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Chapter 1

Introduction

1.1 Combinatorics and its history

Combinatorics is an area of mathematics dealing with discrete structures -such as
graphs, matroids, partially ordered sets, permutation groups, partitions- and char-
acterized by its methods. It consists of studying some properties of these objects and
counting them.

First, let us introduce some history (following [6]). Combinatorics had its origins
in the antiquity in the oriental civilization. The first ideas came from the Hindus.

In 1150 CE (common era), Bhaskara -an Indian mathematician- knew the formula
for the number of permutations of n and the formula for the number of k-element
subsets of an n-element set, and maybe other mathematicians knew them before him.
In the first century CE, Chinese documents attest the knowledge of the magic square.
From 900 to 1300, magic squares were studied in great depth by Chinese and Islamic
cultures. From 1200 to 1300, these two cultures exchanged a body of learning and
this knowledge was passed down to the West by Moschopolous, a Byzantine Greek
mathematician. Pascal’s triangle, as it is known today, was yet another interesting
object at those times, when it was named triangle of binomial numbers (the entry
in the n-th row and k-th column is the number of k-element subsets of an n-element
set, where rows and columns are indexed starting from 0). The earliest attested
knowledge of Pascal’s triangle dates back to some texts written between 1200 and
1300, but it is likely that this result was already known at least a century before given
these texts’ references to earlier lost material featuring this result. Therefore, Pascal’s
1665 treatise was not the earliest work on the subject. But Pascal was motivated by
the problem of foreseeing the results of games of chance and this is a relevant bridge
between medieval and modern mathematicians.

In 1665 Pascal presented his treatise. Notice that at the same time Leibniz had
written documents on partitions of integers and other topics, which remain unpub-
lished. Between 1600 and 1700, the connection between algebra and combinatorics
became more transparent. In 1697, De Moivre proved the multinomial theorem,
discovered the principle of inclusion-exclusion and from this he found the formula
for the number of derangements of n objects. In 1736, Euler solved the problem of
Königsberg bridges, which consists in finding a road passing through the 7 bridges
only once, and proved that this road was not possible. The problem of Königsberg
bridges gave rise to the graph theory. Moreover, this Swiss mathematician studied
partitions, where he made notable improvements, and Latin squares.

In the 19th century, Cauchy, Galois and Lagrange studied the groups of permuta-
tions. Moreover, in 1812 Binet and Cauchy worked on the functions permanents. In
1852, Francis Guthrie presented the four-color problem, which states that four colors
are enough to color a map in such a way that any two adjacent regions have different
colors. In the 20th century, MacMahon improved a lot the subfield of enumerative
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combinatorics.
In the second half of the 20th century, combinatorics has developed conspicuously
and the study of pattern avoidance in permutations had its origins.

1.2 Pattern avoidance in permutations

The study of patterns in permutations had its origins in the 1970s and early 1980s
(see [9]). The following definitions introduce the main concept of the topic.

Definition 1.2.1. A permutation of {1, 2, . . . , n} is a word π1π2 . . . πn with no repeated
letters and such that πi ∈ {1, 2, . . . , n} for all i = 1, . . . , n. The set of all permutations of
{1, . . . , n} of size n is denoted by Sn, where the size is defined as |π| = n for π ∈ Sn.

Definition 1.2.2. A permutation π = π1π2 . . . πn ∈ Sn contains the pattern σ = σ1σ2 . . . σk
∈ Sk if there are i1 < i2 < . . . < ik such that πia < πib if and only if σa < σb for all
a, b ∈ {1, 2, . . . , k}. In other words, πi1 πi2 . . . πik is order isomorphic to σ. Otherwise, π
avoids the pattern σ.

Example 1.2.3. The permutation π = 31542 ∈ S5 contains the pattern σ = 132 ∈ S3
since π2π3π4 = 154 has the same relative order as 132, but it avoids the pattern σ′ = 123.

The first systematic study of pattern-avoiding permutations appeared in 1985
in the paper [13] published by Simion and Schmidt, where they proved different
results concerning the enumeration of Sn(β) for β ⊆ S3. Many problems have been
studied, for example how to count permutations that avoid one or more patterns
or how to discover the generating function for the number of occurrences of one or
more patterns. Pattern avoidance in permutations has been studied in full and has
proved to have connections with other fields of mathematics, computational biology
and theoretical physics. Nowadays there is a considerable collection of results (see,
for example, the second and the third chapter of [9]). The following introduces the
concept of enumeration.

Definition 1.2.4. We define Sn(σ) = {π ∈ Sn | π avoids σ} to be the avoidance set of σ in
size n. The avoidance sequence of σ is the integer sequence |S1(σ)| , |S2(σ)| , |S3(σ)| , . . . .
Let β be a set of patterns. Similarly, we define Sn(β) = {π ∈ Sn | π avoids σ, σ ∈ β}
to be the avoidance set of β in size n. The avoidance sequence of β is the integer sequence
|S1(β)| , |S2(β)| , |S3(β)| , . . . .

From a combinatorial point of view, permutation patterns have been useful as an
interpretation that establishes connections between many combinatorial structures.
The avoidance sequences count a very big number of well-known combinatorial
structures, explaining the interpretation mentioned before.

1.3 Pattern avoidance in inversion sequences

There is a more recent study in pattern avoidance, but this time concerning inversion
sequences. I start to define them and another concept that relates to their name.

Definition 1.3.1. An inversion sequence of length n is any integer sequence (e1, e2, . . . , en)
such that 0 ≤ ei < i for all i ∈ {1, . . . , n}.

Definition 1.3.2. An inversion of a permutation π is a pair (i, j) satisfying i > j and
πi < πj.
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There are several encodings of permutations. A very common one is the bijection
T : Sn → In from the set of permutations of size n to the set of inversion sequences
of length n, where T(π) = (e1, e2, . . . , en) and ei =| {j < i : πj > πi} |. Note that if
you sum the entries of the image of π you obtain the number of inversion of π and
this gives rise to the name inversion sequences.
Two other examples of codings of Sn are the Lehmer code L and the invcode (the
reverse of Lehmer code). Let e = (e1, e2, . . . , en) ∈ In and E be a set of sequences,
then we define eR = (en, en−1, . . . , e1) and ER = {eR : e ∈ E}. Moreover, let
π = (π1, π2, . . . , πn) ∈ Sn and P be a set of permutations, then we define πC =
(n + 1− π1, n + 1− π2, . . . , n + 1− πn) and PC = {πC | π ∈ P}. The Lehmer code
sends π ∈ Sn to e ∈ IR

n where ej =| {i > j : πi < πj} |. The invcode sends π ∈ Sn

to e ∈ In where eR = L(π). We can observe that invcode(π) = e if and only if
e = T((πC)R). Another observation is that if T(π) = e, then πi > πi+1 (that is, i is a
descent of π) if and only if ei < ei+1 (that is, i is an ascent of e).
These correspondences led to studying pattern avoidance in inversion sequences
much in the same way as pattern avoidance in permutations. So these connections
were a natural bridge between the two interesting topics of pattern avoidance. How-
ever, the translation from pattern containment in permutations to pattern contain-
ment in inversion sequences is not immediate.

In the sequel I give some definitions.

Definition 1.3.3. A pattern is an integer sequence p = p1 p2 . . . pk with pi ∈ {0, 1, . . . , k−
1} for all i, where pi can take the value j only if j− 1 appears in p.

Definition 1.3.4. The reduction of a word p = p1 p2 . . . pk ∈ {0, 1, . . . , k− 1}k is the word
obtained by replacing all the occurrences of the ith smallest entry of p with i− 1.

Example 1.3.5. The reduction of 31140 is 21130.

Definition 1.3.6. An inversion sequence e of length n contains the pattern p = p1 p2 . . . pk
if there are i1 < i2 < . . . < ik such that the reduction of the subsequence ei1 ei2 . . . eik is p.
Otherwise, e avoids the pattern p.

Example 1.3.7. The inversion sequence e = (0, 0, 2, 1, 4) ∈ I5 contains the pattern p = 012
since the reduction of e2e4e5 = 014 is 012, but it avoids the pattern p′ = 210.

While pattern-avoiding permutations have been extensively studied in the liter-
ature, the systematic study of pattern-avoiding inversion sequences appeared for
the first time around 2015 in the papers published by Corteel-Martinez-Savage-
Weselcouch [4] and Mansour-Shattuck [11] independently. Both were motivated to
bring the study of patterns in inversion sequences at the same level as the study of
patterns in permutations. Permutations and inversion sequences are considered as
words over N and while patterns in permutations can have only distinct entries,
patterns in inversion sequences can have repeated values. The first authors studied
inversion sequences that avoid permutations and words of length 3, the second ones
studied inversion sequences that avoid permutations of length 3: together they con-
tributed to the almost completeness of the enumeration of inversion sequences that
avoid one pattern of length 3.

In the following two more definitions.

Definition 1.3.8. We define In(p) = {e ∈ In | e avoids p} to be the avoidance set of p in
length n. The avoidance sequence of p is the integer sequence |I1(p)| , |I2(p)| , |I3(p)| , . . .,
with the convention that |I0(p)| = 1.
Let β be a set of patterns. Similarly, we define In(β) = {e ∈ In | e avoids p, p ∈ β} to
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be the avoidance set of β in length n. The avoidance sequence of β is the integer sequence
|I1(β)| , |I2(β)| , |I3(β)| , . . ., with the convention that |I0(β)| = 1.

Definition 1.3.9. A refinement of the avoidance set In(p) is In,k(p) = In,k ∩ In(p), where
In,k = {e ∈ In : en = k}.
Let β be a set of patterns. Similarly, we define In,k(β) = In,k ∩ In(β), where In,k = {e ∈ In :
en = k}, to be a refinement of the avoidance set In(β).

Definition 1.3.10. Two patterns are equivalent if they provide the same avoidance sets; two
patterns are Wilf-equivalent if their avoidance sequences are the same.

Remark 1.3.11. The origin of the name "Wilf-equivalent" is to attribute to the American
mathematician Herbert Wilf. The concept was defined for permutation classes: two permu-
tation classes are Wilf-equivalent if they have the same number of permutations of size n, for
every n.

The involvement and the study of patterns in inversion sequences have increased
since the publication of these papers and hence many enumeration results and many
connections to well-known combinatorial families have been discovered. But there
were not only connections between some avoidance sequences and some well-known
combinatorial sequences: some pattern-avoiding inversion sequences create some
sequences that were not in the On-Line Encyclopedia of Integer Sequences (OEIS)
before. Moreover, pattern-avoiding inversion sequences are simpler interpretations
of some combinatorial sequences than known interpretations as pattern-avoiding
permutations or other discrete structures. Duncan and Steingrímsson studied one
of the most relevant subset of inversion sequences: the ascent sequences (see [5]).
Surprisingly, this happened a little before the work on inversion sequences.

Now I quickly present the different types of pattern that have been investigated
after the classical words of length 3.

The first type I present are the triples of relations, proposed by Martinez-Savage
[12].

Definition 1.3.12. A triple of relations is a triple (ρ1, ρ2, ρ3) of binary relations, where the
relations are in the set {<,>,≤,≥,=, 6=,−} and the relation "−" on a set S means that
x− y for all x, y ∈ S× S.

Example 1.3.13. (=,≤,−) is a pattern of relation triples.

Definition 1.3.14. An inversion sequence e of length n contains the triple of relations
(ρ1, ρ2, ρ3) if there are i < j < k such that eiρ1ej, ejρ2ek and eiρ3ek. Otherwise, e avoids
(ρ1, ρ2, ρ3).

Example 1.3.15. The inversion sequence e = (0, 0, 0, 1, 4) ∈ I5 contains the pattern
(=,≤,−) since for example e1 = e2 ≤ e5, but the inversion sequence e′ = (0, 1, 2, 2, 1)
avoids it.

Remark 1.3.16. Generally this type of pattern represents some multiple classical patterns
of length 3.

Example 1.3.17. In(≥, 6=,≥) = In(101, 110, 201, 210).

The number of possible triples of relations is 343 and these 343 patterns subdi-
vide into 98 equivalence classes (which are labeled by A, B, C, etc in a Wilf-equivalence
class) and 63 conjectured Wilf-equivalence classes (which are labeled by a7 := |I7(p)|,
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the number of inversion sequences of length 7 that avoid a pattern p in the Wilf-
equivalence class) (see [12]). Moreover, 5 Wilf-equivalence classes have avoidance
sequences that are ultimately constant.

