative oper-ators. This tehnique ombines an ordering strategy [5℄, a system of dedutionrules based on resolution [20℄ and paramodulation [22℄ rules, and tehniques forthe deletion of redundant lauses.daTa proposes either to prove properties by refutation, or by straightforwarddedution from lauses. The refutation tehnique is a proof existene tehnique,i.e. we add the negation of a formula we want to prove to the set of initial formu-las and we searh for a ontradition. In this ase, if the proof exists the proverwould say: "yes, it is a theorem", i.e. the prover ats as a proof existene heker.Of ourse, the whole system is, as a lassial prediate logi, semi-deidable. Inthe straightforward dedution, the prover ats as a dedutive system, i.e. theend produt is a set of properties with their formal proof. We have used heremainly the seond tehnique.Given the R4 algebra (A; 1;[;\;�; I; C). As the �rst step we used the proveron a non-topologial subset of its axioms, i.e. we used as its input only axiomsq1, q2 plus axioms for a distributive lattie. As the fat that the onsideredoperators [ and \ are assoiative and ommutative is embeded in the strutureof the prover, we did not need to speify that portion of the distributive lattieaxioms. The prover has immediately dedued the following properties:a[ a = a; a\ a = a;a\� 1 = � 1; a[� 1 = a;�(a\ b) = �a[� b:We have added them to the set of the initial axioms of R4. We have also addedthe de�nition of the C operator, i.e. the following equation.Ca = � I � a:In the paper we use the above, extended version of the de�nition of the R4algebra.



8 Anita Wasilewska and Laurent Vigneron3.2 Properties Common to R4 and R5The axioms of R4 are stritly inluded in the set of axioms for R5. Hene allproperties we an prove in R4, we an prove in R5 and there are also pure R5properties, i.e. the R5 properties whih annot be proved in R4. Of ourse ingeneral setting the pure R5 properties are the set theoretial di�erene betweenall R5 properties and those whih are ommon to R4 and R5. In general asethere is a ountably in�nite number of all properties of the R4 and R5 algebras,so we never an �nd all pure R5 properties. In our ase all sets of generatedproperties are �nite and we present here a pratial way of �nding the ommonand pure properties. It is not straightforward beause of the nature of the proverand we disuss the results in this setion for the ommon properties and inSetion 3.3 for the pure ones.We have used the prover separately for R4 and R5 algebras. All exeutionshave been arbitrary stopped after 5000 dedued lauses. When we have stoppedthe experiments, the prover had kept only 407 properties for R4 and 294 prop-erties for R5, thanks to the tehniques of simpli�ation and deletion used (seeSetion 5). The answer to the question whih properties from 407 + 294 = 701are ommon to both algebras is found in the following way: running a mathingprogram for omparing the properties of R4 and R5, we have found 217 prop-erties belonging to both sets. The 190 (407 � 217) remaining properties in R4have been found to be either dedued and simpli�ed properties in R5, or prop-erties to be dedued in R5 (not yet dedued beause of our arbitrary stop of theexeution).In the 77 remaining properties in R5 (294� 217), we disovered that 27 wouldbe derived in R4 later, sine their proof uses only axioms of R4.So, in the 701 properties, 651 are R4 (and also R5). We deomposed theseproperties