
An introduction to SSH

Lucas Nussbaum
lucas.nussbaum@univ-lorraine.fr

Licence professionnelle ASRALL
Administration de systèmes, réseaux et applications à base de logiciels libres

Lucas Nussbaum An introduction to SSH 1 / 29

Outline
1 SSH basics

SSH 101
Public-key authentication
Checking the server’s identity
Configuring SSH

2 Advanced usage
SSH as a communication layer for applications
Access remote filesystems over SSH: sshfs
SSH tunnels, X11 forwarding, and SOCKS proxy
VPN over SSH
Jumping through hosts
Triggering remote command execution securely
Escape sequences
Related tools

3 Conclusions

Lucas Nussbaum An introduction to SSH 2 / 29

Introduction
I SSH = Secure SHell
I Standard network protocol and service (TCP port 22)
I Many implementations, including:

� OpenSSH: Linux/Unix, Mac OS X← this talk, mostly
� Putty, MobaXterm: Windows, client only
� Dropbear: small systems (routers, embedded)

I Unix command (ssh); server-side: sshd
I Establish a secure communication channel between two machines
I Relies on cryptography
I Most basic usage: get shell access on a remote machine
I Many advanced usages:

� Data transfer (scp, sftp, rsync)
� Connect to specific services (such as Git or SVN servers)
� Dig secure tunnels through the public Internet

I Several authentication schemes: password, public key

Lucas Nussbaum An introduction to SSH 3 / 29

Basic usage
I Connecting to a remote server:

$ ssh login@remote-server
; Provides a shell on remote-server

I Executing a command on a remote server:
$ ssh login@remote-server ls /etc

I Copying data (with scp, similar to cp):
$ scp local-file login@remote-serv:remote-directory/
$ scp login@remote-serv:remote-dir/file local-dir/
Usual cp options work, e.g. -r (recursive)

I Copying data (with rsync, more efficient than scp with many files):
$ rsync -avzP localdir login@server:path-to-rem-dir/

Note: trailing slash on source matters with rsync (not with cp)
� rsync -a dir1 u@h:dir2 ; dir1 copied inside dir2
� rsync -a dir1/ u@h:dir2 ; content of dir1 copied to dir2

Lucas Nussbaum An introduction to SSH 4 / 29

Public-key authentication

I General idea:
� Asymmetric cryptography (or public-key cryptography):

F The public key is used to encrypt something
F Only the private key can decrypt it

� User owns a private (secret) key, stored on the local machine
� The server has the public key corresponding to the private key
� Authentication = <server> prove that you own that private key!

I Implementation (challenge-response authentication):
1 Server generates a nonce (random value)
2 Server encrypts the nonce with the Client’s public key
3 Server sends the encrypted nonce (= the challenge) to client
4 Client uses the private key to decrypt the challenge
5 Client sends the nonce (= the response) to the Server
6 Server compares the nonce with the response

Lucas Nussbaum An introduction to SSH 5 / 29

Public-key authentication (2)

I Advantages:
� The password does not need to be sent over the network

� The private key never leaves the client

� The same key can be used for many servers

� The process can be automated

I However, the private key should be protected (what if your laptop
gets stolen?)
� Usually with a passphrase

Lucas Nussbaum An introduction to SSH 6 / 29

Key-pair generation

$ ssh -keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa): [ENTER]
Enter passphrase (empty for no passphrase): passphrase
Enter same passphrase again: passphrase
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
f6 :35:53:71:2f:ff :00:73:59:78: ca:2c:7c:ff:89:7b user@my.hostname.net
The key ’s randomart image is:
+--[RSA 2048]----+
..o
(...)
.o
+-----------------+
$

I Creates the key-pair:
� ~/.ssh/id_rsa (private key)
� ~/.ssh/id_rsa.pub (public key)

Lucas Nussbaum An introduction to SSH 7 / 29

Copying the public key to the server

I Example public key:
ssh-rsa AAAAB3NX[. . .]hpoR3/PLlXgGcZS4oR user@my.hostname.net

I On the server, ~user/.ssh/authorized_keys contains the list of
public keys authorized to connect to the user account

I The key can be copied manually there

I Or use ssh-copy-id to automatically copy the key:
client$ ssh-copy-id user@server

I Sometimes the public key needs to be provided using a web
interface (e.g. on GitHub, FusionForge, Redmine, etc.)