Many inversion sequences that avoid a triple of binary relations have been enu-
merated.

The second type are the consecutive patterns, proposed by Auli-Elizalde [1].

Definition 1.3.18. A consecutive pattern is a pattern where the entries are underlined.

Example 1.3.19. 021 is a consecutive pattern.

The notion of containment is defined differently than in the case of classical pat-
tern.

Definition 1.3.20. An inversion sequence e of length n contains the consecutive pattern
p = p1 p2 . . . pk if there exists a consecutive subsequence eiei+1 . . . ei+k−1 of e such that its
reduction is equal to p. In this case, we call eiei+1 . . . ei+k−1 an occurrence of p in position i.
Otherwise, e avoids p.
Moreover, Em(p, e) = {i : eiei+1 . . . ei+k−1 is an occurrence of p}.

Example 1.3.21. The inversion sequence e = (0, 1, 1, 3, 2) ∈ I5 contains the pattern
p = 021 since the reduction of e3e4e5 = 132 is 021, but the inversion sequence e′ =
(0, 1, 1, 3, 1) ∈ I5 avoids it (however, it contains the classical pattern 021). Since there are
no other occurrences of 021 in e we have that Em(021, e) = {3}.

Definition 1.3.22. Two consecutive patterns are Wilf-equivalent if their avoidance sequences
are the same; two consecutive patterns are strongly Wilf-equivalent if the number of inver-
sion sequences in In containing m occurrences of the first pattern is the same as for the
second pattern for all n and m; two consecutive patterns, say p and p′, are super-strongly
Wilf-equivalent (p ss∼ p′) if | {e ∈ In : Em(p, e) = S} |=| {e ∈ In : Em(p′, e) = S} | for
all n and all S ⊆ {1, . . . , n}.

Several inversion sequences that avoid consecutive patterns of length 3 have
been enumerated and other results involving patterns of length 4 have been founded.
Some results have been generalized to patterns of arbitrary length.

The third type are the vincular patterns, proposed by Lin-Yan [10].

Definition 1.3.23. A vincular pattern is a pattern where some consecutive entries are un-
derlined.

Remark 1.3.24. Equivalently, a vincular pattern is a pattern containing dashes showing the
entries that don’t need to occur consecutively (in Definition 1.3.6, no entries need to occur
consecutively).

Example 1.3.25. 021 (or equivalently 0-21) is a vincular pattern.

Definition 1.3.26. An inversion sequence e of length n contains the vincular pattern p of
length k if there are i1 < i2 < . . . < ik such that the reduction of the subsequence ei1 ei2 . . . eik

is p (disregarding which values are underlined) and such that the underlined entries occur
consecutively. Otherwise, e avoids p.

Example 1.3.27. The inversion sequence e = (0, 1, 2, 3, 2) ∈ I5 contains the pattern p =
021 since for example the reduction of e2e4e5 = 132 is 021, but the inversion sequence
e′ = (0, 1, 2, 0, 1) ∈ I5 avoids it (however, it contains the classical pattern 021).
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Many inversion sequences that avoid vincular patterns of length 3, where two of
the three entries are required to occur consecutively, have been enumerated.

Lastly, I present some operations and statistics on inversion sequences. These
tools will be useful later as they will appear in some proofs.

Definition 1.3.28. The operation σk on an inversion sequence e adds k to the positive el-
ements of e (k can be positive or negative). The result of this operation is not always an
inversion sequence.
The concatenation is another operation on inversion sequences that appends an element at
the beginning or at the end of an inversion sequence: 0 · e = (0, e1, . . . , en) (at the beginning
you can append only the 0) and e · i = (e1, e2, . . . , en, i) for all i ∈ {1, . . . , n} (en+1 can be
at most n). With these constraints the result is an inversion sequence, but this doesn’t hold
in general for concatenation.

The following definition is needed in order to introduce the concept of statistic.

Definition 1.3.29. A combinatorial class C is a set of (discrete) objects equipped with a
notion of size, a function from C to N, such that there is a finite number of objects of size n
for all natural numbers n. We denote Cn the set of objects of size n and cn = |Cn|, for all
n ≥ 0.

Definition 1.3.30. A statistic is a function from a combinatorial class C to the natural
numbers N (or to the real numbers R).

Definition 1.3.31. Let e = (e1, e2, . . . , en) ∈ In. The following are statistics on e:

• zeros(e) = |{i ∈ {1, . . . , n} : ei = 0}| = number of zero entries in e;

• dist(e) = |{e1, e2, . . . , en}| = number of distinct entries in e;

• repeats(e) = |{i ∈ {1, . . . , n− 1} : ei ∈ {ei+1, . . . , en}| = n − dist(e) = number
of repeated entries in e;

• asc(e) = |{i ∈ {1, . . . , n− 1} : ei < ei+1}| = number of ascents in e;

• maxim(e) = |{i ∈ {1, . . . , n} : ei = i− 1}| = number of maximal entries in e (that
is, the entries of e having the maximal possible value at their position);

• maxx(e) = max{e1, e2, . . . , en} = maximum value occurring in e;

• last(e) = en = last entry of e.

1.4 Objective

My master thesis is about a recent development in the study of pattern avoidance in
permutations: pattern-avoiding inversion sequences. In particular, I present some
enumeration results and some Wilf-equivalence results, stressing the various meth-
ods used to obtain them.

In the second chapter, I explain the methods for enumerating families of pattern-
avoiding inversion sequences. The first type of proof will be the one using the com-
binatorial characterization of the considered family of inversion sequences. The sec-
ond type will be the inductive proof. The third type will be the proof by recursive
construction. The fourth type will be the bijective proof. The fifth type will be the
one using generating functions. The sixth type will be the one using generating
trees. The last two types will be the kernel method and the obstinate kernel method,
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respectively. For each of these methods I give a description and I provide some ex-
amples as well as a list of cases falling in this type of proof. This chapter is organized
in sections, one for each method of proof I identified, and subsections, one for each
example I present.

In the third chapter, I conclude with some remarks about the results and about
the topic of pattern-avoiding inversion sequences in general.
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Chapter 2

Methods to enumerate
pattern-avoiding inversion
sequences

2.1 Combinatorial characterization

The first method I present is the one using only the combinatorial characterization
of the family of inversion sequences you want to enumerate. Each set of pattern-
avoiding inversion sequences can be described by a combinatorial characterization
(maybe several), which is very useful in order to keep in mind the properties that
the inversion sequences avoiding a certain pattern must have. In these cases, as we
will see in the next two examples, we have a "very constrained structure" (implied
by the avoidance of the patterns) from which we get the enumeration immediately.

In what follows, I present two examples of this method, first proving the charac-
terization and secondly using it to prove the enumerative statement.

2.1.1 First example

The pattern of the first example (presented by Martinez-Savage [12] in subsection
2.4.1 and where no proof is provided) is the triple of relations (<, 6=,−) and the
inversion sequences avoiding it are characterized in the following way:

Proposition 2.1.1. An inversion sequence e ∈ In has no i < j < k such that ei < ej 6= ek
if and only if

0 = e1 = e2 =. . .= et−1 ≤ et = et+1 =. . .= en (2.1.1)

for some t with 1 ≤ t ≤ n.

Proof. “⇒” let e ∈ In with no i < j < k such that ei < ej 6= ek. Assume e does not
satisfy 2.1.1.

Let t be the smallest index such that et > 0 (if such t doesn’t exist then e is the
inversion sequence (0, 0, . . . , 0), which contradicts the assumption).

Then, since e does not satisfy 2.1.1, there exists an integer `, with t + 1 ≤ ` ≤ n,
such that et 6= e` (t > 1). But then we have t− 1 < t < ` and et−1 < et 6= e`, which
contradicts the assumption. Consequently e satisfies 2.1.1.
“⇐” let e ∈ In such that e satisfies 2.1.1.

If we have i < j such that ei < ej, then all the entries to the right of ej are equal to
ej. So there is no i < j < k such that ei < ej 6= ek.

From this we obtain the following enumerative result.

Theorem 2.1.2. |In(<, 6=,−)| = (n
2) + 1.
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Proof. From Proposition 2.1.1 we deduce that e can be the inversion sequence
(0, 0, . . . , 0) (the case t = 1) or a sequence composed by t − 1 zeros followed by
n− t + 1 copies of `, where t is such that 2 ≤ t ≤ n and ` is such that 1 ≤ ` ≤ t− 1
(since et can be at most t− 1).

The zero inversion sequence contributes 1 to the cardinality of In(<, 6=,−). More-
over, for every t we have t− 1 possibilities of choosing ` and since t is between 2 and
n we obtain

n

∑
t=2

(t− 1) =
n−1

∑
t=1

t =
(n− 1)n

2
=

(
n
2

)
.

possible inversion sequences in addition to the zero inversion sequence. So in total
we have |In(<, 6=,−)| = (n

2) + 1.

2.1.2 Second example

The patterns of the second example (presented by Yan-Lin [15] in Section 2.2 and
where no proof is provided) are three pairs of classical patterns of length 3 and the
characterizations for each of these pairs are the following:

Proposition 2.1.3. An inversion sequence e ∈ In avoids {001, 110} if and only if

e1 < e2 <. . .< et ≥ et+1 = et+2 =. . .= en (2.1.2)

for some t with 1 ≤ t ≤ n.

Proof. “⇒” let e ∈ In such that e avoids {001, 110}. Suppose e does not satisfy 2.1.2.
Let t be the smallest index such that et ≥ et+1 (if no such t exists set t = n and then

e satisfies 2.1.2, obtaining a contradiction to our assumption). Note that if t = n− 1,
then e clearly avoids {001, 110} since to the right of the two equal values there are
no more entries.

Then one possibility (if t 6= n− 1) is that there exists an integer ` ≥ t + 2 such
that e` < et+1. But then we have j < t + 1 < `, with 1 ≤ j ≤ t, and ej = et+1 > e`
(where the equality holds since ej = j− 1 for all 1 ≤ j ≤ t and et is the maximum
among {e1, . . . , et}), which contradicts the fact that e avoids 110.

Another possibility (if t 6= n− 1) is that there exists an integer ` ≥ t + 2 such that
e` > et+1. But then we have j < t + 1 < `, with 1 ≤ j ≤ t, and ej = et+1 < e` (where
the equality holds since ej = j− 1 for all 1 ≤ j ≤ t and et is the maximum among
{e1, . . . , et}), which contradicts the fact that e avoids 001.

Consequently e satisfies 2.1.2.
“⇐” let e ∈ In such that e satisfies 2.1.2.

So, if we have an equality, then we only have equalities and hence neither ascents
nor descents. This means that e avoids 001 and 110.

Proposition 2.1.4. An inversion sequence e ∈ In avoids {001, 021} if and only if

e1 < e2 <. . .< et = et+1 =. . .= es > es+1 = es+2 =. . .= en = 0 (2.1.3)

for some t with 2 ≤ t ≤ n− 1 and t ≤ s ≤ n− 1, or

e1 < e2 <. . .< et = et+1 =. . .= en (2.1.4)

for some t ≤ n.

Proof. “⇒” let e ∈ In such that e avoids {001, 021}.
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Let’s begin with the first case: suppose e does not satisfy 2.1.3. Let t be the small-
est index such that et+1 < t (if no such t exists then the entries of e are all consecutive
and we are in the second case). Let s be the smallest index among those greater than
or equal to t such that es > es+1 (if no such s exists then we are in the second case).

Then one possibility is that es+1 6= 0. But then we have 1 < s < s + 1 and
e1 < es+1 < es, which contradicts the fact that e avoids 021.

Another possibility (if s 6= n − 1) is that there exists an integer ` ≥ s + 2 such
that e` 6= 0 and es+1 = 0. But then we have 1 < s + 1 < ` and e1 = es+1 < e`, which
contradicts the fact that e avoids 001.

Consequently e satisfies 2.1.3.
Let’s go on with the second case: suppose e does not satisfy 2.1.4. Let t be the

smallest index such that et+1 < t (if no such t exists set t = n and then e satisfies
2.1.4, obtaining a contradiction to our assumption).

