
systemd

Lucas Nussbaum
lucas.nussbaum@univ-lorraine.fr

Licence professionnelle ASRALL
Administration de systèmes, réseaux et applications à base de logiciels libres

License: GNU General Public License version 3 or later
or Creative Commons BY-SA 3.0 Unported

(see README.md)

Lucas Nussbaum systemd 1 / 40

Outline
1 Introduction
2 Behind the scenes: cgroups
3 Managing services
4 Analyzing startup performance
5 Exploring the system status
6 Configuring services by writing unit files
7 Timer units
8 Socket activation
9 Logging with journald
10 Containers integration
11 Networking with systemd-networkd
12 Migration from sysvinit
13 Conclusions

Lucas Nussbaum systemd 2 / 40

Init system

I First process started by the kernel (pid 1)

I Responsible for bringing up the rest of userspace
� Mounting filesystems
� Starting services
� . . .

I Also the parent for orphan processes

I Traditional init system on Linux: sysVinit
� Inherited from Unix System V
� With additional tools (insserv, startpar) to handle

dependencies and parallel initialization

Lucas Nussbaum systemd 3 / 40

systemd
I Written (since 2010) by Lennart Poettering (Red Hat) and others

I Now the default on most Linux distributions

I Shifts the scope from starting all services (sysVinit) to
managing the system and all services

I Key features:
� Relies on cgroups for

F Services supervision
F Control of services execution environment

� Declarative syntax for unit files ; more efficient/robust

� Socket activation for parallel services startup

� Nicer user interface (systemctl & friends)

I Additional features: logging, timer units (cron-like), user sessions
handling, containers management

Lucas Nussbaum systemd 4 / 40

Behind the scenes: cgroups

I Abbreviated from control groups

I Linux kernel feature

I Limit, account for and isolate processes and their resource usage
(CPU, memory, disk I/O, network, etc.)

I Related to namespace isolation:
� Isolate processes from the rest of the system

� Chroots on steroids

� PID, network, UTS, mount, user, etc.

I LXC, Docker ≈ cgroups + namespaces (+ management tools)

Lucas Nussbaum systemd 5 / 40

cgroups and systemd
I Each service runs in its own cgroup
I Enables:

� Tracking and killing all processes created by each service
� Per-service accounting and resources allocation/limitation

I Previously, with sysVinit:
� No tracking of which service started which processes

F PID files, or hacks in init scripts: pidof / killall / pgrep
F Hard to completely terminate a service (left-over CGI

scripts when killing Apache)

� No resources limitation (or using setrlimit (= ulimit), which
is per-process, not per-service)

I Also isolate user sessions ; kill all user processes (not by default)
I More information: Control Groups vs. Control Groups and

Which Service Owns Which Processes?

Lucas Nussbaum systemd 6 / 40

http://0pointer.net/blog/projects/cgroups-vs-cgroups.html
http://0pointer.net/blog/projects/systemd-for-admins-2.html

systemd-cgls: visualizing the cgroups hierarchy

Lucas Nussbaum systemd 7 / 40

systemd-cgtop: per-service resources usage

Requires enabling CPUAccounting, BlockIOAccounting,
MemoryAccounting

Lucas Nussbaum systemd 8 / 40

Managing services with systemctl

I What is being manipulated is called a unit : services (.service),
mount points (.mount), devices (.device), sockets (.socket), etc.

I Basic commands:
sysVinit systemd notes

service foo start systemctl start foo
service foo stop systemctl stop foo

service foo restart systemctl restart foo
service foo reload systemctl reload foo

service foo condrestart systemctl condrestart foo restart if already running
update-rc.d foo enable systemctl enable foo auto-start at next boot
update-rc.d foo disable systemctl disable foo disable auto-start

systemctl is-enabled foo

I There’s auto-completion (apache2 and apache2.service work)

I Several services can be specified:
systemctl restart apache2 postgresql

Lucas Nussbaum systemd 9 / 40

systemd and runlevels
I With sysVinit, runlevels control which services are started

automatically
� 0 = halt; 1 = single-user / minimal mode; 6 = reboot
� Debian: no difference by default between levels 2, 3, 4, 5
� RHEL: 3 = multi-user text, 5 = multi-user graphical

I systemd replaces runlevels with targets:
� Configured using symlinks farms in

/etc/systemd/system/target.wants/

� systemctl enable/disable manipule those symlinks

� systemctl mask disables the service and prevents it from
being started manually

� The default target can be configured with
systemctl get-default/set-default

� More information: The Three Levels of "Off"

