Promenade of a French female mathematician in Switzerland

 Four years with permutations, Marie Heim-Vögtlin,

 Four years with permutations, Marie Heim-Vögtlin, a loving family and so much more

 a loving family and so much more}

Mathilde Bouvel (Institut für Mathematik, Universität Zürich)

Awarding of the Marie Heim-Vögtlin prize 2017.

May 2012: My first visit to Switzerland

Valentin in Zürich

Valentin in Zürich

Valentin in Zürich

Prof. Dr. Valentin Féray Institut für Mathematik
Universität Zürich
Winterthurerstrasse 190
$\mathrm{CH}-8057$ Zürich
E-Mail: valentin.feray@math.uzh.ch Tel.: +41446355864
Fax: +41446355705
Campus Zürich-Irchel
Büro: Y27J22

September 2013: We are moving to Zürich!

- Valentin's combinatorics group (in March 2017)

- I join the group of Joachim Rosenthal

\hookrightarrow Coding Theory and Cryptography ... and combinatorics?

November 2013: MHV interview

2014-2016: Working with the MHV grant

With the grant, I gained

- my own salary for two years,
- some travel money for conferences and research visits,

2014-2016: Working with the MHV grant

With the grant, I gained

- my own salary for two years,
- some travel money for conferences and research visits,
- my scientific independence,
- a promotion to Lecturer at the Maths Institute,
- a real settlement in my new work environment,

2014-2016: Working with the MHV grant

With the grant, I gained

- my own salary for two years,
- some travel money for conferences and research visits,
- my scientific independence,
- a promotion to Lecturer at the Maths Institute,
- a real settlement in my new work environment,
- confidence (maybe).

2014-2016: Working with the MHV grant

With the grant, I gained

- my own salary for two years,
- some travel money for conferences and research visits,
- my scientific independence,
- a promotion to Lecturer at the Maths Institute,
- a real settlement in my new work environment,
- confidence (maybe).

My MHV project was entitled Permutation classes: from structure to combinatorial properties and had three axes:

- Random permutations in permutation classes;
- Structural bijections and enumerative consequences;
- Permutation patterns and induced subgraphs.

Permutations

- A permutation of size n is a sequence of integers containing exactly once each of $1,2, \ldots, n$.
- Equivalently, it is an $n \times n$ grid filled with dots, with exactly one dot per row (resp. column).

Permutations

- A permutation of size n is a sequence of integers containing exactly once each of $1,2, \ldots, n$.
- Equivalently, it is an $n \times n$ grid filled with dots, with exactly one dot per row (resp. column).

- Permutations model any finite set of elements that are totally ordered:
- a shuffle of a card deck
- the order of the genes on a chromosome
Fomo saplens

Patterns and permutation classes

- π is a pattern of σ when

Patterns and permutation classes

- π is a pattern of σ when

Patterns and permutation classes

- π is a pattern of σ when

- \preccurlyeq is a partial order on permutations. What can we say about it?

Patterns and permutation classes

- π is a pattern of σ when

- \preccurlyeq is a partial order on permutations. What can we say about it?
- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

For every permutation class, there exists a (finite or infinite) set of patterns whose avoidance characterizes the class. We write $\mathcal{C}=\operatorname{Av}(B)$.

The power of bijections

With Michael Albert (Univ. of Otago, New Zealand)
Object of study: the subclasses $\operatorname{Av}(231, \pi)$ of the famous Catalan class $\operatorname{Av}(231)$ (for $\pi \in \operatorname{Av}(231)$).

- Observation: It often happens that $\operatorname{Av}(231, \pi)$ and $A v(231, \tau)$ have the same enumeration sequence.

The power of bijections

With Michael Albert (Univ. of Otago, New Zealand)
Object of study: the subclasses $\operatorname{Av}(231, \pi)$ of the famous Catalan class $\operatorname{Av}(231)$ (for $\pi \in \operatorname{Av}(231)$).

- Observation: It often happens that $A v(231, \pi)$ and $A v(231, \tau)$ have the same enumeration sequence.

- Main result: A sufficient condition on pairs (π, τ) for $\operatorname{Av}(231, \pi)$ and $A v(231, \tau)$ to have the same enumeration sequence.

By means of a relation \sim on arch systems described by four rules:

(1) $A \sim B \Longrightarrow A \subset B$
(2) $a \sim b \Longrightarrow P a Q \sim P b Q$
(3) $P a b Q \sim P b a Q$
(4) $a(b c) \sim a b c$
where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

The power of bijections

With Michael Albert (Univ. of Otago, New Zealand)
Object of study: the subclasses $\operatorname{Av}(231, \pi)$ of the famous Catalan class $\operatorname{Av}(231)$ (for $\pi \in \operatorname{Av}(231)$).

- Observation: It often happens that $A v(231, \pi)$ and $A v(231, \tau)$ have the same enumeration sequence.

- Main result: A sufficient condition on pairs (π, τ) for $\operatorname{Av}(231, \pi)$ and $A v(231, \tau)$ to have the same enumeration sequence.
\hookrightarrow Unifies many results from the literature.
\hookrightarrow In many cases, provides bijections.
\hookrightarrow Explains and quantifies the observation.

The power of bijections

With Michael Albert (Univ. of Otago, New Zealand)
Object of study: the subclasses $\operatorname{Av}(231, \pi)$ of the famous Catalan class $\operatorname{Av}(231)$ (for $\pi \in \operatorname{Av}(231)$).

- Observation: It often happens that $\operatorname{Av}(231, \pi)$ and $A v(231, \tau)$ have the same enumeration sequence.