into two ategories. The �rst-one orresponds to intuitively obviousproperties of topologial spaes (or modal logis S4 and S5), the seond ate-gory ontains all other properties. The properties of the seond ategory seemto be really not trivial even for topologial spaes with normal set theoretialoperations.Remark. As (A;\;[) is a lattie, we use symbol � for the natural lattie orderingde�ned as follows.a � b if and only if a[ b = b and a\ b = a:The proved has derived immediately some intuitively obvious properties:C1 = 1; Ia � a;C � 1 = � 1; a � Ca;I � 1 = � 1; Ia � Ca;C(a[ b) = Ca[Cb; Ia\ b � a;CCa = Ca; a\ b � Ca;�Ca = I � a; � Ia = C �a:



Rough Algebras and Automated Dedution 9We list below some, muh less intuitive properties derived by the prover.Ia\ b\  � C(Ia\ b)\a;a\ Ib � C(a\ Ib)\ b;I(a[ b) � (I(Ca[ b)\ a)[(I(Ca[ b)\ b);Ia\ Ib\ I � a\ b\C(a\ b\ );Ia\ b � I(a[ )\C(b\ Ia);a\ Ib � a\C(a\C(a\ Ib))\ b;b\ Ia � C(C(b\ Ia)\ a);Ca\ I(Ia[ b)\  � Ia[(Ca\ b);(I(a[ b)\ I\C(\ a))[(I(a[ b)\ I\C(\ b)) = I\ I(a[ b);(I(a[ )\ I(a[ b)\C(\ b))[(I(a[ )\ I(a[ b)\Ca) = I(a[ b)\ I(a[ ):3.3 Purely R5 PropertiesAfter 5000 properties of R5 dedued, our prover has kept only 294 of them. Wesubtrated from them the ommon 217 properties with R4 and the 27 propertiesdedued by using only R4 axioms. The 50 properties left are strong andidatesfor being purely R5 properties, as their proofs used the additional R5 axiomCIa = Ia. This does not aÆrm yet that they are purely R5 properties, beausewe have not yet proved they do not have other R4 proof. However for some ofthem, we were able to prove that they are purely R5, using the following proess:given a strong andidate P , we have shown that the spei� R5 axiom CIa = Iais a onsequene of R4 plus P . Here are some of these purely R5 properties :ICa = Ca;a � I(Ca[ b);I(Ca[ Ib) = Ca[ Ib;C(Ca\ Ib) = Ca\ Ib:Observations. The prover has a tendeny to generate larger and larger for-mulas. It hene tries to simplify them into smaller ones. But this is not alwayspossible and the study of these ompliated formulas is sometimes interesting.For example, we have found (by diret examination of the 50 R5 formulas) thefollowing 2 variables property:I(Ia[ Ib) = Ia[ Ib:We have also found the 3 and 4 variables properties:I(Ia[ Ib[ I) = Ia[ Ib[ I;I(Ia[ Ib[ I[ Id) = Ia[ Ib[ I[ Id:They are in fat the 3 and 4 variables generalizations of the �rst 2 variablesproperty. It is easy to see that they follow an obvious pattern listed below (wherem > 0). I(Ia1 [ : : :[ Iam) = Ia1 [ : : :[ Iam:



10 Anita Wasilewska and Laurent VigneronThe proof by mathematial indution that this pattern is an R5 property isstraightforward.There are many other patterns. For example the following formulasI(Ca[Cb) = Ca[Cb; C(Ca\Cb) = Ca\Cb;I(Ca[ Ib) = Ca[ Ib; C(Ca\ Ib) = Ca\ Ib;I(Ia[ Ib) = Ia[ Ib; C(Ia\ Ib) = Ia\ Ib:together with their 3 and 4 variables generalizations an be desribed by thenext two patterns (n + m > 0).I(Ca1 [ : : :[Can [ Ib1 [ : : :[ Ibm) = Ca1 [ : : :[Can [ Ib1 [ : : :[ Ibm;C(Ca1 \ : : :\Can \ Ib1 \ : : :\ Ibm) = Ca1 \ : : :\Can \ Ib1 \ : : :\ Ibm:Below is a method of onstrution of a formal proof in R5 of the �rst of thesetwo generalized properties. First we use the following derivation to show how itis possible to add a m + 1st Ia to the union of already obtained m I 's. (In the�rst dedution, b1 is hosen equal to Ia1 [ Ia2.)I(Ia1[ Ia2)| {z } = Ia1 [ Ia2 I( Ib1|{z}[ Ib2 [ : : : Ibm) = Ib1 [ Ib2 [ : : : IbmI(z }| {Ia1 [ Ia2 [ Ib2 [ : : : Ibm) = I(Ia1 [ Ia2)[ Ib2 [ : : : IbmI(Ia1 [ Ia2)| {z } = Ia1 [ Ia2 I(Ia1[ Ia2 [ Ib2 [ : : : Ibm) = I(Ia1 [ Ia2)| {z }[ Ib2 [ : : : IbmI(Ia1 [ Ia2 [ Ib2 [ : : : Ibm) = z }| {Ia1 [ Ia2 [ Ib2 [ : : : IbmSeondly, as the below derivation shows, we transform an Ia formula into aCa using the property ICa = Ca and a substitution of Ca for 1.ICa|{z} = Ca I(Cb1 [ : : : Cbn [ I1|{z}[ I2 [ : : : Im) = Cb1 [ : : : Cbn [ I1 [ I2 [ : : : ImI(Cb1 [ : : : Cbn [ z}|{Ca [ I2 [ : : : Im) = Cb1 [ : : : Cbn [ ICa[ I2 [ : : : ImICa|{z} = Ca I(Cb1 [ : : : Cbn [Ca[ I2 [ : : : Im) = Cb1 [ : : : Cbn [ ICa|{z}[ I2 [ : : : ImI(Cb1 [ : : : Cbn [Ca[ I2 [ : : : Im) = Cb1 [ : : : Cbn [ z}|{Ca [ I2 [ : : : ImIt is obvious from above that one we know how to add a I operator andhow to transform it into a C, the general property mentioned earlier is R5.



Rough Algebras and Automated Dedution 114 Rough R4, R5 and Boolean S4, S5 AlgebrasThe rough R4 algebra is the quasi-Boolean version of the topologial Booleanalgebra. The topologial Boolean algebras are algebrai models (see [10℄) for themodal logi S4, where the interior I and losure C operations orrespond tomodal operators 2 and 3, respetively.The topologial Boolean algebras suh that eah open element is losed andeah losed element is open form algebrai models for the modal logi S5. Thisjusti�es the following de�nition.De�nition 5 Boolean S4, S5 algebras. Any topologial Boolean algebra (A,1;\;[;:; I) is alled a Boolean S4 algebra.An S4 algebra (A; 1;\;[;:; I) suh that for any a 2 A, CIa = Ia, whereCa = :I:a, is alled a Boolean S5 algebra.It is obvious from the representation theorem for R5 algebras (see Setion 2)that the prinipal Boolean propertya[� a = 1does not hold neither in R5 nor in R4. It was proved in [18℄ that when weadd the above property to the axioms of the quasi-Boolean algebra we obtain aBoolean algebra. The quasi omplementation � beomes in this ase a lassialset theoretial omplementation.This proves the following theorem.Theorem6. A R4 (R5) algebra (A; 1;[;\;�; I) with one of the following addi-tional axioms (where 0 denotes � 1)a[�a = 1 or a\�a = 0is alled a S4 (S5) topologial Boolean algebra.We have added those two axioms to the set of axioms of R4 (R5, respetively)and let the prover run.The prover has derived more than 300 properties for these topologial S4, S5Boolean algebras. Here are some we �nd interesting.Ia[C �a = 1; Ia\C �a = 0;Ca[ I �a = 1; Ca\ I �a = 0;(Ca\Cb)[(Ca\ )[(I � b\� )[ I �a = 1;(Ca\ b)[C[(I � \ I � a)[(I � \� b) = 1;(C(a\ I � b)\Cb)[(C(a\ I � b)\�a)[(a\ I � b) = C(a\ I � b);(Ia\C(a\C �a))[(a\C � a) = a\C(a\C � a);(I �a\ Ib)[(� a\ b\Ca)[(� a\ b\C � b) = �a\ b;(Ca\� b)[(Ca\ )[(b\� )[ I �a = 1;(Ia\ b)[C[(I � \C � a)[(I � \� b) = 1:



12 Anita Wasilewska and Laurent Vigneron5 daTa | A Tool for Automated DedutionThe theorem prover daTa3, for D�edution Automatique dans des Th�eories As-soiatives et Commutatives, has been developed at Loria, Nany (Frane). Thissoftware is written in CAML Light (18000 lines), a language of the ML family.daTa an be used for theorem proving or for straightforward dedution. It ma-nipulates formulas of �rst order logi with equality expressed in a lausal formA1 ^ : : : ^ An ) B1 _ : : : _ Bm. The dedution tehniques implemented aredetailed in [21℄. We present here only a short overview of them.5.1 Dedution TehniquesThe prover is based