Lucas Nussbaum systemd 10 / 40

http://0pointer.net/blog/projects/three-levels-of-off.html

Default targets (bootup(7))
local -fs-pre.target

|
v

(various mounts and (various swap (various cryptsetup
fsck services ...) devices ...) devices ...) (various low -level (various low -level

| | | services: udevd , API VFS mounts:
v v v tmpfiles , random mqueue , configfs ,

local -fs.target swap.target cryptsetup.target seed , sysctl , ...) debugfs , ...)
| | | | |
__________________|_________________ | ___________________|____________________/

\|/
v

sysinit.target
|

____________________________________ /|\ __
/ | | | \
| | | | |
v v | v v

(various (various | (various rescue.service
timers ...) paths ...) | sockets ...) |

| | | | v
v v | v rescue.target

timers.target paths.target | sockets.target
| | | |
__________________|_________________ | ___________________/

\|/
v

basic.target
|

____________________________________ /| emergency.service
/ | | |
| | | v
v v v emergency.target

display - (various system (various system
manager.service services services)

| required for |
| graphical UIs) v
| | multi-user.target
| | |
_________________ | _________________/

\|/
v

graphical.target

Lucas Nussbaum systemd 11 / 40

Analyzing startup performance
I Fast boot matters in some use-cases:

� Virtualization, Cloud:
F Almost no BIOS / hardware checks ; only software

startup

F Requirement for infrastructure elasticity

� Embedded world

I systemd-analyze time: summary
Startup finished in 4.883s (kernel) + 5.229s (userspace) = 10.112s

I systemd-analyze blame: worst offenders

2.417s systemd -udev -settle.service
2.386s postgresql@9 .4-main.service
1.507s apache2.service
240ms NetworkManager.service
236ms ModemManager.service
194ms accounts -daemon.service

Lucas Nussbaum systemd 12 / 40

systemd-analyze plot
I Similar to bootchartd, but does not require rebooting with a

custom init= kernel command-line

Lucas Nussbaum systemd 13 / 40

systemd-analyze critical-chain

I Shows services in the critical path

Lucas Nussbaum systemd 14 / 40

Exploring the system status

I Listing units with systemctl list-units (or just systemctl):
� active units: systemctl
� List only services: systemctl -t service

� List units in failed state: systemctl --state failed

I Whole system overview: systemctl status

Lucas Nussbaum systemd 15 / 40

systemctl status service

Includes:
I Service name and description, state, PID
I Free-form status line from systemd-notify(1) or sd_notify(3)
I Processes tree inside the cgroup
I Last lines from journald (syslog messages and stdout/stderr)

Lucas Nussbaum systemd 16 / 40

Configuring services by writing unit files

I With sysVinit: shell scripts in /etc/init.d/

� Long and difficult to write

� Redundant code between services

� Slow (numerous fork() calls)

I With systemd: declarative syntax (.desktop-like)
� Move intelligence from scripts to systemd

� Covers most of the needs, but shell scripts can still be used

� Can use includes and overrides (systemd-delta)

� View config file for a unit: systemctl cat atd.service

� Or just find the file under /lib/systemd/system/ (distribution’s
defaults) or /etc/systemd/system (local overrides)

Lucas Nussbaum systemd 17 / 40

Simple example: atd

[Unit]
Description=Deferred execution scheduler
Pointer to documentation shown in systemctl status
Documentation=man:atd(8)

[Service]
Command to start the service
ExecStart =/usr/sbin/atd -f
IgnoreSIGPIPE=false # Default is true

[Install]
Where "systemctl enable" creates the symlink
WantedBy=multi -user.target

Lucas Nussbaum systemd 18 / 40

Common options

I Documented in systemd.unit(5) ([Unit]), systemd.service(5)
([Service]), systemd.exec(5) (execution environment)

I Show all options for a given service:
systemctl show atd

I Sourcing a configuration file:
EnvironmentFile=-/etc/default/ssh
ExecStart=/usr/sbin/sshd -D $SSHD_OPTS

I Using the $MAINPID magic variable:
ExecReload=/bin/kill -HUP $MAINPID

I Auto-restart a service when crashed: (≈ runit / monit)
Restart=on-failure

I Conditional start:
ConditionPathExists=!/etc/ssh/sshd_not_to_be_run
Conditions on architecture, virtualization, kernel cmdline, AC power, etc.