Lucas Nussbaum An introduction to SSH 8 / 29

Avoiding typing the passphrase

I If the private key is not protected with a passphrase, the
connection is established immediately:
*** login@laptop:~$ ssh rlogin@rhost [ENTER]
*** rlogin@rhost:~$

I Otherwise, ssh asks for the passphrase:
*** login@laptop:~$ ssh rlogin@rhost [ENTER]
Enter passphrase for key ’/home/login/id_rsa’: [passphrase+ENTER]
*** rlogin@rhost:~$

I An SSH agent can be used to store the decrypted private key
� Most desktop environments act as SSH agents automatically
� One can be started with ssh-agent if needed
� Add keys manually with ssh-add

Lucas Nussbaum An introduction to SSH 9 / 29

Checking the server identity: known_hosts

I Goal: detect hijacked servers
What if someone replaced the server to steal passwords?

I When you connect to a server for the first time, ssh stores the
server’s public key in ~/.ssh/known_hosts

*** login@laptop:~$ ssh rlogin@server [ENTER]
The authenticity of host ’server (10.1.6.2)’ can’t be established.
RSA key fingerprint is
94:48:62:18:4b:37:d2:96:67:c9:7f:2f:af:2e:54:a5.
Are you sure you want to continue connecting (yes/no)? yes [ENTER]
Warning: Permanently added ’server,10.1.6.2’(RSA) to the list of
known hosts.
rlogin@server’s password:

Lucas Nussbaum An introduction to SSH 10 / 29

Checking the server identity: known_hosts (2)

I During each following connection, ssh ensures that the key still
matches, and warns the user otherwise

*** login@laptop :~$ ssh rlogin@server [ENTER]
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man -in-the -middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the RSA key sent by the remote host is
e3 :94:03:90:5d:81:ed:bb:d5:d2:f2:de:ba :31:18: d8.
Please contact your system administrator.
Add correct host key in /home/login/.ssh/known_hosts to get rid of this message.
Offending RSA key in /home/login/.ssh/known_hosts :12
RSA host key for server has changed and you have requested strict checking.
Host key verification failed.
*** login@laptop :~$

I A truly outdated key can be removed with
ssh-keygen -R server

Lucas Nussbaum An introduction to SSH 11 / 29

Configuring SSH

I SSH gets configuration data from:
1 command-line options (-o ...)
2 the user’s configuration file: ~/.ssh/config
3 the system-wide configuration file: /etc/ssh/ssh_config

I Options are documented in the ssh_config(5) man page

I ~/.ssh/config contains a list of hosts (with wildcards)

I For each parameter, the first obtained value is used
� Host-specific declarations are given near the beginning
� General defaults at the end

Lucas Nussbaum An introduction to SSH 12 / 29

Example: ~/.ssh/config

Host mail.acme.com
User root

Host foo # alias/shortcut. ’ssh foo ’ works
Hostname very -long -hostname.acme.net
Port 2222

Host *.acme.com
User jdoe
Compression yes # default is no
PasswordAuthentication no # only use public key
ServerAliveInterval 60 # keep -alives for bad firewall

Host *
User john

I Note: bash-completion can auto-complete using ssh_config hosts

Lucas Nussbaum An introduction to SSH 13 / 29

Outline
1 SSH basics

SSH 101
Public-key authentication
Checking the server’s identity
Configuring SSH

2 Advanced usage
SSH as a communication layer for applications
Access remote filesystems over SSH: sshfs
SSH tunnels, X11 forwarding, and SOCKS proxy
VPN over SSH
Jumping through hosts
Triggering remote command execution securely
Escape sequences
Related tools

3 Conclusions

Lucas Nussbaum An introduction to SSH 14 / 29

SSH as a communication layer for applications

I Several applications use SSH as their communication (and
authentication) layer

I scp, sftp, rsync (data transfer)
� lftp (CLI) and gftp (GUI) support the SFTP protocol

I unison (synchronization)

I Subversion: svn checkout svn+ssh://user@rhost/path/to/repo

I Git: git clone ssh://git@github.com/path-to/repository.git
Or: git clone git@github.com:path-to/repository.git

Lucas Nussbaum An introduction to SSH 15 / 29

Access remote filesystems over SSH: sshfs

I sshfs: FUSE-based solution to access remote machines

I Ideal for remote file editing with a GUI, copying small amounts of
data, etc.