Then one possibility is that et > et+1. But then we have 1 < t < t + 1 and
e1 < et > et+1, e1 6= et+1 (if e1 = et+1 then we are in the first case), which contradicts
the fact that e avoids 021.

Another possibility (if t 6= n− 1) is that there exists j ≥ t + 2 such that et 6= ej.
But then a 001 is created, a 021 is created, or we fall in the first case.

Consequently e satisfies 2.1.4.
“⇐” let e ∈ In such that e satisfies 2.1.3.

So, if we have an equality, then we can only have a descent or an equality, hence
no ascents. If we have an ascent followed by a descent then the number to the right is
zero and hence greater than no elements. This means that e avoids 001 and 021.

Proposition 2.1.5. An inversion sequence e ∈ In avoids {001, 120} if and only if

e1 < e2 <. . .< et = et+1 =. . .= es > es+1 = es+2 =. . .= en = et−1 (2.1.5)

for some t with 2 ≤ t ≤ n− 1 and t ≤ s ≤ n− 1, or

e1 < e2 <. . .< et = et+1 =. . .= en (2.1.6)

for some t ≤ n.

Proof. “⇒” let e ∈ In such that e avoids {001, 120}.
Let’s begin with the first case: suppose e does not satisfy 2.1.5. Let t be the small-

est index such that et+1 < t (if no such t exists then all the entries are consecutive
and we are in the second case). Let s be the smallest index among those greater than
or equal to t such that es > es+1 (if no such s exists then we are in the second case).

Then one possibility is that es+1 < et−1. But then we have t− 1 < t < s + 1 and
es+1 < et−1 < et, which contradicts the fact that e avoids 120.

Another possibility is that es+1 > et−1. But then we have t < t + 1 < s + 1 and
et = et+1 < es+1 (s 6= t in this case, otherwise e satisfies 2.1.5), which contradicts the
fact that e avoids 001.

Another possibility (if s 6= n− 1) is that there exists an integer ` ≥ s+ 2 such that
e` > et−1 and es+1 = et−1. But then we have t− 1 < s + 1 < ` and et−1 = es+1 < e`,
which contradicts the fact that e avoids 001.

Another possibility (if s 6= n− 1) is that there exists an integer ` ≥ s+ 2 such that
e` < et−1 and es+1 = et−1. But then we have t− 1 < t < ` and e` < et−1 < et, which
contradicts the fact that e avoids 120.

Consequently e satisfies 2.1.5.
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Let’s go on with the second case: suppose e does not satisfy 2.1.6. Let t be the
smallest index such that et+1 < t (if no such t exists set t = n and then e satisfies
2.1.6, obtaining a contradiction to our assumption).

Then one possibility is that et > et+1. But then we have t− 1 < t < t + 1 and
et−1 < et > et+1, et−1 > et+1 (if et−1 = et+1 then we are in the first case), which
contradicts the fact that e avoids 120.

Another possibility is that there exists j ≥ t + 2 such that et 6= ej. But then a 001
is created, a 120 is created, or we fall in the first case.

Consequently e satisfies 2.1.6.
“⇐” let e ∈ In such that e satisfies 2.1.5.

So, if we have an equality, then we don’t have ascents. If we have an ascent
followed by a descent then the element to the right is not less than the "first" element.
This means that e avoids 001 and 120.

From these characterizations we obtain the following enumerative result.

Theorem 2.1.6. |In(p)| = (n
2) + 1 with p ∈ {(001, 110), (001, 021), (001, 120)}.

Proof. For p = (001, 110): from Proposition 2.1.3 we deduce that if t is such that
1 ≤ t ≤ n − 1 we have only one possibility for the first t entries since they are
consecutive, and we have t possibilities for all the other entries (which are all equal)
since et = t− 1. If t = n we have only the inversion sequence (0, 1, . . . , n− 1), hence
only one possibility. Summing everything together we obtain

1 +
n−1

∑
t=1

t = 1 +
(n− 1)n

2
=

(
n
2

)
+ 1.

For p ∈ {(001, 021), (001, 120)}: if t = 1 we have only one possible inversion
sequence: (0, 0, . . . , 0), no matter what is the value of s. If t is such that 2 ≤ t ≤ n, we
have n− t + 1 possibilities of choosing s and then everything is determined because
the first t values are consecutive, the following s− t values are equal to et = t− 1 and
the remaining values are equal to zero for p = (001, 021) and equal to et−1 = t− 2
for p = (001, 120). Summing everything together we obtain

1 +
n

∑
t=2

(n− t + 1) = 1 + n(n− 1)−
(

n(n + 1)
2

− 1
)
+ n− 1

= 1 +
2n2 − 2n− n2 − n + 2 + 2n− 2

2

= 1 +
n2 − n

2

= 1 +
n(n− 1)

2

=

(
n
2

)
+ 1.

Remark 2.1.7. Note that here and in the previous example we obtain the same number,
(n

2) + 1, as cardinality of the avoidance set.

Table 2.1 shows a list of cases falling in the type of proof presented in this sec-
tion, where the examples that I have illustrated are marked with * (I will keep this
notation for all the other tables).
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Pattern Reference Section
( 6=,−, 6=), (≥,−, 6=) [12] 2.2
*(<, 6=,−) [12] 2.4.1
(−,≥, 6=) [12] 2.7.3
( 6=,<, 6=) [12] 2.9
(001, 010), (001, 011), (001, 012) [15] 2.1
*(001, 110), (001, 021), (001, 120) [15] 2.2
(001, 100) [15] 2.4
(001, 210) [15] 2.5
(012, 201), (012, 210) [15] 2.8
(010, 011) [15] 2.9

TABLE 2.1: Cases falling in the type of proof "Combinatorial charac-
terization".

2.2 Inductive proof

The second method I present is the one where you prove a result by induction. You
show that a statement S(n) is true for n = 0, that is, you prove the base case. Then
assuming that S(n) is true, you prove that S(n + 1) is also true and this is called the
inductive step.

In the sequel, I present an example (exhibited by Auli-Elizalde [1] in Section 3.1)
where the pattern involved is the consecutive pattern 000. The following definition
and the related lemma are needed.

Definition 2.2.1. A derangement of size n is a permutation σ of size n (where the size is
defined as |σ| = n for σ ∈ Sn) that has no fixed points, that is, σi 6= i for all 1 ≤ i ≤ n.

Lemma 2.2.2. Let n ≥ 1 and dn the number of derangements of size n. It holds that

dn = (n− 1)dn−2 + (n− 1)dn−1 = (n− 1)(dn−2 + dn−1).

Proof. Let σ be a derangement of size n. The entry σ(1) cannot be equal to 1, so
there are n − 1 possible choices for this entry. Let us assume that σ(1) = j with
j ∈ {2, . . . , n}. Now we have to distinguish two cases.

If σ(j) = 1 then the values [1, . . . , n] \ {1, j} must be in one-to-one correspon-
dence with the values [1, . . . , n] \ {1, j}, without creating fixed points. That is, we
have to construct a derangement of size n− 2. So we have (n− 1)dn−2 such possible
derangements of size n.

If σ(j) 6= 1 then the values [1, . . . , n] \ {1} must be in one-to-one correspon-
dence with the values [1, . . . , n] \ {j}, without creating fixed points. Each value in
[1, . . . , n] \ {1} has exactly one forbidden value in [1, . . . , n] \ {j}. That is, we have to
construct a derangement of size n− 1 where j cannot be assigned to 1. So we have
(n− 1)dn−1 such possible derangements of size n.

Putting everything together we obtain dn = (n− 1)dn−2 + (n− 1)dn−1 = (n−
1)(dn−2 + dn−1).

Before proving the enumerative result, we show a proposition that we will need
in our proof.

Proposition 2.2.3. Let n ≥ 3. The following recurrence for |In(000)| holds:

|In(000)| = (n− 1) |In−1(000)|+ (n− 2) |In−2(000)| ,
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with initial conditions |I1(000)| = 1 and |I2(000)| = 2.

Proof. It holds that

I1(000) = {(0)} and I2(000) = {(0, 0), (0, 1)},

so the initial conditions are satisfied. Let n ≥ 3. We distinguish two cases, depending
on the relation between the last two entries.

If en−1 6= en, then the number of possible choices for the first n − 1 entries is
|In−1(000)| and the possible choices for the last entry en are {0, . . . , n− 1} \ {en−1},
that is, we have n− 1 possibilities for en.

If en−1 = en, then since e avoids the consecutive pattern 000 the entries en−2 and
en−1 cannot be equal. The number of possible choices for the first n − 2 entries is
|In−2(000)| and the possibilities for en−1 = en are n− 2, since the possible choices for
the last two entries are {0, . . . , n− 2} \ {en−2}.

As a result we obtain the desired recurrence.

Now we can proceed with the proof of the following proposition.

Proposition 2.2.4. Let n ≥ 1 and dn the number of derangements of size n.
It holds |In(000)| = (n+1)!−dn+1

n .

Proof. We start with the base case. For n = 1 it holds that

|I1(000)| = 1

and
2!− d2

1
= 1,

so the base case is proved.
Assume that |Ik(000)| = (k+1)!−dk+1

k , for k = 1, . . . , n. We prove that this holds
also for k = n + 1. By Proposition 2.2.3

|In+1(000)| = n |In(000)|+ (n− 1) |In−1(000)|

and by the induction hypothesis

|In+1(000)| = n · (n + 1)!− dn+1

n
+ (n− 1)

n!− dn

n− 1
= (n + 1)!− dn+1 + n!− dn

= n!(n + 1 + 1)− dn+1 − dn

=
(n + 2)!

n + 1
− (n + 1)(dn+1 + dn)

n + 1

=
(n + 2)!− dn+2

n + 1
,

where in the last equality we used Lemma 2.2.2. So the result holds.

Table 2.2 shows a list of cases falling in the type of proof presented in this section.
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Pattern Reference Section
021 [4] 4.2
*000 [1] 3.1

TABLE 2.2: Cases falling in the type of proof "Inductive proof".

2.3 Proof by recursive construction

The third method I present is the one in which the proof is by recursive construction.
This means that we prove a result regarding an object by determining a method
which we use for creating the object. More precisely, we construct an object starting
from an object of the same kind but of lower dimension. That is, we construct an
object recursively.

In the sequel I present two examples of this method and for both of them we will
obtain a recurrence for the avoidance sequence of the considered pattern.

2.3.1 First example

The pattern of the first example (presented by Martinez-Savage [12] in Section 2.11)
is the triple of relations (≤,≥, 6=) for which the following enumerative result holds.

Theorem 2.3.1. |In(≤,≥, 6=)| = (n− 1)2n−2 + 1.

Proof. We start by characterizing the inversion sequences that avoid the pattern (≤
,≥, 6=): an inversion sequence e ∈ In has no i < j < k such that ei ≤ ej ≥ ek and
ei 6= ek if and only if

1 ≤ ea < en−b+1 < en−b+2 < . . . < en < n, e1 = . . . = ea−1 = ea+1 = . . . = en−b = 0
(2.3.1)

for some a with 1 < a < n + 1 and 0 ≤ b < n− a + 1. That is e takes the form

e = (0, . . . , 0, ea, 0, . . . , 0, en−b+1, en−b+2, . . . , en),

where the first sequence of 0 is non-empty and the sequence en−b+1, en−b+2, . . . , en is
increasing.

This holds for the following reason. Let e ∈ In with no i < j < k such that
ei ≤ ej ≥ ek and ei 6= ek. Assume e does not satisfy 2.3.1. Let a be the smallest index
such that ea > 0 (if no such a exists then e is the sequence (0, . . . , 0), which clearly
avoids our pattern). Let b be the greatest index such that en−b+1 > 0, b < n− a + 1
(if no such b exists then e is an inversion sequence with at most one entry different
from 0, which clearly avoids our pattern).

Let a 6= n − b. Then, since e does not satisfy 2.3.1, e` ≥ e`+1 for ` = n − b +
1, . . . , n − 1. But then if e`+1 6= 0 we have 1 < ` < ` + 1 and e1 < e` ≥ e`+1,
e1 6= e`+1; if e`+1 = 0 we have a < ` < `+ 1 and ea < e` ≥ e`+1, ea 6= e`+1, which
both contradict the assumption. Or ea ≥ en−b+1. But then 1 < a < n − b + 1 and
e1 < ea ≥ en−b+1, e1 6= en−b+1, which contradicts the assumption.