Lucas Nussbaum systemd 19 / 40

Options for isolation and security
I Use a network namespace to isolate the service from the network:

PrivateNetwork=yes

I Use a filesystem namespaces:
� To provide a service-specific /tmp directory:

PrivateTmp=yes

� To make some directories inaccessible or read-only:
InaccessibleDirectories=/home
ReadOnlyDirectories=/var

I Specify the list of capabilities(7) for a service:
CapabilityBoundingSet=CAP_CHOWN CAP_KILL
Or just remove one:
CapabilityBoundingSet=~CAP_SYS_PTRACE

I Disallow forking:
LimitNPROC=1

Lucas Nussbaum systemd 20 / 40

Options for isolation and security (2)
I Run as user/group: User=, Group=

I Run service inside a chroot:
RootDirectory=/srv/chroot/foobar
ExecStartPre=/usr/local/bin/setup-foobar-chroot.sh
ExecStart=/usr/bin/foobard
RootDirectoryStartOnly=yes

I Control CPU shares, memory limits, block I/O, swapiness:
CPUShares=1500
MemoryLimit=1G
BlockIOWeight=500
BlockIOReadBandwith=/var/log 5M
ControlGroupAttribute=memory.swappiness 70

I More information: Converting sysV init scripts to systemd service
files, Securing your services, Changing roots, Managing
resources

Lucas Nussbaum systemd 21 / 40

http://0pointer.net/blog/projects/systemd-for-admins-3.html
http://0pointer.net/blog/projects/systemd-for-admins-3.html
http://0pointer.net/blog/projects/security.html
http://0pointer.net/blog/projects/changing-roots.html
http://0pointer.net/blog/projects/resources.html
http://0pointer.net/blog/projects/resources.html

Timer units
I Similar to cron, but with all the power of systemd (dependencies,

execution environment configuration, etc)

I Realtime (wallclock) timers: calendar event expressions
� Expressed using a complex format (see systemd.time(7)),

matching timestamps like: Fri 2012-11-23 11:12:13

� Examples of valid values: hourly (= *-*-* *:00:00), daily (=
--* 00:00:00), *:2/3 (= *-*-* *:02/3:00)

I Monotonic timers, relative to different starting points:
� 5 hours and 30 mins after system boot: OnBootSec=5h 30m

� 50s after systemd startup: OnstartupSec=50s

� 1 hour after the unit was last activated: OnUnitActiveSec=1h
(can be combined with OnBootSec or OnStartupSec to ensure
that a unit runs on a regular basis)

Lucas Nussbaum systemd 22 / 40

Timer units example
I myscript.service:

[Unit]
Description=MyScript

[Service]
Type=simple
ExecStart =/usr/local/bin/myscript

I myscript.timer:
[Unit]
Description=Runs myscript every hour

[Timer]
Time to wait after booting before we run first time
OnBootSec =10min
Time between running each consecutive time
OnUnitActiveSec =1h
Unit=myscript.service

[Install]
WantedBy=multi -user.target

Lucas Nussbaum systemd 23 / 40

Timer units example (2)

I Start timer:
systemctl start myscript.timer

I Enable timer to start at boot:
systemctl enable myscript.timer

I List all timers:
systemctl list-timers

Lucas Nussbaum systemd 24 / 40

Socket activation
I systemd listens for connection on behalf of service until the

service is ready, then passes pending connections

I Benefits:
� No need to express ordering of services during boot:

F They can all be started in parallel ; faster boot
F And they will wait for each other when needed (when

they will talk to each other), thanks to socket activation

� Services that are seldomly used do not need to keep running,
and can be started on-demand

I Not limited to network services: also D-Bus activation and path
activation

I More information: Converting inetd Service, Socket Activation for
developers (+ follow-up)

Lucas Nussbaum systemd 25 / 40

http://0pointer.net/blog/projects/inetd.html
http://0pointer.net/blog/projects/socket-activation.html
http://0pointer.net/blog/projects/socket-activation.html
http://0pointer.net/blog/projects/socket-activation2.html

Socket activation example: dovecot

dovecot.socket:
[Unit]
Description=Dovecot IMAP/POP3 \
email server activation socket

[Socket]
dovecot expects separate
IPv4 and IPv6 sockets
BindIPv6Only=ipv6 -only
ListenStream =0.0.0.0:143
ListenStream =[::]:143
ListenStream =0.0.0.0:993
ListenStream =[::]:993
KeepAlive=true

[Install]
WantedBy=sockets.target

dovecot.service:
[Unit]
Description=Dovecot IMAP/POP3 \
email server

After=local -fs.target network.target

[Service]
Type=simple
ExecStart =/usr/sbin/dovecot -F
NonBlocking=yes

[Install]
WantedBy=multi -user.target

Lucas Nussbaum systemd 26 / 40

Socket activation example: sshd
I sshd.socket:

