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Let F = {a1, a2, . . . , an} be a set system.

Let K be some abstract simplicial complex

with vertices {1}, {2}, . . . , {n}.

When do we have

1⋃n
i=1 ai

=
∑
σ∈K

(−1)|σ|−11⋂
i∈σ ai

?{

(1)

▷ Always true for every p /∈ ∪n
i=1ai.

The subcomplex of K
induced by Fp.▷ Pick p ∈ ∪n

i=1ai and let Fp
def
= {i : ai ∋ p}.

▷ The formula is true for p iff 1 =
∑

σ∈K;σ⊆Fp

(−1)|σ|−1 = χ(K[Fp]).

K induces an IE-formula for F in the sense of (1)

⇔ for any p ∈ ∪F , the subcomplex K[Fp] has Euler characteristic 1.

χ(K)
def
=
∑
σ∈K

(−1)|σ|−1.
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▷ fix some map f : V → R3 such that

no four images are coplanar.

V = {1, 2, 3, 4, 5}

K5 = (V,E) with

and
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G is planar ⇔ |G| ↪→ R2.

Genus of G
def
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Crossing number of G
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▷ The topological space ΓG,f is independent of f ⇝ |G|.
For any maps f1, f2, ΓG,f1 is homeomorphic to ΓG,f2 .

. . .
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the geometric realization of K is contractible, then

χ(K)
def
=
∑
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(−1)dimσ = 1.

▷ dimσ
def
= |σ| − 1.



Lemma. Let K be an abstract simplicial complex. If
the geometric realization of K is contractible, then

χ(K)
def
=
∑
σ∈K

(−1)dimσ = 1.

▷ dimσ
def
= |σ| − 1.

Ingredients...

▷ simplicial and singular homology, Betti numbers βi(K)

▷ χ(K) = β0(K)− β1(K) + β2(K)− . . .

▷ homology is invariant under homotopy.



#5. nerve complexes and the nerve theorem

• • • • • • • • • • • • ◦ ◦ ◦◦



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}}

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}}

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

▷ Nerves are abstract simplicial complexes.

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

▷ Nerves are abstract simplicial complexes.

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.

[Borsuk’48] [Leray]

Theorem. If all subfamilies of F have empty or
contractible intersections then |N(F )| and ∪F
are homotopy equivalent.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

▷ Nerves are abstract simplicial complexes.

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.

https://doc.cgal.org/latest/Manual/tuto reconstruction.html

▷ Reconstruction methods.

[Borsuk’48] [Leray]

Theorem. If all subfamilies of F have empty or
contractible intersections then |N(F )| and ∪F
are homotopy equivalent.



Nerve N(F ) ≃ intersection hypergraph of F

F

N(F ) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

▷ Nerves are abstract simplicial complexes.

N(F ) = {G : G ⊆ F and ∩A∈G A ̸= ∅}.

https://doc.cgal.org/latest/Manual/tuto reconstruction.html

▷ Reconstruction methods.

▷ Topological data analysis.

[Borsuk’48] [Leray]

Theorem. If all subfamilies of F have empty or
contractible intersections then |N(F )| and ∪F
are homotopy equivalent.
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P a (finite) point set in Rd

Voronoi region of p ∈ P
def
= all points of Rd closer to p

than to P \ {p}.

Voronoi diagram of P
def
= partition of Rd by the Voronoi

regions of the points of P

A simplex over P is Delaunay

⇔ it is contained in a sphere

enclosing no other point of P .

Delaunay triangulation of P
def
= triangulation of convP by the

Delaunay simplices over P .

The Delaunay triangulation of P
is the nerve of the Voronoi
regions of P .

The Delaunay triangulation of n
points in Rd can be computed in

O
(
n log n+ n⌊ d

2 ⌋
)
time.



#7. proof of the formula for balls

• • • • • • • • • • • • • • ◦◦

Theorem. [Naiman-Wynn’92]
Let F = {b1, b2, . . . , bn} be a family of equal radius balls in Rd. Letting
T denote the Delaunay triangulation of the balls’ centers, we have

1⋃n
i=1 bi =

∑
σ∈T

(−1)dimσ1⋂
i∈σ bi
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Delaunay triangulation induces a correct inclusion-exclusion formula

⇔ each in a family of subcomplexes of the DT has Euler characteristic 1

⇐ each of these subcomplexes has a contractible geometric realization

⇔ some unions of Voronoi regions are contractible

(combinatorics)

(topology)

(nerve theorem)

(some geometry)

Fast-forward...
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Some open problems...

• • • • • • • • • • • • • • ••



▷ families of intersections of 2 halfspaces? of a fixed number of halfspaces?

Yes for axis-parallel halfspaces, open in general.

Are there simplified inclusion-exclusion formulas

induced by simplicial complexes of fixed dimension for...

Would imply the same for semi-algebraic sets of constant complexity (Veronese).
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▷ families of intersections of 2 halfspaces? of a fixed number of halfspaces?

Yes for axis-parallel halfspaces, open in general.

Are there simplified inclusion-exclusion formulas

induced by simplicial complexes of fixed dimension for...

▷ families of sparse Venn diagrams?

Would imply the same for semi-algebraic sets of constant complexity (Veronese).

▷ families of fixed VC dimension?
Arbitrary formula: poly-size support is possible but coefficients blow-up.



Thank you for your attention!



By the way... Pk
def
= all sets S of primes such that

∏
p∈S p ≤ k.

P30 = {∅, {2}, {3}, {5}, {7}, {11}, {13}, {17}, {19},
{23}, {29}, {2, 3}, {2, 5}, {2, 7}, {2, 11},
{2, 13}, {3, 5}, {3, 7}, {2, 3, 5}}

n∑
k=1

µ(k) = −χ(Pn)

Prime number theorem ⇔ |χ(Pn)| ≤ ϵn for all ϵ > 0 and sufficiently large n.

Riemann hypothesis ⇔ |χ(Pn)| ≤ n
1
2+ϵ for all ϵ > 0 and sufficiently large n.

[Björner’12]