Let a = n− b. Then, since e does not satisfy 2.3.1, e` ≥ e`+1 for ` = n− b, . . . , n−
1. But then we have 1 < ` < `+ 1 and e1 < e` ≥ e`+1, e1 6= e`+1 (since e`+1 6= 0,
otherwise e satisfies 2.3.1) which contradicts the assumption.

Consequently e satisfies 2.3.1.
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Conversely, let e ∈ In such that e satisfies 2.3.1. If we have i < j < k such that
ei ≤ ej ≥ ek, then ei and ek are both equal to 0. So there is no i < j < k such that
ei ≤ ej ≥ ek and ei 6= ek.

Now that we know how these pattern-avoiding inversion sequences are charac-
terized, we can analyze their construction distinguishing two cases.

If ea > 1, this implies that a > 2 and so we have that e = 0 · σ1(e′) where e′ ∈
In−1(≤,≥, 6=).

If ea = 1, there are n− b− 2 + 1 = n− b− 1 possibilities of choosing where to
place the entry ea = 1 since the possible places are 2, 3, . . . , n− b. Moreover, there are
(n−2

b ) possibilities of choosing a b-element subset of {2, . . . , n− 1} (since en−b+1 > 1
and en < n) for the entries en−b+1, . . . , en. Once you have chosen a b-element subset
there is only one possibility of placing the values since they are strictly increasing.

Summing everything together we obtain the following for n ≥ 2:

|In(≤,≥, 6=)| = |In−1(≤,≥, 6=)|+
n−2

∑
b=0

(n− b− 1)
(

n− 2
b

)
= |In−1(≤,≥, 6=)|+

n−2

∑
b=0

(n− 1)
(

n− 2
b

)
−

n−2

∑
b=0

b
(

n− 2
b

)
= |In−1(≤,≥, 6=)|+ (n− 1)2n−2 − (n− 2)2n−3

= |In−1(≤,≥, 6=)|+ (2n− 2− n + 2)2n−3

= |In−1(≤,≥, 6=)|+ n2n−3,

where we have used the fact that ∑α
k=0 k(α

k) = ∑α
k=0 k α!

(α−k)!k! = ∑α
k=0 α (α−1)!

(α−k)!(k−1)! =

∑α
k=0 α(α−1

k−1) = ∑α
k=1 α(α−1

k−1) = α · 2α−1.
This recurrence has initial condition |I1(≤,≥, 6=)| = 1 = (1 − 1)21−2 + 1 and

solution (n− 1)2n−2 + 1 since (n− 2)2n−3 + 1 + n · 2n−3 = (2n− 2)2n−3 + 1 = (n−
1)2n−2 + 1. By induction principle the statement of the theorem holds.

Remark 2.3.2. Note that distinguishing the two cases with respect to the value of ea means
that we have partitioned the inversion sequences e ∈ In(≤,≥, 6=) into two disjoint sets:
Xn = {e ∈ In(≤,≥, 6=) : ea > 1}, Yn = {e ∈ In(≤,≥, 6=) : ea = 1}. This process is often
used, but not always, in proofs by recursive construction.

2.3.2 Second example

The pattern of the second example (presented by Auli-Elizalde [1] in Section 3.3
and where no proof is provided) is the consecutive pattern 120. In this case the
enumerative result is a recurrence that allows to compute the avoidance sequence
(more precisely a refinement of it) of our pattern.

Firstly, we recall Definition 1.3.9 of the considered refinement.

Definition 2.3.3. A refinement of the avoidance set In(p) is In,k(p) = In,k ∩ In(p), where
In,k = {e ∈ In : en = k}.

The following result holds.

Proposition 2.3.4. Let n ≥ 1 and 0 ≤ k < n. It holds:

|In,k(120)| = |In−1(120)| −∑
j>k

(n− 2− j)
∣∣In−2,j(120)

∣∣ .
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Proof. Recall the convention |I0(p)| = 1 in the Definition 1.3.8.
For n = 1 we have

|I1,0(120)| = 1 and |I0(120)| −∑
j>0

(−1− j)
∣∣I−1,j(120)

∣∣ = 1− 0 = 1.

For n = 2 we have

|I2,0(120)| = 1 and |I1(120)| −∑
j>0

(−j)
∣∣I0,j(120)

∣∣ = 1− 0 = 1

|I2,1(120)| = 1 and |I1(120)| −∑
j>1

(−j)
∣∣I0,j(120)

∣∣ = 1− 0 = 1.

So the result holds for n = 1 or 2.
Assume n ≥ 3. For ` ≤ n− 2 and m ≤ n− 4 let

Bn−1,j,` := {e ∈ In−1,`(120) : en−2 < en−1 and en−2 = j}.

It holds that if e = e1e2 . . . en ∈ In,k(120), then e = e1e2 . . . en−1 ∈ In−1(120). More-
over, e ∈ In,k(120) if and only if e1e2 . . . en−1 ∈ In−1(120) \ tj>k tn−2

`=j+1 Bn−1,j,`, since
otherwise en−2en−1en would be an occurrence of 120 by definition of Bn−1,j,`.

Conversely, if we have e1e2 . . . en−1 ∈ In−1(120) \ tn−2
`=j+1Bn−1,j,` and we add the

entry en = k, we obtain an inversion sequence e1e2 . . . en that avoids 120 and whose
last entry is k.

From this we obtain the following equality between cardinalities:

|In,k(120)| = |In−1(120)| −∑
j>k

n−2

∑
`=j+1

∣∣Bn−1,j,`
∣∣ . (2.3.2)

The last thing we have to do is to establish what is
∣∣Bn−1,j,`

∣∣. We can see that
e ∈ Bn−1,j,` if and only if e1e2 . . . en−2 ∈ In−2,j(120) where j > k and en−1 = `. From
this consideration equation 2.3.2 becomes

|In,k(120)| = |In−1(120)| −∑
j>k

n−2

∑
`=j+1

∣∣In−2,j(120)
∣∣

= |In−1(120)| −∑
j>k

(n− 2− j− 1 + 1)
∣∣In−2,j(120)

∣∣
= |In−1(120)| −∑

j>k
(n− 2− j)

∣∣In−2,j(120)
∣∣

and the statement holds.

Table 2.3 shows a list of cases falling in the type of proof presented in this section.
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Pattern Reference Section
012 [4] 2.1
201 [4] 2.3
000 [4] 3.1
011 [4] 3.3
021 [4] 4.1
(=,≤,−) [12] 2.3
( 6=,≤,−) [12] 2.5.1
(<,≤,−) [12] 2.6.2
(≤,=,−) [12] 2.6.4
( 6=, 6=, 6=) [12] 2.7.2
( 6=,<,≤) [12] 2.8
*(≤,≥, 6=) [12] 2.11
(−,−,=) [12] 2.13
000 [1] 3.1
0r [1] 3.1
110 [1] 3.2
100 [1] 3.2
*021, 102, 120, 201 [1] 3.3
012 [1] 3.3
210 [1] 3.3
001, 010, 011, 101 [1] 3.3

TABLE 2.3: Cases falling in the type of proof "Constructive proof".

2.4 Bijective proof

The fourth method I present is the one where you prove a result by means of a
bijection. This kind of proof is very useful if you want to compare cardinalities of
different combinatorial classes and it provides a clear proof. Sometimes you already
know the enumeration sequence of one of the two combinatorial classes and so you
can prove that the other class is enumerated by the same sequence, but sometimes
you don’t know how the two classes are enumerated and so you can "just" prove
that they are enumerated by the same sequence, without knowing it.

In what follows, I present three examples of this method.

2.4.1 First example

The patterns of the first example (presented by Martinez-Savage [12] in subsections
2.27.3 and 3.2.1, where some parts of the proofs are missing) are the triples of re-
lations (>,≥,−), (≥,>,−), (−,>,>) and ( 6=,≥,>). In this case the enumerative
result are two Wilf equivalences between these four patterns.

Theorem 2.4.1. The following holds:

1. the patterns (>,≥,−) and (≥,>,−) are Wilf equivalent

2. the patterns (−,>,>) and ( 6=,≥,>) are Wilf equivalent.

Proof. We first prove item 1. As mentioned in Remark 1.3.16 avoiding the pat-
terns (>,≥,−) and (≥,>,−) is the same as avoiding the patterns (100, 210) and
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(110, 210), respectively. We construct a bijection between In(110, 210) and In(100, 210)
in order to prove that |In(110, 210)| = |In(100, 210)|.

We define a map

Φ : In(110, 210)→ In(100, 210) with Φ(e) = e′, where

e′j =

{
max{e1, . . . , ej}, if ej = ek for some k > j
ej, otherwise

for 1 ≤ j ≤ n.
We go on with some considerations. By this definition it holds that

e′j ≤ max{e1, . . . , ej} = max{e′1, . . . , e′j} (2.4.1)

for 1 ≤ j ≤ n, where the second equality holds for the following reason. Assume
max{e1, . . . , ej} = ek, for k ∈ {1, . . . , j}. If e′k 6= ek, then e′k = max{e1, . . . , ek} = ek. So
ek is still in {e′1, . . . , e′j}.

Moreover, if e′j 6= ej then

e′j = max{e1, . . . , ej} ≥ e′i (2.4.2)

for all 1 ≤ i ≤ j, since e′i can be equal to ei ∈ {e1, . . . , ej} or to max{e1, . . . , ei} ≤
max{e1, . . . , ej}.

Now we have to check that e′ ∈ In(100, 210). Firstly we prove that e′ avoids the
pattern 100. Suppose that e′ doesn’t avoid 100, then there is some i < j < k such
that e′i > e′j = e′k. But then 2.4.2 implies that e′j = ej and e′k = ek since both j and k
are greater than i. So we have that ej = ek with j < k and the definition of Φ implies
that e′j = max{e1, . . . , ej} ≥ e′i, but this contradicts our assumption. Consequently e′

avoids 100.
Secondly we prove that e′ avoids 210. Suppose that e′ doesn’t avoid 210, then

there is some i < j < k such that e′i > e′j > e′k. But then 2.4.2 implies that e′j = ej

and e′k = ek since both j and k are greater than i. We know that e avoids 210 and
so we must have that e′i 6= ei. So, there exists s ∈ {1, . . . , i − 1} such that e′i =
max{e1, . . . , ei} = es. But then we have s < j < k and ek < ej < es, which contradicts
the fact that e avoids 210.

So e′ ∈ In(100, 210).
Next we have to check if this map is a bijection.
In order to do this we present some considerations. We take an inversion se-

quence e ∈ In(110, 210). Consider its image e′ = Φ(e) and assume that there is an
entry ej with e′j 6= ej. By definition of Φ there is some k > j such that ej = ek = q,
where q is a value less than j. Since e′j 6= ej = q, q < max{e1, . . . , ej−1} = et for
t ∈ {1, . . . , j − 1}. Moreover we know that e avoids 210 and so the entries after ej
must be at least q, hence q = min{ej, . . . , en}.

From this observation we deduce that

e′t = et = max{e1, . . . , ej−1} = e′j > ej = q = min{ej, . . . , en} = min{e′j, . . . , e′n}
(2.4.3)

where the first equality holds because if e′t 6= et then e′t = max{e1, . . . , et} = et
(since et = max{e1, . . . , ej−1} for t ∈ {1, . . . , j− 1}). The last equality holds for the
following reason. Assume min{ej, . . . , en} = ek for k ∈ {j, . . . , n}. If e′k 6= ek, then
there exists an ` > k such that e` = ek and e′` = e` = ek. So ek is still in {e′j, . . . , e′n}.
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So now we can define another map and we will prove that it is the inverse of Φ.

Ψ : In(100, 210)→ In(110, 210) with Ψ(e′) = e, where

ej =

{
min{e′j, . . . , e′n}, if e′i = e′j for some i < j

e′j, otherwise

for 1 ≤ j ≤ n.
Let us make a consideration. If e′i 6= ei then

ej ≥ min{e′j, . . . , e′n} ≥ min{e′i, . . . , e′n} = ei (2.4.4)

for 1 ≤ i ≤ j.
Now we have to check that e ∈ In(110, 210). Firstly, we prove that e avoids the

pattern 110. Suppose that e doesn’t avoid 110, then there is some i < j < k such that
ei = ej > ek. But then 2.4.4 implies that ei = e′i and ej = e′j since k is greater than
both i and j. So we have that e′i = e′j with i < j and the definition of Ψ implies that
ej = min{e′j, . . . , e′n} ≤ min{e′k, . . . , e′n} ≤ ek, but this contradicts our assumption.