- Main result: A sufficient condition on pairs (π, τ) for $\operatorname{Av}(231, \pi)$ and $A v(231, \tau)$ to have the same enumeration sequence.
\hookrightarrow Unifies many results from the literature.
\hookrightarrow In many cases, provides bijections.
\hookrightarrow Explains and quantifies the observation.
- Conjecture: Our condition is also necessary, that is to say \sim characterizes completely equi-enumeration among classes $\operatorname{Av}(231, \pi)$.

The challenge of graphs

Permutations are in correspondence with graphs (via inversion graphs).

The challenge of graphs

Permutations are in correspondence with graphs (via inversion graphs).

Patterns correspond to induced subgraphs.
The correspondence is neither onto nor one-to-one.
Can we still make use of this correspondence?

The challenge of graphs

Permutations are in correspondence with graphs (via inversion graphs).

Patterns correspond to induced subgraphs.
The correspondence is neither onto nor one-to-one.
Can we still make use of this correspondence?

2016-2017: Marc Egger's master thesis
Study the relationship between the computational problems Permutation Pattern Matching and Induced Subgraph Isomorphism

The beauty of randomness

(Uniform) random permutations in classes:

- How to produce them?
- How to explain what we see?

The beauty of randomness

(Uniform) random permutations in classes:

- How to produce them?
- How to explain what we see?

Staring:
Frédérique Bassino

Adeline Pierrot

Mickaël Maazoun

Valentin Féray

Lucas Gerin

Carine Pivoteau

Dominique Rossin

The beauty of randomness

(Uniform) random permutations in classes:

- How to produce them?
- How to explain what we see?

Separable permutations: the class $\operatorname{Av}(2413,3142)$

The beauty of randomness

(Uniform) random permutations in classes:

- How to produce them?
- How to explain what we see?

Separable permutations: the class $\operatorname{Av}(2413,3142)$

Their limit is the Brownian separable permuton, related to the Brownian excursion or the Continuous Random Tree.

The beauty of randomness, continued and generalized

- Description of permuton limits of substitution-closed classes: biased Brownian separable permuton, and stable permutons.

The beauty of randomness, continued and generalized

- Description of permuton limits of substitution-closed classes: biased Brownian separable permuton, and stable permutons.

- Alternative notion of convergence: local convergence.

The beauty of randomness, continued and generalized

- Description of permuton limits of substitution-closed classes: biased Brownian separable permuton, and stable permutons.

- Alternative notion of convergence: local convergence. This is the topic of the PhD thesis of Jacopo Borga.

2013-2017: Nothing has changed. . .

I still work with permutations and patterns...

2013-2017: ... but everything has changed!

I still work with permutations and patterns...
At work

Created with NuageDeMots.fr
MHV prize

2013-2017: . . . but everything has changed!

I still work with permutations and patterns...

At work
Created with NuageDeMots.fr

> MHV prize

What's next?

2017-2019: • Continue to enjoy Zurich and UZH

- Continue to advise students:
\hookrightarrow Veronica Guerrini will defend early 2018 in Siena
\hookrightarrow Jacopo Borga started at UZH in September 2017
- Keep up with research
- SNF project about non-uniform random permutations

What's next?

2017-2019: • Continue to enjoy Zurich and UZH

- Continue to advise students:
\hookrightarrow Veronica Guerrini will defend early 2018 in Siena
\hookrightarrow Jacopo Borga started at UZH in September 2017
- Keep up with research
- SNF project about non-uniform random permutations

2019:

- Organize Permutation Patterns 2019 in Zurich
- Move back to France, and to CNRS

What's next?

2017-2019: • Continue to enjoy Zurich and UZH

- Continue to advise students:
\hookrightarrow Veronica Guerrini will defend early 2018 in Siena
\hookrightarrow Jacopo Borga started at UZH in September 2017
- Keep up with research
- SNF project about non-uniform random permutations

2019:

- Organize Permutation Patterns 2019 in Zurich
- Move back to France, and to CNRS

The 2020's:

- Advise students and/or create a small group on permutations
- Become research director or a full professor

What's next?

2017-2019: • Continue to enjoy Zurich and UZH

- Continue to advise students:
\hookrightarrow Veronica Guerrini will defend early 2018 in Siena
\hookrightarrow Jacopo Borga started at UZH in September 2017
- Keep up with research
- SNF project about non-uniform random permutations

2019:

- Organize Permutation Patterns 2019 in Zurich
- Move back to France, and to CNRS

The 2020's:

- Advise students and/or create a small group on permutations
- Become research director or a full professor

For ever:

- Keep good balance between work and home, and continue to enjoy family life

Thank you!

- Valentin

for taking me into this Swiss adventure

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize
- my collaborators for making research fun and exciting

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize
- my collaborators for making research fun and exciting
- the organizers of this event because it is an honor to be here

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize
- my collaborators for making research fun and exciting
- the organizers of this event because it is an honor to be here
- Valentin, Oscar and Agathe
for making every day fun and exciting

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize
- my collaborators for making research fun and exciting
- the organizers of this event because it is an honor to be here
- Valentin, Oscar and Agathe
for making every day fun and exciting

Thank you!

- Valentin for taking me into this Swiss adventure
- UZH, MNF, and I-Math, Ashkan and Joachim in particular for their encouragements and support
- the SNF and the MHV committees
for awarding me the grant and the prize
- my collaborators for making research fun and exciting
- the organizers of this event because it is an honor to be here
- Valentin, Oscar and Agathe
for making every day fun and exciting because they make my life more beautiful ... and more challenging!