on the �rst order logi with equality, hene the lauses usethe equality prediate. But, we do not need to state all equality axioms. The sym-metry, transitivity and funtional reexivity of the equality are simulated by adedution rule alled Paramodulation [22℄. Its priniple is to apply replaementsin lauses. A paramodulation step in a positive literal is de�ned byL1 ) l= r _ R1 L2 ) A[l0℄ _ R2( L1 ^ L2 ) A[r℄ _ R1 _ R2 )�where � is a substitution (a mapping replaing variables by terms) unifying theterm l and the subterm l0 of A, i.e. l� is equal to l0�. This last subterm is replaedby the right-hand side r of the equality l= r, and the substitution is applied onthe whole dedued lause.A similar paramodulation rule is de�ned for replaements in negative literals,i.e. literals on the left-hand side of the ) sign.The reexivity property of the equality prediate is simulated by a rule alledReexion, de�ned by: l= r ^ L) R( L) R )�where the substitution � uni�es the terms l and r.The Resolution rule [20℄ permits to deal with the other prediate symbolsthan the equality: A1 ^ L1 ) R1 L2 ) A2 _ R2( L1 ^ L2 ) R1 _ R2 )�where � uni�es A1 and A2.5.2 StrategiesIn order to limit the number of possible dedutions and to avoid useless dedu-tions, the prover uses several strategies of dedution.The �rst one is an ordering strategy [5℄. It uses an ordering for omparingthe terms and for orienting the equations. Hene, when a paramodulation step3 daTa Home Page (in the PROTHEO Group at the Loria):http://www.loria.fr/equipes/protheo/PROJECTS/DATAC/data.html



Rough Algebras and Automated Dedution 13is applied from an equation l= r, it is heked that a term is never replaed bya bigger one, i.e. that the term r is not greater than the term l for this ordering.This tehnique is similar to the use of a rewriting rule l ! r.The ordering is also used for seletion of literals. For instane, it is possible toimpose the ondition that eah dedution step has to use the maximal literal ofa lause.Another essential strategy is the simpli�ation. We have de�ned some simpli-�ation rules whose purpose is to replae a lause by a simpler one, using termrewriting.We have also de�ned some deletion rules. For instane, lauses whih ontain apositive equation l= l, or a same atom on the left-hand side and on the right-hand side of the impliation sign ), are deleted. Another deletion tehnique isthe subsumption, whih an be shematized by: if a lause L ) R belongs to aset of lauses S, then any lause of the form L� ^L0 ) R� _R0 an be removedfrom S.5.3 Dedution modulo EThe most important feature of daTa is the dedution modulo a set of equationsE. The motivation for suh dedution is the following.The ommutativity property of an operator f , f(a; b) = f(b; a), annot be ori-ented as a rewrite rule. This is a major problem when applying paramodulationsteps.Also, the assoiativity property of an operator f , f(f(a; b); ) = f(a; f(b; )),has the disadvantage to provoke in�nite sequenes of paramodulation steps. Forexample, from an equation f(d1; d2) = d3, we an derivef(d1; f(d2; e1)) = f(d3; e1)f(d1; f(f(d2; e1); e2)) = f(f(d3; e1); e2)...Moreover, when these two properties (ommutativity and assoiativity) areombined, it beomes very diÆult to dedue useful lauses. For example, thereare 1680 ways to write the term f(a1; f(a2; f(a3; f(a4; a5)))), where f is asso-iative and ommutative. These 1680 terms are all semantially equivalent butnone of