Secondly, we prove that e avoids 210. Suppose that e doesn’t avoid 210, then
there is some i < j < k such that ei > ej > ek. But then 2.4.4 implies that ei = e′i
since k is greater than i and ej = e′j since k is greater than j. We know that e′ avoids
210 and so we must have that ek 6= e′k. So, there exists s ∈ {k + 1, . . . , n} such that
ek = min{e′k, . . . , e′n} = e′s for s ∈ {k + 1, . . . , n}. But then we have i < j < s and
e′s < e′j < e′i, which contradicts the fact that e′ avoids 210.

So e ∈ In(110, 210).
We proceed with the last observation. We take an inversion sequence

e′ ∈ In(100, 210). Consider its image e = Ψ(e′) and assume that there is an entry e′j
with ej 6= e′j. By definition of Ψ there is some i < j such that e′i = e′j = q, where q is a
value less than i. Since ej 6= e′j = q, q > min{e′j+1, . . . , e′n} = e′k for k ∈ {j + 1, . . . , n}.
Moreover, we know that e′ avoids 210 and so the entries before e′j must be at most q,
hence q = max{e′1, . . . , e′j}.

From this observation we deduce that

ek = e′k = min{e′j+1, . . . , e′n} = ej < e′j = max{e′1, . . . , e′j} = max{e1, . . . , ej} (2.4.5)

where the first equality holds because if ek 6= e′k then ek = min{e′k, . . . , e′n} = e′k
(since e′k = min{e′j+1, . . . , e′n} for k ∈ {j + 1, . . . , n}). The last equality holds for the
following reason. Assume max{e′1, . . . , e′j} = e′k for k ∈ {1, . . . , j}. If ek 6= e′k, then
there exists an ` < k such that e′` = e′k and e` = e′` = e′k. So e′k is still in {e1, . . . , ej}.

Let e ∈ In(110, 210) and e′ ∈ In(100, 210). Then by definition of Φ and Ψ, and by
2.4.3

Ψ(Φ(e))j = Ψ(e′)j =

{
min{e′j, . . . , e′n} = ej, if e′j 6= ej

e′j = ej, if e′j = ej

and by 2.4.5

Φ(Ψ(e′))j = Φ(e)j =

{
max{e1, . . . , ej} = e′j, if ej 6= e′j
ej = e′j, if ej = e′j.

Hence Ψ(Φ(e)) = e and Φ(Ψ(e′)) = e′.
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We can conclude that Φ is a bijection and so we obtain that |In(110, 210)| =
|In(100, 210)|, proving the desired Wilf equivalence.

We now prove item 2. Avoiding the patterns (−,>,>) and ( 6=,≥,>) is the same
as avoiding the patterns (110, 210, 120) and (100, 210, 120), respectively. This means
that the considered inversion sequences are the ones in In(110, 210) and In(100, 210),
respectively, that avoid in addition 120. So in order to prove statement 2), we have
to show that the maps Φ and Ψ preserve 120-avoidance.

Let’s begin with the map Φ. Let e ∈ In(110, 210) be an inversion sequence that
avoids 120. Suppose that Φ(e) = e′ ∈ In(100, 210) doesn’t avoid 120, then there is
some i < j < k such that e′k < e′i < e′j. But then 2.4.2 implies that e′k = ek since k is
greater than j. We know that e avoids 120 and hence it cannot be the case that both
e′i = ei and e′j = ej. We distinguish three cases.

Suppose e′i = ei. By the 120-avoidance of e, it follows that e′j 6= ej. So by definition
of Φ, there exists s ∈ {1, . . . , j− 1} such that es = e′j. If i < s < k then we have that
eiesek creates a 120 in e. If s < i < k then we have that eseiek creates a 210 in e.
Both of the options lead to a contradiction. Note that i = s is not possible since
e′j = max{e1, . . . , ej} > e′i = ei.

Suppose e′j = ej. By the 120-avoidance of e, it follows that e′i 6= ei. So by definition
of Φ, there exists t ∈ {1, . . . , i− 1} such that et = e′i. But then we have t < j < k and
ek < et < ej, which contradicts the fact that e avoids 120.

For the last case assume both e′i 6= ei and e′j 6= ej. Let s and t be as above. Since
from definition of Φ e′i = max{e1, . . . , ei} and e′j = max{e1, . . . , ej} and moreover
e′i < e′j, we deduce that et < es and t < s (since es must be after ei). Hence etesek

forms a 120 in e, which is a contradiction.
We conclude that Φ preserves 120-avoidance.
Now we proceed with the map Ψ. Let e′ ∈ In(100, 210) be an inversion sequence

that avoids 120. Suppose Ψ(e′) = e ∈ In(110, 210) doesn’t avoid 120, then there is
some i < j < k such that ek < ei < ej. But then 2.4.4 implies that ei = e′i since k is
greater than i and ej = e′j since k is greater than j. We know that e′ avoids 120 and
so it cannot be the case that ek = e′k. This implies that ek 6= e′k and by definition of
Ψ there exists v ∈ {k + 1, . . . , n} such that e′v = ek. But then we have i < j < v and
e′v < e′i < e′j, which contradicts the fact that e′ avoids 120. We conclude that also Ψ
preserves 120-avoidance.

Therefore statement 2) holds.

2.4.2 Second example

The patterns of the second example (presented by Auli-Elizalde [1] in Section 4.3
and where no proof is provided) are the consecutive patterns 2010, 2110 and 2120.
In this case the enumerative result is a super-strong Wilf equivalence between these
three patterns.

We first recall Definition 1.3.20 of Em(p, e).

Definition 2.4.2. An inversion sequence e of length n contains the consecutive pattern
p = p1 p2 . . . pk if there exist a consecutive subsequence eiei+1 . . . ei+k−1 of e such that its
reduction is equal to p. In this case, we call eiei+1 . . . ei+k−1 an occurrence of p in position i.
Otherwise, e avoids p.
Moreover, Em(p, e) = {i : eiei+1 . . . ei+k−1 is an occurrence of p}.

Now we prove a lemma that we will use in the proof of the Wilf equivalences.
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Lemma 2.4.3. Let p and p′ be two consecutive patterns. If for all n and for all S ⊆
{1, . . . , n}

|{e ∈ In : Em(p, e) ⊇ S}| =
∣∣{e ∈ In : Em(p′, e) ⊇ S}

∣∣ ,

then p and p′ are super-strongly Wilf-equivalent.

Proof. Let S ⊆ {1, . . . , n}. We define two functions feq, finc : 2S → R, where 2S is the
powerset of S, such that

feq(S) = |{e ∈ In : Em(p, e) = S}| and finc(S) = |{e ∈ In : Em(p, e) ⊇ S}|.

From this definition we can see that

finc(T) = ∑
S⊇T

feq(S)

for all T ⊆ {1, . . . , n}. By the principle of Inclusion-Exclusion ([14]) we obtain that

feq(T) = ∑
S⊇T

(−1)|S\T| finc(S) (2.4.6)

using finc(T) = Φ( feq(T)) and feq(T) = Φ−1( finc(T)), where Φ is a real linear trans-
formation, in the notation of [14].

Proceeding in the same way, we define two functions f ′eq, f ′inc : 2S → R such that

f ′eq(S) = |{e ∈ In : Em(p′, e) = S}| and f ′inc(S) = |{e ∈ In : Em(p′, e) ⊇ S}|.

From this we can see that
f ′inc(T) = ∑

S⊇T
f ′eq(S)

for all T ⊆ {1, . . . , n}. By the principle of Inclusion-Exclusion we deduce that

f ′eq(T) = ∑
S⊇T

(−1)|S\T| f ′inc(S). (2.4.7)

Our assumption was that finc(S) = f ′inc(S) for all S ⊆ {1, . . . , n}. Hence from
2.4.6 and 2.4.7 we obtain that feq(T) = f ′eq(T) for all T ⊆ {1, . . . , n}. Applying
Definition 1.3.22, the result follows.

Now we prove the following result.

Proposition 2.4.4. The patterns 2010, 2110 and 2120 are super-strongly Wilf equivalent.

Proof. We construct a bijection between

{e ∈ In : Em(2010, e) ⊇ S} and {e ∈ In : Em(2110, e) ⊇ S}

in order to prove that

|{e ∈ In : Em(2010, e) ⊇ S}| = |{e ∈ In : Em(2110, e) ⊇ S}|

for all n and for all S ⊆ {1, . . . , n}.
We start with some considerations about the set S. Since no two occurrences of

2010 and 2110 can overlap in three entries, S doesn’t contain consecutive numbers.
Moreover, S can be written in a unique way as a disjoint union of maximal subsets
whose entries define an arithmetic sequence with difference 2. This means that we
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write S as S = tq
j=1Bj, where Bj = {ij, ij + 2, . . . , ij + 2lj} and ij + 2(lj + 1) < ij+1

with 1 ≤ j ≤ q− 1.
After these considerations about S we can define a map

αs : {e ∈ In : Em(2010, e) ⊇ S} → {e ∈ In : Em(2110, e) ⊇ S} with αs(e) = e′, where

e′i =

{
ei+1, if i− 1 ∈ S
ei, otherwise

for 1 ≤ i ≤ n. This map transforms occurrences of the pattern 2010 in positions of S
into occurrences of the pattern 2110.

For example for S = {4, 6} αs(0, 0, 1, 3, 0, 2, 0, 1, 0) = (0, 0, 1, 3, 2, 2, 1, 1, 0). It can
be noticed that (0, 0, 1, 3, 0, 2, 0, 1, 0) contains two occurrences of 2010, one in position
4 and the other in position 6; (0, 0, 1, 3, 2, 2, 1, 1, 0) contains two occurrences of 2110,
one in position 4 and the other in position 6 like before.

Now we define another map βs which is the inverse of αs (by construction), with
βs(e′) = e, where

ei =

{
e′ij+2lj+3, if i− 1 ∈ Bj

e′i, otherwise

for 1 ≤ i ≤ n and ij + 2lj is the last entry of Bj. This map transforms occurrences of
of the pattern 2110 in positions of S into occurrences of the pattern 2010.

For example for S = {4, 6}, B1 = {4, 6}, i1 = 4 and l = 1, βs(0, 0, 1, 3, 2, 2, 1, 1, 0) =
(0, 0, 1, 3, 0, 2, 0, 1, 0) since e′ij+2lj+3 = e′9 = 0. Also in this case it can be noticed that
(0, 0, 1, 3, 2, 2, 1, 1, 0) contains two occurrences of 2110, one in position 4 and the other
in position 6; (0, 0, 1, 3, 0, 2, 0, 1, 0) contains two occurrences of 2010, one in position
4 and the other in position 6 like before.

Since βs is the inverse of αs, we can conclude that αs is a bijection and hence

|{e ∈ In : Em(2010, e) ⊇ S}| = |{e ∈ In : Em(2110, e) ⊇ S}|

for all n and for all S ⊆ {1, . . . , n}. Applying Lemma 2.4.3 we obtain the super-
strongly Wilf equivalence between 2010 and 2110.

In order to show that all the three patterns 2010, 2110 and 2120 are super-strongly
Wilf equivalent, it remains to be shown that the first one and the third one are super-
strongly Wilf equivalent. The former considerations about the set S hold also in this
case.

So we can define a map

γs : {e ∈ In : Em(2010, e) ⊇ S} → {e ∈ In : Em(2120, e) ⊇ S} with γs(e) = e′, where

e′i =


ei+1, if i− 1 ∈ S
eij , if i− 2 ∈ Bj

ei, otherwise

for 1 ≤ i ≤ n. The first line comes from the fact that the second entry of the pattern
changes from 0 to 1. The second line comes from the fact that the third entry of the
pattern changes from 1 to 2. The point is that we change two entries of the pattern
and not only one, and that two occurrences of the patterns 2010 and 2120 can overlap
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in two entries. This map transforms occurrences of the pattern 2010 in positions of S
into occurrences of the pattern 2120.