[Unit]
Description=SSH Socket for Per -Connection Servers

[Socket]
ListenStream =22
Accept=yes

[Install]
WantedBy=sockets.target

I sshd@.service:

[Unit]
Description=SSH Per -Connection Server

[Service]
ExecStart=-/usr/sbin/sshd -i
StandardInput=socket

Lucas Nussbaum systemd 27 / 40

Socket activation example: sshd (2)

I sshd@.service means that this is an instantiated service

I There’s one instance of sshd@.service per connection:

systemctl --full | grep ssh
sshd@172 .31.0.52:22 -172.31.0.4:47779. service loaded active running
sshd@172 .31.0.52:22 -172.31.0.54:52985. service loaded active running
sshd.socket loaded active listening

I Instanciated services are also used by getty
� See Serial console and Instanciated services

Lucas Nussbaum systemd 28 / 40

http://0pointer.de/blog/projects/serial-console.html
http://0pointer.de/blog/projects/instances.html

Logging with journald
I Component of systemd

I Captures syslog messages, kernel log messages, initrd and early
boot messages, messages written to stdout/stderr by all services
� Forwards everything to syslog

I Structured format (key/value fields), can contain arbitrary data
� But viewable as syslog-like format with journalctl

I Indexed, binary logs; rotation handled transparently

I Can replace syslog (but can also work in parallel)

I Not persistent across reboots by default – to make it persistent,
create the /var/log/journal directory, preferably with:
install -d -g systemd-journal /var/log/journal
setfacl -R -nm g:adm:rx,d:g:adm:rx /var/log/journal

I Can log to a remote host (with systemd-journal-gatewayd)

Lucas Nussbaum systemd 29 / 40

Example journal entry

_SERVICE=systemd -logind.service
MESSAGE=User harald logged in
MESSAGE_ID =422 bc3d271414bc8bc9570f222f24a9
_EXE=/lib/systemd/systemd -logind
_COMM=systemd -logind
_CMDLINE =/lib/systemd/systemd -logind
_PID =4711
_UID=0
_GID=0
_SYSTEMD_CGROUP =/ system/systemd -logind.service
_CGROUPS=cpu:/ system/systemd -logind.service
PRIORITY =6
_BOOT_ID =422 bc3d271414bc8bc95870f222f24a9
_MACHINE_ID=c686f3b205dd48e0b43ceb6eda479721
_HOSTNAME=waldi
LOGIN_USER =500

Lucas Nussbaum systemd 30 / 40

Using journalctl
I View the full log: journalctl

I Since last boot: journalctl -b

I For a given time interval: journalctl --since=yesterday
or journalctl --until="2013-03-15 13:10:30"

I View it in the verbose (native) format: journalctl -o verbose

I Filter by systemd unit: journalctl -u ssh

I Filter by field from the verbose format:
journalctl _SYSTEMD_UNIT=ssh.service
journalctl _PID=810

I Line view (≈ tail -f): journalctl -f

I Last entries (≈ tail): journalctl -n

I Works with bash-completion

I See also: Journald design document, Using the Journal

Lucas Nussbaum systemd 31 / 40

https://docs.google.com/document/pub?id=1IC9yOXj7j6cdLLxWEBAGRL6wl97tFxgjLUEHIX3MSTs
http://0pointer.net/blog/projects/journalctl.html

Containers integration
I General philosophy: integrate management of services from

machines (VMs and containers) with those of the host
� systemd-machined: tracks machines, provides an API to list,

create, register, kill, terminate machines, transfer images (tar,
raw, Docker)

� machinectl: command-line utility to manipulate machines

� other tools also have containers support:
F systemctl -M mycontainer restart foo
F systemctl list-machines: provides state of containers
F journalctl -M mycontainer
F journalctl -m: combined log of all containers

I systemd has its own mini container manager: systemd-nspawn

I Other virtualization solutions can also talk to machined

I More information: Container integration

Lucas Nussbaum systemd 32 / 40

http://www.freedesktop.org/wiki/Software/systemd/machined/
http://0pointer.net/blog/systemd-for-administrators-part-xxi.html

Networking with systemd-networkd
I Replacement for /etc/network/interfaces, on servers and VMs

� Not really for Network Manager on desktops and laptops

I Supports setting IP configuration, configuring bridges, vlans,
bonding, tunnels, etc