I Mount a remote directory:
sshfs root@server:/etc /tmp/local-mountpoint
Unmount: fusermount -u /tmp/local-mountpoint

I Combine with afuse to auto-mount any machine:
afuse -o mount_template="sshfs %r:/ %m" -o \
unmount_template="fusermount -u -z %m" ~/.sshfs/

; cd ~/.sshfs/rhost/etc/ssh

Lucas Nussbaum An introduction to SSH 16 / 29

SSH tunnels with -L and -R
I Goal: transport traffic through a secure connection

� Work-around network filtering (firewalls)
� Avoid sending unencrypted data on the Internet
� But only works for TCP connections

I -L: access a remote service behind a firewall (Intranet server)
� ssh -L 12345:service:1234 server
� Still on Client : telnet localhost 12345
� Server establishes a TCP connection to Service, port 1234
� The traffic is tunnelled inside the SSH connection to Server

Client Server
TCP Service
on port 1234

Internet Private network

Lucas Nussbaum An introduction to SSH 17 / 29

SSH tunnels with -L and -R
I Goal: transport traffic through a secure connection

� Work-around network filtering (firewalls)
� Avoid sending unencrypted data on the Internet
� But only works for TCP connections

I -L: access a remote service behind a firewall (Intranet server)
� ssh -L 12345:service:1234 server
� Still on Client : telnet localhost 12345
� Server establishes a TCP connection to Service, port 1234
� The traffic is tunnelled inside the SSH connection to Server

Client Server
TCP Service
on port 1234

Internet Private network

Lucas Nussbaum An introduction to SSH 17 / 29

SSH tunnels with -L and -R
I -R: provide remote access to a local private service

� ssh -R 12345:service:1234 server
� On Server : telnet localhost 12345
� Client establishes a TCP connection to Service, port 1234
� The traffic is tunnelled inside the SSH connection to Client

Client Server
TCP Service
on port 1234

Private network Internet

I Notes:
� SSH tunnels don’t work very well for HTTP, because IP+port

are not enough to identify a website (Host: HTTP header)
� By default, tunnels are only bound to localhost. Use -g

(gateway) to allow remote hosts to connect to local forwarded
ports

Lucas Nussbaum An introduction to SSH 18 / 29

SSH tunnels with -L and -R
I -R: provide remote access to a local private service

� ssh -R 12345:service:1234 server
� On Server : telnet localhost 12345
� Client establishes a TCP connection to Service, port 1234
� The traffic is tunnelled inside the SSH connection to Client

Client Server
TCP Service
on port 1234

Private network Internet

I Notes:
� SSH tunnels don’t work very well for HTTP, because IP+port

are not enough to identify a website (Host: HTTP header)
� By default, tunnels are only bound to localhost. Use -g

(gateway) to allow remote hosts to connect to local forwarded
ports

Lucas Nussbaum An introduction to SSH 18 / 29

X11 forwarding with -X: GUI apps over SSH

I Run a graphical application on a remote machine, display locally

I Similar to VNC, but on a per-application basis

I ssh -X server

I $DISPLAY will be set by SSH on the server:
$ echo $DISPLAY
localhost:10.0

I Then start GUI applications on server (e.g. xeyes)

I Troubleshooting:
� xauth must be installed on the remote machine
� The local Xorg server must allow TCP connections

F pgrep -a Xorg ; -nolisten must not be included
F Can be configured in your login manager

� Does not work very well over slow or high-latency connections

Lucas Nussbaum An introduction to SSH 19 / 29

SOCKS proxy with -D
I SOCKS: protocol to proxy TCP connections via a remote machine

I SSH can act as a SOCKS server: ssh -D 1080 server

I Use case similar to tunnelling with -L, but more flexible
� Set up the proxy once, use for multiple connections

I Usage:
� Manual: configure applications to use the SOCKS proxy

� Transparent: use tsocks to re-route connections via SOCKS

$ cat /etc/tsocks.conf
server = 127.0.0.1
server_type = 5
server_port = 1080 # then start ssh with -D 1080
$ tsocks pidgin # tunnel application through socks

� Another transparent proxifier is redsocks (uses iptables
rules to redirect to a local daemon instead of LD_PRELOAD)

Lucas Nussbaum An introduction to SSH 20 / 29

VPN over SSH

I Built-in support for tun-based VPN

� PermitTunnel yes required on server (disabled by default)

� ssh -w 0:0 root@server (0, 0 are the tun device numbers)

� Then configure IP addresses and routing on both sides

I sshuttle: another VPN over SSH solution

� Root access not required on the server side

� Idea similar to slirp

� Uses iptables rules to redirect traffic to VPN

� (as root:) sshuttle -r user@server 0/0 -vv

� Limitation: does not support tunnelling UDP or ICMP traffic

Lucas Nussbaum An introduction to SSH 21 / 29

Jumping through hosts with ProxyCommand

Client
Server

(gateway, firewall, etc.)
Server2 on

private network

Private networkInternet

I Problem: to connect to Server2, you need to connect to Server
� Can you do that in a single step? (required for data transfer,

tunnels, X11 forwarding)