For example for S = {5, 7, 9}, B1 = {5, 7, 9}, i1 = 5 and l1 = 2,
γs(0, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0) = (0, 0, 1, 1, 4, 3, 4, 2, 4, 1, 4, 0) since eij = e5 = 4. It can
be noticed that (0, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0) contains three occurrences of 2010 in posi-
tions 5, 7, 9 and (0, 0, 1, 1, 4, 3, 4, 2, 4, 1, 4, 0) contains three occurrences of 2120 in po-
sitions 5, 7, 9 like before.

Now we define another map δs, which is the inverse of γs (by construction), with
δs(e′) = e, where

ei =


e′ij+2lj+3, if i− 1 ∈ Bj

e′i−1, if i− 2 ∈ S
e′i, otherwise

for 1 ≤ i ≤ n and ij + 2lj is the last entry of Bj. This map transforms occurrences of
the pattern 2120 in positions of S into occurrences of the pattern 2010.

For example for S = {5, 7, 9}, B1 = {5, 7, 9}, i1 = 5 and l1 = 2,
δs(0, 0, 1, 1, 4, 3, 4, 2, 4, 1, 4, 0) = (0, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0) since e′ij+2lj+3 = e′12 = 0.
Also in this case it can be seen that (0, 0, 1, 1, 4, 3, 4, 2, 4, 1, 4, 0) contains three occur-
rences of 2120 in positions 5, 7, 9 and (0, 0, 1, 1, 4, 0, 3, 0, 2, 0, 1, 0) contains three occur-
rences of 2010 in positions 5, 7, 9 like before.

Since δs is the inverse of γs, we can conclude that γs is a bijection and hence

|{e ∈ In : Em(2010, e) ⊇ S}| = |{e ∈ In : Em(2120, e) ⊇ S}|

for all n and for all S ⊆ {1, . . . , n}. Applying Lemma 2.4.3 we obtain the super-
strongly Wilf equivalence between 2010 and 2120.

Therefore we can conclude that 2010 s∼ 2110 s∼ 2120.

2.4.3 Example concerning statistics

I decided to present a third example (exhibited by Yan-Lin [15] in Chapter 5 and
where some parts of the proof are missing) in order to illustrate that a bijection can
in addition preserve some statistic. In this case the number of preserved statistics is
three. The patterns of the this example are two pairs of classical patterns of length 3.

Theorem 2.4.5. There exists a bijection between In(010, 101) and In(010, 100) that pre-
serves the triple of statistics (dist, maxim, zeros).

Proof. We start by characterizing the inversion sequences that avoid the pattern
(010, 101): an inversion sequence e ∈ In avoids (010, 101) if and only if ei = ej with
i < j implies that ek = ei for all i ≤ k ≤ j.

This holds for the following reason. Let e ∈ In such that e avoids (010, 101).
Assume that ei = ej for some i < j and ek 6= ei for some k between i and j.

If ek < ei then we have i < k < j and ei > ek < ej, ei = ej, which contradicts the
fact that e avoids 101.

If ek > ei then we have i < k < j and ei < ek > ej, ei = ej, which contradicts the
fact that e avoids 010.

Consequently ei = ej with i < j implies that ek = ei for all i ≤ k ≤ j.
Conversely, assume that e ∈ In is such that ei = ej with i < j implies that ek = ei

for all i ≤ k ≤ j. This means that if we have two equal entries, say equal to q, the
values between them are neither greater nor less than q. This implies that e avoids
010 and 101.
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Now that we know how these pattern-avoiding inversion sequences are charac-
terized, we can define a map

α : In(010, 101)→ In(010, 100) with α(e) = e′, where

e′i =

{
max{e1, . . . , ei−2}, if ei−1 = ei < max{e1, . . . , ei−2}
ei, otherwise.

For example α(0, 0, 1, 2, 2, 5, 4, 4, 4) = (0, 0, 1, 2, 2, 5, 4, 5, 5) since e7 = e8 = e9 < e6.
Next we check if this map is a bijection. By definition of α, if we have ei−1 =

ei < max{e1, . . . , ei−2} then ei changes to the value max{e1, . . . , ei−2} and we don’t
have anymore the pattern 100. Moreover, let’s assume that e avoids 100. If an entry
ei changes, it changes to max{e1, . . . , ei−2} = e` for ` ∈ {1, . . . , i − 2}. This doesn’t
create a 100 because there are no values greater than max{e1, . . . , ei−2} to the left of
e` and there are no two equal entries less than max{e1, . . . , ei−2} to the right of ei,
otherwise e would contain a 100. Hence e′ ∈ In(010, 100).

We construct the inverse of α

β : In(010, 100)→ In(010, 101) with β(e′) = e, where

ei =

{
e′j, if e′i ∈ {e′1, . . . , e′j−1} and e′j = rightmost entry to the left of e′i different from e′i
e′i, otherwise.

For example β(0, 0, 1, 2, 2, 5, 4, 5, 5) = (0, 0, 1, 2, 2, 5, 4, 4, 4) since e′8, e′9 ∈ {e′1, . . . , e′6}.
Let e ∈ In(010, 101) and e′ ∈ In(010, 100). It holds that β(α(e)) = e since α

changes those values ei for which ei−1 = ei < max{e1, . . . , ei−2} but then these
are exactly the values e′i for which e′i ∈ {e′1, . . . , e′j−1} (and e′j = ei since the first
entry of the sequence of values equal to ei and less than max{e1, . . . , ei−2} doesn’t
change). Moreover, it holds that α(β(e′)) = e′ since β changes those values e′i for
which e′i ∈ {e′1, . . . , e′j−1} but then these are exactly the values for which ei−1 = ei <

max{e1, . . . , ei−2} (and max{e1, . . . , ei−2} = e′i since e′ avoids 100 and 010). Hence α
and β are inverses of each other and so we conclude that α is a bijection.

The last thing we have to check is that α preserves the statistics dist, maxim and
zeros.

If we apply the map α to an inversion sequence e, the entries of e remain the same
or change to max{e1, . . . , ei−2} and hence no new values are added: the statistic dist
is preserved.

If an inversion sequence e ∈ In(010, 101) contains ei = i − 1 for some i, this
implies that ei 6= ei−1 < i− 1 and hence ei remains the same; moreover, if you change
an entry you add a value which was already used, so you don’t add a maximal
element: the statistic maxim is preserved.

Let e ∈ In(010, 101) be an inversion sequence. Like for all inversion sequences
e1 = 0 and so if ej = 0 then ei = 0 for all 1 ≤ i ≤ j, since e avoids 010. This means
that the zero entries don’t have values 6= 0 to the left and hence a zero entry remains
the same; moreover, if you change an entry you add the entry max{e1, . . . , ei−2} >
ei = ei−1 and so you don’t add a zero entry: the statistic zeros is preserved.

Table 2.4 shows a list of cases falling in the type of proof presented in this section.
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Pattern Reference Section
210, 201 [4] 2.3
000 [4] 3.1
001 [4] 3.2
021 [4] 4.1
021 [4] 4.2
(≥,≤, 6=) [12] 2.5.2
(<,≥,−) [12] 2.6.3
( 6=,<,−) [12] 2.7.1
(≥,≥,−), (−,≤,≥) [12] 2.16
( 6=, 6=,=) [12] 2.17.3
(>,−,≥) [12] 2.24.2
(>,−,>), (≥, 6=,>) [12] 2.26
*(>,≥,−), (≥,>,−) [12] 2.27.3
(>,≥,−), (−,≤,>) [12] 2.27.4
*(−,>,>), ( 6=,≥,>) [12] 3.2.1
(−, 6=,>), ( 6=,−,>) [12] 3.2.2
(−,>,≥), ( 6=,≥,≥) [12] 3.2.3
(−, 6=,≥), ( 6=,−,≥) [12] 3.2.4
(1− 23, 2− 14− 3) [2] 2.3
(000, 011), (011, 012), (001, 101), (001, 102), (001, 201), (010, 012) [15] 2.6
(012, 021), (110, 012) [15] 2.7
(011, 021), (010, 021) [15] 2.9
(012, 102), (012, 120), (011, 102) [15] 3
011 [15] 5
(010, 101) [15] 5
*(010, 101), (010, 100) [15] 5
(101, 102), (101, 021) [15] 6
(011, 201), (011, 210); (000, 201), (000, 210); (100, 021), (110, 021) [15] 8
(010, 201), (010, 210) [15] 8
110, 100 [1] 3.2
012, 321 [1] 3.4
021, 1324 [1] 3.4
0021, 0121 [1] 4.1
1002, 1012, 1102 [1] 4.1
0100, 0110 [1] 4.1
2013, 2103 [1] 4.1
1200, 1210, 1220 [1] 4.1
0211, 0221 [1] 4.1
1001, 1101, 1220 [1] 4.1
2001, 2011, 2101, 2201 [1] 4.1
2012, 2101 [1] 4.1
3012, 3102 [1] 4.1
1000, 1110 [1] 4.2
2100, 2210 [1] 4.2
0102, 0112 [1] 4.3
*2010, 2110, 2120 [1] 4.3

TABLE 2.4: Cases falling in the type of proof "Bijective proof".



2.5. Generating function 27

2.5 Generating function

The fifth method I present is the one where you prove a result by means of gener-
ating functions. The following definitions briefly explain the concept of generating
function.

Definition 2.5.1. A formal power series is a sequence ( fn)n≥0 of elements in a field K. It is
denoted F(x) = ∑n≥0 fnxn.

Definition 2.5.2. The ordinary generating function of C is the formal power series (with
coefficients in Q)

∑
n≥0

cnxn

where cn= number of objects of C of size n.

Later we will also use the following concept.

Definition 2.5.3. Let P : C → N be a parameter on C. The ordinary bivariate generating
function of C with the parameter P is the formal power series (with coefficients in Q[y])

∑
n≥0

∑
k≥0

cn,kxnyk

where cn,k= number of objects of C of size n and with value k for P .

In this method you use the important fact that two generating functions are equal
if and only if their coefficients are also equal. When you want to enumerate a certain
family of combinatorial objects you check if its generating function is the same as the
generating function for a well-known combinatorial sequence, showing that they are
solutions of the same equation on generating functions.

Formal power series can be interpreted as functions on x ∈ C, defined "closed to
x = 0"; conversely, the Taylor series expansion of an analytic function F : C → C

around the origin defines a formal power series. This is the way we view formal
power series in this section.

In the sequel I present two examples of this method, with two different well-
known combinatorial sequences.

2.5.1 First example

The pattern of the first example (presented by Corteel et al. [4] in Section 2.2) is the
classical pattern 021.

Before proving the enumerative result about the 021-avoiding inversion sequences,
we present a certain combinatorial class and its generating function. The combi-
natorial class in question is the one of Schröder paths. A Schröder path of size
n is a path from (0, 0) to (2n, 0), staying weakly above the x-axis and using only
the up-step (1, 1), the down-step (1,−1) and the long horizontal step (2, 0). Note
that the size of a Schröder path is the half of the x-coordinate of the endpoint.
Moreover, for all n the number of Schröder paths of size n is finite. For example
p = UUUDFDFUDDFUFFD is a Schröder path of size 15 where U, D, F represent
the up-step, the down-step and the long horizontal step.

We denote by R the combinatorial class of Schröder paths and by Rn the set of
Schröder paths of size n. The ordinary generating function ofR is the formal power
series

R(x) = ∑
n≥0

rnxn (2.5.1)
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where rn = |Rn|.
We need to compute R(x) and so we proceed in the following way. A Schröder

path can have three different forms. It can be empty and this corresponds to the class
E with one element of size 0. Or it can start with a long horizontal step (followed by
a Schröder path): such Schröder paths correspond to pairs (F, p) where F belongs
to the class Z with one element of size 1 and p belongs to the class R of Schröder
paths. Or it can start with an up-step (followed by a Schröder path) that is matched
with the down-step (followed by a Schröder path) corresponding to the first return
of the path (which is the smallest number k > 0 such that (2k, 0) is on the path): such
Schröder paths correspond to triples (F, p, p′) where F belongs to the class Z with
one element of size 1 and p, p′ belong to the class R of Schröder paths. Hence we
obtained that

R = E +Z ×R+Z ×R×R.