I Configuration files with a [Match] section to match on MAC
address, driver, udev path, type, hostname, etc
� foo.link: link-level configuration – MAC address, interface

name, MTU, rate, Duplex mode, Wake on Lan

� foo.netdev: creation of virtual network devices (bridges,
bonds, vlans, IPIP or GRE tunnels, VXLAN, tun, tap, veth)

� foo.network: network devices configuration: IP (static or
DHCP, gateway, additional routes, DNS), addition to bridge

I More information: systemd-networkd(8), systemd.link(5),
systemd.network(5), systemd.netdev(5)

Lucas Nussbaum systemd 33 / 40

Example 1: DHCP, additional route

I For higher performance, systemd includes a DHCP client

/etc/systemd/network/ethernet.network
[Match]
Name=eth0

[Network]
DHCP=yes

[Route]
Gateway =192.168.1.253
Destination =10.0.0.0/8

Lucas Nussbaum systemd 34 / 40

Example 2: static addressing and VLAN

/etc/systemd/network/vlan1.netdev
[Match] section is optional in netdev files
[NetDev]
Name=vlan1
Kind=vlan

[VLAN]
Id=1

/etc/systemd/network/ethernet.network
[Match]
Name=eth0

[Network]
DHCP=yes
VLAN=vlan1 # will create vlan1 on this device

/etc/systemd/network/vlan1.network
[Match]
Name=vlan1

[Network]
Address =192.168.1.1/24
Gateway =192.168.1.254 Lucas Nussbaum systemd 35 / 40

Example 3: bridge and tap

/etc/systemd/network/bridge0.netdev
[NetDev]
Name=bridge0
Kind=bridge

/etc/systemd/network/bridge0.network
[Match]
Name=bridge0

[Network]
Address =192.168.1.1/24
DHCPServer=yes # systemd has its own , very basic , DHCP server

/etc/systemd/network/tap.netdev
[NetDev]
Name=tap0
Kind=tap

/etc/systemd/network/tap.network
[Match]
Name=bridge0

[NetDev]
Bridge=bridge0

Lucas Nussbaum systemd 36 / 40

Migration from sysvinit

I systemd hooks into LSB init scripts: service foo start|stop|...
and /etc/init.d/foo redirect to systemctl

I systemd-sysv-generator creates wrapper units for LSB scripts:
� Using LSB dependencies

� Services are described as LSB: foo
F List all generated services:

systemctl list-units | grep LSB:

Lucas Nussbaum systemd 37 / 40

Generated wrapper service file for apache2

$ systemctl cat apache2.service
/run/systemd/generator.late/apache2.service
Automatically generated by systemd -sysv -generator

[Unit]
Description=LSB: Apache2 web server
Before=runlevel2.target runlevel3.target runlevel4.target

runlevel5.target shutdown.target
After=local -fs.target remote -fs.target network -online.target

systemd -journald -dev -log.socket nss -lookup.target
Wants=network -online.target
Conflicts=shutdown.target

[Service]
Type=forking
KillMode=process
[...]
ExecStart=/etc/init.d/apache2 start
ExecStop=/etc/init.d/apache2 stop
ExecReload=/etc/init.d/apache2 reload

Lucas Nussbaum systemd 38 / 40

More stuff

I New cross-distro configuration files: /etc/hostname,
/etc/locale.conf, /etc/sysctl.d/*.conf,
/etc/tmpfiles.d/*.conf

I Tools to manage hostname, locale, time and date: hostnamectl,
localectl, timedatectl

I Support for watchdogs

I Handling of user sessions
� Each within its own cgroup

� Multi-seat support

� loginctl to manage sessions, users, seats

Lucas Nussbaum systemd 39 / 40

http://0pointer.net/blog/projects/the-new-configuration-files.html
http://www.certdepot.net/rhel7-get-started-systemd/
http://0pointer.net/blog/projects/watchdog.html
http://0pointer.net/blog/projects/multi-seat.html

Conclusions

I systemd revisits the way we manage Linux systems
� If we redesigned services management from scratch, would it

look like systemd?

I For service developers: easier to support systemd than sysVinit
� No need to fork, to drop privileges, to write a pid file

� Just output logs to stdout (redirected to syslog, with priorities)

I Some parts still have rough edges, or are still moving targets, but
are promising: journal, containers, networking

Lucas Nussbaum systemd 40 / 40

http://0pointer.net/blog/projects/journal-submit.html

	Introduction
	Behind the scenes: cgroups
	Managing services
	Analyzing startup performance
	Exploring the system status
	Configuring services by writing unit files
	Timer units
	Socket activation
	Logging with journald
	Containers integration
	Networking with systemd-networkd
	Migration from sysvinit
	Conclusions