I Combines two SSH features:
� ProxyCommand option: command used to connect to host;

connection available on standard input & output

� ssh -W host:port ; establish a TCP connection, provide it
on standard input & output (suitable for ProxyCommand)

Lucas Nussbaum An introduction to SSH 22 / 29

Jumping through hosts with ProxyCommand (2)
I Example configuration:

Host server2 # ssh server2 works
ProxyCommand ssh -W server2 :22 server

I Also works with wildcards
Host *.priv # ssh host1.priv works

ProxyCommand ssh -W $(basename %h .priv):%p server

I -W only available since OpenSSH 5.4 (circa 2010), but the same
can be achieved with netcat:

Host *.priv
ProxyCommand ssh serv nc -q 0 $(basename %h .priv) %p

I More generic version: https://glandium.org/blog/?p=3631

I Similar solution to connect via a proxy:
� SOCKS: connect-proxy -4 -S myproxy:1080 rhost 22
� HTTP (with CONNECT): corkscrew myproxy 1080 rhost 22
� When CONNECT requests are forbidden, set up httptunnel

on a remote server, and use htc and hts

Lucas Nussbaum An introduction to SSH 23 / 29

https://glandium.org/blog/?p=3631

Jumping through hosts with ProxyJump

I Available since OpenSSH 7.3
I A simpler way to write ProxyCommand configuration:

Host server2 # ssh server2 works
ProxyJump server

I Or on the command line:
ssh -J server server2

Lucas Nussbaum An introduction to SSH 24 / 29

Triggering remote command execution securely

I Goal: notify Server2 that something finished on Server1
� But Server1 must not have full shell access on Server2

I Method: limit to a single command in authorized_keys

� Also known as SSH triggers

I Example authorized_keys on Server2:

from=" server1.acme.com",command ="tar czf - /home",no-pty ,
no-port -forwarding ssh -rsa AAAA [...]oR user@my.host.net

Lucas Nussbaum An introduction to SSH 25 / 29

Escape sequences

I Goal: interact with an already established SSH connection
� Add tunnels or SOCKS proxy, kill unresponsive connection

I Escape sequences start with ’~’, at the beginning of a line
� So press [enter], then ~, then e.g. ’?’

I Main sequences (others documented in ssh(1)):
� ~. – disconnect (for unresponsive connections)
� ~? – show the list of escape sequences
� ~C – open SSH command-line. e.g. ~C -D 1080
� ~& – logout and background SSH while waiting for forwarded

connections or X11 sessions to terminate

Lucas Nussbaum An introduction to SSH 26 / 29

Related tools

I screen and tmux: provide virtual terminals on remote machines
where you can start long-running commands, disconnect, and
reconnect later

I mosh: SSH alternative suited for Wi-Fi, cellular and long distance
links

I autossh: checks an SSH session every 10 minutes, and restart it
if needed
autossh -t server ’screen -RD’: maintain a screen session
open despite network disconnections

I concierge: manage your SSH configuration using a template
system

I clustershell: parallel SSH (execute the same command on
several machines)

Lucas Nussbaum An introduction to SSH 27 / 29

Outline
1 SSH basics

SSH 101
Public-key authentication
Checking the server’s identity
Configuring SSH

2 Advanced usage
SSH as a communication layer for applications
Access remote filesystems over SSH: sshfs
SSH tunnels, X11 forwarding, and SOCKS proxy
VPN over SSH
Jumping through hosts
Triggering remote command execution securely
Escape sequences
Related tools

3 Conclusions

Lucas Nussbaum An introduction to SSH 28 / 29

Conclusions

I The Swiss-army knife of remote administration

I Very powerful tool, many useful features

I Practical session: test everything mentioned in this presentation
1 scp, rsync
2 Key-based authentication
3 Using an SSH agent
4 aliases in SSH configuration
5 sshfs, sftp
6 SSH tunnels
7 X11 forwarding
8 SOCKS proxy with tsocks
9 Jumping through hosts

10 Escape sequences
11 . . .

Lucas Nussbaum An introduction to SSH 29 / 29

	SSH basics
	SSH 101
	Public-key authentication
	Checking the server's identity
	Configuring SSH

	Advanced usage
	SSH as a communication layer for applications
	Access remote filesystems over SSH: sshfs
	SSH tunnels, X11 forwarding, and SOCKS proxy
	VPN over SSH
	Jumping through hosts
	Triggering remote command execution securely
	Escape sequences
	Related tools

	Conclusions