Translating this equation on combinatorial classes into an equation on generating
functions we obtain

R(x) = 1 + xR(x) + xR2(x)

and solving it with respect to x gives

R(x) =
1− x±

√
x2 − 2x + 1− 4x

2x
=

1− x±
√

x2 − 6x + 1
2x

.

Since the empty path is in R it holds that R(0) = 1 and hence the formal power
series R(x) satisfies

R(x) =
1− x−

√
x2 − 6x + 1

2x
.

Now we proceed with the following enumerative result.

Theorem 2.5.4. |In(021)| = rn−1, for n ≥ 1.

Proof. We start by characterizing the inversion sequences that avoid the pattern 021:
an inversion sequence e ∈ In avoids 021 if and only if the positive entries are weakly
increasing.

This holds for the following reason. Let e ∈ In such that e avoids 021. Assume
there is i < j, such that ei > ej (both different from 0). But then we have 1 < i < j
and 0 = e1 < ej < ei, which contradicts the fact that there is no i < j < k with
ei < ek < ej. So ei ≤ ej with i < j for all the entries different from zero implies that
the positive entries are weakly increasing.

Conversely, suppose that the positive elements of e are weakly increasing. As-
sume e ∈ In doesn’t avoid 021. Then there is i < j < k with ei < ek < ej (so ek and ej
are both different from 0). But ek < ej (both different from 0) with j < k contradicts
the fact that the positive elements of e are weakly increasing. Therefore e avoids 021.

Now that we know how these pattern-avoiding inversion sequences are charac-
terized, we proceed in the following way. We define G(x) = ∑∞

n=1 |In(021)| xn and
we show that it satisfies the equation

G(x) = x + xG(x) + G2(x). (2.5.2)

Solving it with respect to G(x) gives

G(x) =
1− x±

√
x2 − 2x + 1− 4x

2
=

1− x±
√

x2 − 6x + 1
2

=
1− x−

√
x2 − 6x + 1
2
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where the last equality holds because G(0) = 0. Hence G(x) = xR(x) = ∑n≥0 rnxn+1

= ∑n≥1 rn−1xn and the claim will hold.
Take an inversion sequence e ∈ In(021) and let k + 1 be the greatest index such

that ek+1 = k. We distinguish two cases.
If k = 0 then e = 0 · e′ for some e′ ∈ In−1(021) since e has no maximal elements

except e1. Conversely, take g ∈ In−1(021). If we add a zero as first entry we obtain
a sequence in In(021) where e1 = 0 and after this entry there are no more maximal
elements. This contributes the x + ∑∞

n=2 |In−1(021)| xn = x + ∑∞
n=1 |In(021)| xn+1 =

x + xG(x) (where the x represents the only object of size 1) to the equation 2.7.
If k > 0 we know that (e1, . . . , ek) ∈ Ik(021) since e ∈ In(021). For the entries

after position k + 1 it holds that either ek+i = 0 or ek+1 = k ≤ ek+i < k + i − 1, i ∈
{2, . . . , n − k}, using the above characterization and by definition of k. Then if we
subtract k− 1 from the positive entries of (ek+2, . . . , en) and we add a zero as first en-
try we obtain a sequence in In−k(021), in which ek+i is the i-th entry. Conversely, take
the inversion sequences (e1, . . . , ek) ∈ Ik(021) and f ∈ In−k(021). If we add k− 1 to
the positive entries of f , we get rid of the initial zero, and we concatenate the result-
ing sequence after (e1, . . . , ek, k), we obtain an inversion sequence in In(021) where
ek+1 = k and after this entry there are no more maximal elements. This contributes
the

∑
n≥1

(
n−1

∑
k=1
|Ik(021)| · |In−k(021)|)xn = G(x) · G(x)

= G2(x)

to the equation 2.7, where in the first equality we used the Cauchy product (with
[x0]G(x) = 0 and [xn]G(x) = |In(021)| when n ≥ 1).

2.5.2 Second example

The pattern of the second example (presented by Martinez-Savage [12] in subsection
2.14.2) is the triple of relations (−,≥,<).

Before proving the enumerative result about the (−,≥,<)-avoiding inversion se-
quences, we show that the generating function for the Catalan number Cn = 1

n+1 (
2n
n )

is 1−
√

1−4x
2x . We denote 1−

√
1−4x

2x by C(x). Using the formula (1 + z)α = ∑n≥0 (
α
n)z

n

with z = −4x and α = 1
2 we have

√
1− 4x = ∑

n≥0

(
1/2

n

)
(−4x)n.

Using the formula for the generalized binomial coefficient for n ≥ 0(
α

n

)
=

n

∏
k=1

α− k + 1
k

=
α(α− 1) . . . (α− n + 1)

n!
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we compute for n ≥ 0(
1/2

n

)
=

n

∏
k=1

1
2 − k + 1

k

=
n

∏
k=1

1− 2k + 2
2k

=
n

∏
k=1

−(2k− 3)
2k

=
(−1)n

2n (−1)
n

∏
k=2

2k− 3
k

2k− 2
2k− 2

=
(−1)n+1

2n

n

∏
k=2

(2k− 3)(2k− 2)
2k(k− 1)

=
(−1)n+1

2n+n−1
1
n!

1
(n− 1)!

(2n− 2)!
(2n− 1) · 2n
(2n− 1) · 2n

=
(−1)n+1

4n
1
n!

1
n!

1
2n− 1

(2n)!

=
(−1)n+1

4n
1

2n− 1

(
2n
n

)
and substituting it in the expansion of

√
1− 4x we obtain

C(x) =
1

2x
− 1

2x ∑
n≥0

(−1)n+1

4n
1

2n− 1

(
2n
n

)
(−4x)n

=
1

2x
− 1

2x
− 1

2x ∑
n≥1

(−1)n+1

4n
1

2n− 1

(
2n
n

)
(−4x)n

= ∑
n≥1

1
2
(−1)n

4n
1

2n− 1

(
2n
n

)
(−1)n4nxn−1

= ∑
m≥0

1
2

1
2(m + 1)− 1

(
2(m + 1)

m + 1

)
xm

= ∑
m≥0

1
2

1
2m + 1

(2m + 2)!
(m + 1)!(m + 1)!

xm

= ∑
m≥0

1
2

1
2m + 1

(2m + 2)(2m + 1)(2m)!
(m + 1)(m + 1)(m!)2 xm

= ∑
m≥0

1
m + 1

(
2m
m

)
xm

= ∑
m≥0

Cmxm.

Now we prove the following enumerative result.

Theorem 2.5.5. |In(−,≥,<)| = Cn.

Proof. We start by characterizing the inversion sequences that avoid the pattern
(−,≥,<): an inversion sequence e ∈ In has no i < j < k such that ej ≥ ek and
ei < ek if and only if the positive entries are strictly increasing.

This holds for the following reason. Let e ∈ In such that there is no i < j < k
with ej ≥ ek and ei < ek. Assume there is i < j such that ei ≥ ej (both different from
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0). But then we have 1 < i < j and e1 < ej ≤ ei, which is a contradiction. So ei < ej
with i < j for all the entries different from zero implies that the positive entries are
strictly increasing.

Conversely, suppose that the positive elements of e are strictly increasing. But
then if we have j < k with ej ≥ ek, this implies that ek = 0 and so there is no i < k
such that ei < ek. Therefore e avoids (−,≥,<).

Now that we know how these pattern-avoiding inversion sequences are charac-
terized, we proceed in the following way. We define L(x) = ∑∞

n=0 |In(−,≥,<)| xn

and we show that it satisfies the equation

L(x) = 1 + xL2(x). (2.5.3)

Solving it with respect to L(x) gives

L(x) =
1±
√

1− 4x
2x

=
1−
√

1− 4x
2x

where the last equality holds because L(0) = 1. Since 1−
√

1−4x
2x is the generating

function for Cn, the claim will hold.
Take an inversion sequence e ∈ In(−,≥,<) and let em be the last maximal entry

(that is, the last entry of e having the maximal possible value at its position). We
know that (e1, . . . , em−1) ∈ Im−1(−,≥,<) since e ∈ In(−,≥,<). Moreover, if we
subtract m − 1 from the positive entries of (em+1, . . . , en) we obtain a sequence in
In−m(−,≥,<), since ej is at most j− 2 for all m + 1 ≤ j ≤ n by definition of m and
using the aforementioned characterization.

Conversely, take the inversion sequences g ∈ Im−1(−,≥,<) and h ∈ In−m(−,≥
,<). If you add m − 1 to the positive entries of h and we concatenate it after g ·
(m− 1), we obtain an inversion sequence in In(−,≥,<) where em = m− 1 is the last
maximal entry.

This contributes the term

∑
n≥1

(
n

∑
m=1
|Im−1(−,≥,<)| · |In−m(−,≥,<)| xn)

= ∑
n≥1

(
n−1

∑
m=0
|Im(−,≥,<)| · |In−m−1(−,≥,<)| xn)

= ∑
n≥0

(
n

∑
m=0
|Im(−,≥,<)| · |In−m(−,≥,<)| xn+1)

=x ∑
n≥0

(
n

∑
m=0
|Im(−,≥,<)| · |In−m(−,≥,<)| xn)

=xL(x) · L(x)

=xL2(x)

to the equation 2.5.3, where we used the Cauchy product.
The inversion sequence of length n = 0, not considered in our process, con-

tributes the term 1 to the equation 2.5.3.

Table 2.5 shows a list of cases falling in the type of proof presented in this section.
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Pattern Reference Section
*021 [4] 2.2
*(−,≥,<) [12] 2.14.2
(≥,−,>) [12] 2.24.3
(≤,>, 6=) [12] 3.1.1

TABLE 2.5: Cases falling in the type of proof "Generating function".

2.6 Generating tree

The sixth method I present is the one where you prove a result by means of generat-
ing trees. We start by explaining the concept of generating tree, following [2].

Let C be a combinatorial class such that |C1| = 1. A generating tree for C is an
infinite rooted tree with the objects of C being the vertices of the tree, such that every
object is represented only once in the tree, and such that at the level n of the tree
there are only objects of size n (we index the levels from 1 starting from the root).

You go to the next level of the tree adding an atom, which is a part of the object
that increases the size of the object by 1, to an object c ∈ C of the previous level: the
objects obtained by adding an atom to some object c are called the children of c.

From above we know that every object is represented only once in the tree and
therefore we have to define some rules that tell which additions are admitted: the
process of adding atoms following these conditions is called the growth of C.

When the number of children of each node in the generating tree is controlled
by the value of some statistic, the growth of C is transferred into a succession rule
in which you have a first label, called axiom, that indicates the value of the statistic
on the root object, and a set of pairs (label, set of labels), called productions, that
indicate how the values of the statistic in the tree evolves.

You can find any term of the enumeration sequence of a combinatorial class C
directly from the succession rule: if you count (with repetition) the number of labels
that are produced by applying n− 1 times the set of productions starting from the
root, you obtain the n-th term of the enumeration sequence. Another way to find it
is from the generating tree: if you count the number of vertices at level n in the tree
you obtain the n-th term of the enumeration sequence.

In what follows, I present an example in order to understand better the concepts
of generating tree and succession rule. It is about the classical growth for the combi-
natorial class of Dyck paths.

Definition 2.6.1. A Dyck path of size n is a lattice path from (0, 0) to (2n, 0), staying
weakly above the x-axis and using only the up-step U = (1, 1) and the down-step D =
(1,−1).

In this case the atoms are the factors UD. So in order to obtain a child of some
Dyck path d we add a factor UD to d. Since every Dyck path is represented only
once in the tree we define a rule that says where we can add the atom: we can insert
a UD factor only at some point of the last descent, which is the longest suffix without
U-steps. Hence if Dk is the last descent, you can insert the UD factor in the following
ways: UDDk, DUDDk−1, DDUDDk−2, . . . , Dk−2UDDD, Dk−1UDD, DkUD.

In the next figure we can see the first three levels of the generating tree, with the
objects as nodes, for the class of Dyck paths.
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UD

UDUD

UDUDUD UDUUDD

UUDD

UUDDUD UUDUDD UUUDDD

In this case the number of children represented in the tree is controlled by the
length of the last descent and so the labels in the generating tree indicate the number
of D steps in the last descent. In the next figure we can see the first four levels of the
generating tree, with the labels as nodes, for the class of Dyck paths.