them an be omitted, for the ompleteness of the dedutions.So, daTa is de�ned for being run modulo a set of equations E, omposed ofommutativity, and assoiativity and ommutativity properties. These equationsdo not appear in the set of initial lauses. They are simulated by spei� algo-rithms for equality heking, pattern mathing and uni�ation, in onjuntionwith some speially adapted paramodulation rules.5.4 Advantages of daTadaTa is an entirely automati tool whih, given a set of lauses, dedues newproperties, onsequenes of these lauses. daTa is refutationally omplete: if a



14 Anita Wasilewska and Laurent Vigneronset of lauses is inoherent, it will �nd a ontradition. The only reason thatmay it fail in its searh for a ontradition is the limit of the memory size of theomputer.The implemented tehniques involve ordering and simpli�ation strategiesombined with a dedution system based on paramodulation and resolution,as mentioned earlier, but other important strategies are also available, as thesuperposition and basi strategies [25℄.At the end of an exeution, the user an ask for a lot of extra information.Espeially the prover an present a proof of a derived property, or of the ontra-dition found. Many statistis are also available, suh as the number of dedutionsteps, the number of simpli�ation steps, and the number of deletions.Referenes1. Banerjee, M.: A Cathegorial Approah to the Algebra and Logi of the indis-ernible. Ph.D dissertation, Mathematis Department, University of Calutta, In-dia (1994).2. Banerjee, M., Chakraborty, M. K.: Rough Algebra. Bull. Polish Aad. Si.(Math.), 41(4):299{297 (1993).3. Bia lyniki-Birula, A., Rasiowa, H.: On the representation of quasi-Boolean alge-bras. Bull. A. Pol. Si. Cl. III, 5 (1957), pp. 259{261.4. Bronikowski, Z.: Algebrai Strutures of Rough Sets. In Ziarko, W., editor, RoughSets, Fuzzy Sets and Knowledge Disovery, Workshops in Computing, pp. 242{247,Springer Verlag (1994).5. Hsiang, J., Rusinowith, M.: Proving Refutational Completeness of Theorem Prov-ing Strategies: The Trans�nite Semanti Tree Method. Journal of the ACM,38(3):559{587 (1991).6. Kelly, J.: General Topology. Van Nostrand (1955).7. Kripke, S.: Semantis Analysis of Intuitionisti Logi. In Crossley, J.N., and Dum-met, M.N.E., editors, Pro. of the Eight Logi Colloqium, Oxford 1963, pp. 92{130,North Holland Publishing C. (1965).8. Kuratowski, C.: Topologie I, II. Warszawa (1958, 1961).9. MKinsey, J. C. C.: A solution of the deision problem for the Lewis systems S.2and S.4 with an appliation to topology. The Journal of Symboli Logi 6, pp.117{188 (1941).10. MKinsey, J. C. C., Tarski, A.: The Algebra of Topology. Annales of Mathematis,45:141{191 (1944).11. MKinsey, J. C. C., Tarski, A.: On Closed Elements in Closure Algebras. Annalesof Mathematis, 47:122{162 (1946).12. Moisil, G. C.: Reherhes sur l'algebre de la logique. Annales S. de l'Univerite deJassy 22 (1935), pp. 1{117.13. N�obeling, G.: Grundlagen der analitishen Topologie. Berlin, G�otingen, Heilderberg(1954).14. Novotny, M., Pawlak, Z.: On Rough Equalities. Bull. Polish Aad. Si. (Math.),33(1-2):99{104 (1985).15. Or lowska, E.: Semantis of vague onepts. In Dorn, G., Weingartner, P., editors,Foundations of Logi and Linguistis, Seleted Contributions to the 7th Inter-national Congress of Logi, Methodology and Philosophy of Siene, Saltzburg,Plenum Press, pp. 465{482 (1983).
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