(1)

(1)

(1)

(1) (2)

(2)

(1) (2) (3)

(2)

(1)

(1) (2)

(2)

(1) (2) (3)

(3)

(1) (2) (3) (4)

The growth of the class of Dyck paths produces the following succession rule:

ΩCat =

{
(1)
(h) (1), (2), . . . , (h), (h + 1).

As an example, if we look at the third level of the tree, we see 5 objects and if
we look at the succession rule we see that the number of labels produced from the
root after two applications of the productions is 5. Therefore the third term of the
enumeration sequence of Dyck paths is 5 and it is a well-known fact that Dyck paths
are counted by Catalan numbers, indeed it holds that C3 = 5.

As shown, generating trees are very useful both for generating the objects of a
combinatorial class and for finding any term of its enumeration sequence. In the
next section, I show a continuation of the generating tree method to further derive
closed formulas.

In what follows, I present two examples of this method and the following defini-
tion will be useful for both of them.

Definition 2.6.2. Let π be a permutation of length n. An entry πi is a left-to-right maxi-
mum if j < i implies that πj < πi. An entry πi is a left-to-right minimum if j < i implies
that πj > πi. An entry πi is a right-to-left maximum if j > i implies that πi > πj. An
entry πi is a right-to-left minimum if j > i implies that πi < πj. The same holds for an
inversion sequence e of length n.

2.6.1 First example

The pattern of the first example (presented by Beaton-Bouvel-Guerrini-Rinaldi [2]
in Chapter 4) is the triple of relations (≥,≥,>). The family I(≥,≥,>) is called the
family of Baxter inversion sequences, since (as we shall see) its counting sequence is
the sequence of Baxter numbers.
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We start by proving two characterizations for this family.

Proposition 2.6.3. An inversion sequence e ∈ In avoids (≥,≥,>) if and only if it avoids
100, 110 and 210.

Proof. “⇒”Let e ∈ In such that there is no i < j < k with ei ≥ ej ≥ ek, ei > ek. This
means that there is no i < j < k such that ei > ej = ek, nor such that ei = ej > ek and
nor such that ei > ej > ek. Therefore e avoids 100, 110 and 210.
“⇐”Conversely, let e ∈ In such that e avoids 100, 110 and 210. Then there is no
i < j < k such that ei > ej = ek, nor such that ei = ej > ek and nor such that
ei > ej > ek, which is equivalent to the absence of i < j < k with ei ≥ ej ≥ ek, ei > ek.
Therefore e avoids (≥,≥,>).

Proposition 2.6.4. An inversion sequence e ∈ In avoids (≥,≥,>) if and only if for all i
and j, with i < j and ei > ej, both ei is a LTR maximum and ej is a RTL minimum.

Proof. “⇒” Let e ∈ In such that e avoids (≥,≥,>) and let ei > ej with i < j.
If ei is not a LTR maximum then there exists k < i such that ek ≥ ei. But then

ekeiej forms a 210 or a 110 in e, which is a contradiction.
If ej is not a RTL minimum then there exists k > j such that ek ≤ ej. But then

eiejek forms a 210 or a 100 in e, which is a contradiction.
“⇐” Conversely, let e ∈ In such that for all i, j with i < j and ei > ej both ei is a LTR
maximum and ej is a RTL minimum.

If e doesn’t avoid 100 then there is i < j < k such that ei > ej = ek. But then ej is
not a RTL minimum.

If e doesn’t avoid 110 then there is i < j < k such that ei = ej > ek. But then ej is
not a LTR maximum.

If e doesn’t avoid 210 then there is i < j < k such that ei > ej > ek. But then ej is
not a RTL minimum.

The following result consists in a succession rule for the family I(≥,≥,>).

Proposition 2.6.5. There exists a growth of the Baxter inversion sequences that corresponds
to the succession rule

ΩBax =


(1, 1),
(h, k) (h− 1, k + 1), . . . , (1, k + 1),

(1, k + 1),
(h + 1, k), . . . , (h + k, 1).

Remark 2.6.6. The succession rule ΩBax is known to correspond to Baxter numbers (see
[8]). I show the proof of this fact in section 2.8.

Proof. We describe a growth for Baxter inversion sequences in the following way.
We start by defining

last(e) =

{
rightmost entry o f e which is not a LTR maximum, if any
smallest value o f e, otherwise

=

{
rightmost entry o f e which is not a LTR maximum, if any
0, otherwise.
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Firstly, suppose that the rightmost entry of e which is not a LTR maximum is in
position k. If ek is not the largest value that is not a LTR maximum, then there is i < k
such that ei is not a LTR maximum and ei > ek. But then there is l < i with el ≥ ei, so
we have l < i < k and ek < ei ≤ el which contradicts the fact that e avoids 210 and
110. So, if a rightmost entry of e which is not a LTR maximum exists, it holds that
last(e) is also the greatest value that is not a LTR maximum.

Secondly, suppose that the rightmost entry of e which is not a LTR maximum
exists and is in position k. This means that there exists j < k with ej ≥ ek. Between
these two entries there can be a strict inequality and as a consequence of this last(e)
creates an inversion (that is, there is an entry e` to the left of last(e) with e` > last(e)),
or there can be an equality and so last(e) doesn’t create an inversion.

We want to describe a growth for Baxter inversion sequences by adding a new
rightmost entry to e, but in order to do this we have to distinguish two cases accord-
ing to the previous consideration. We have two possibilities:

1. there doesn’t exist an entry which is not a LTR maximum, or there exists one
and the rightmost such doesn’t create an inversion

2. there exists the rightmost entry of e which is not a LTR maximum and this
entry creates an inversion.

The growth in these two cases behaves like this:

1. Claim: the sequence e′ = (e1, . . . , en, enew) ∈ In+1(≥,≥,>) if and only if
last(e) ≤ enew ≤ n.

Proof of the claim: Let e′ = (e1, . . . , en, enew) ∈ In+1(≥,≥,>). If all the entries
of e are LTR maxima, by Proposition 2.6.4 enew can be whatever you want less
than or equal to n and indeed 0 = last(e) ≤ enew ≤ n. If the rightmost entry of
e which is not a LTR maximum doesn’t create an inversion, then we have that
if enew < last(e) they create an inversion but last(e) is not a LTR maximum and
therefore we obtain a contradiction to Proposition 2.6.4.
Conversely, assume by contrapositive that e′ = (e1, . . . , en, enew) /∈ In+1(≥,≥
,>). Then by Proposition 2.6.4 there exists i < j with ei > ej such that ei is not
a LTR maximum or ej is not a RTL minimum. But since e ∈ In(≥,≥,>) then
j = n+ 1 and ei is not a LTR maximum (which in the first possibility of the first
case is already a contradiction). So we have enew < ei ≤ last(e). The claim is
proved.

Now we look in which case e′ falls, depending on the entry enew: this will be
useful for the computation of the productions. One possibility is that last(e) ≤
enew < maxx(e) which implies that enew is not a LTR maximum, hence last(e′) =
enew, and maxx(e) and enew create an inversion which leads e′ in case 2). An-
other possibility is that enew = maxx(e) which implies that last(e′) = enew but
without forming an inversion because before enew there are no elements > enew,
and this leads e′ in case 1). The last possibility is that maxx(e) < enew ≤ n
which implies that enew is a LTR maximum and that last(e) = last(e′), hence
last(e′) doesn’t create an inversion, so this leads e′ in case 1).

2. Claim: the sequence e′ = (e1, . . . , en, enew) ∈ In+1(≥,≥,>) if and only if
last(e) < enew ≤ n.

Proof of the claim: let e′ = (e1, . . . , en, enew) ∈ In+1(≥,≥,>). If the rightmost
entry of e which is not a LTR maximum creates an inversion, say with einv, and
if you assume that enew ≤ last(e), then einvlast(e)enew forms a 100 or a 210 in e,
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which contradicts Proposition 2.6.3.
Conversely, assume by contrapositive that e′ = (e1, . . . , en, enew) /∈ In+1(≥
,≥,>). Then by Proposition 2.6.3 e′ contains at least one of the patterns
100, 110, 210 and since e ∈ In(≥,≥,>) the entry enew plays the role of the last
0. Thus enew must be less than or equal to the entry which plays the role of the
second element of the pattern, which in all the three cases is not a LTR max-
imum. So enew ≤ last(e), since last(e) is the greatest value that is not a LTR
maximum. The claim is proved.

Now we look in which case e′ falls, depending on the entry enew: this will be
useful for the computation of the productions. One possibility is that last(e) <
enew < maxx(e) which implies that enew is not a LTR maximum, hence last(e′) =
enew, and maxx(e) and enew create an inversion which leads e′ in case 2). An-
other possibility is that enew = maxx(e) which implies that last(e′) = enew but
without forming an inversion because before enew there are no elements > enew,
and this leads e′ in case 1). The last possibility is that maxx(e) < enew ≤ n
which implies that enew is a LTR maximum and last(e′) = last(e), therefore
last(e′) creates an inversion, so this leads e′ in case 2).

According to this growth, the condition that every e ∈ In(≥,≥,>) is represented
only once in the generating tree is satisfied, since if you remove the last entry of
e′ ∈ In+1(≥,≥,>) you obtain an inversion sequence e ∈ In(≥,≥,>) and e′ can only
be obtained from this e.

The labels for our inversion sequences in In(≥,≥,>) are (h, k), where

1. h = maxx(e)− last(e) + 1 and k = n−maxx(e)

2. h = maxx(e)− last(e) and k = n−maxx(e).

The root object is the zero inversion sequence of length 1 and it belongs to case 1),
implying that h = 0− 0 + 1 = 1 and k = 1− 0 = 1, so the axiom of our succession
rule is (1, 1).

Let e = (e1, . . . , en) ∈ In(≥,≥,>) with label (h, k) and e′ = (e1, . . . , en, enew) ∈
In+1(≥,≥,>) with label (hnew, knew). Considering our growth (described above in
both cases) we obtain the following productions:

1. If enew = last(e), . . . , maxx(e) − 1 then last(e′) = enew and e′ falls in case 2).
This implies that hnew = maxx(e′)− last(e′) = maxx(e)− enew = h + last(e)−
1− enew and knew = (n + 1)−maxx(e′) = (n + 1)−maxx(e) = k + 1.
Hence the labels are (h− 1, k + 1), . . . , (1, k + 1).

If enew = maxx(e) then last(e′) = enew and e′ falls in case 1). This implies
that hnew = maxx(e′) − last(e′) + 1 = maxx(e) − enew + 1 = 1 and knew =
(n + 1)−maxx(e′) = (n + 1)−maxx(e) = k + 1.
Hence the label is (1, k + 1).

If enew = maxx(e) + 1, . . . , n, that is enew = maxx(e) + l, l = 1, . . . , k = n −
maxx(e), then last(e′) = last(e) and e′ falls in case 1). This implies that hnew =
maxx(e′) − last(e′) + 1 = maxx(e) + l − last(e) + 1 = h + l, l = 1, . . . , k and
knew = (n + 1)−maxx(e′) = (n + 1)− (maxx(e) + l) = k + 1− l, l = 1, . . . , k.
Hence the labels are (h + 1, k), (h + 2, k− 1), . . . , (h + k, 1).

2. If enew = last(e) + 1, . . . , maxx(e)− 1 then last(e′) = enew and e′ falls in case 2).
This implies that hnew = maxx(e′)− last(e′) = maxx(e)− enew = h + last(e)−
enew and knew = (n + 1)−maxx(e′) = (n + 1)−maxx(e) = k + 1.
Hence the labels are (h− 1, k + 1), . . . , (1, k + 1).
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If enew = maxx(e) then last(e′) = enew and e′ falls in case 1). This implies
that hnew = maxx(e′) − last(e′) + 1 = maxx(e) − enew + 1 = 1 and knew =
(n + 1)−maxx(e′) = (n + 1)−maxx(e) = k + 1.
Hence the label is (1, k + 1).

If enew = maxx(e) + 1, . . . , n, that is enew = maxx(e) + l, l = 1, . . . , k = n −
maxx(e), then last(e′) = last(e) and e′ falls in case 2). This implies that hnew =
maxx(e′) − last(e′) = maxx(e) + l − last(e) = h + l, l = 1, . . . , k and knew =
(n + 1)−maxx(e′) = (n + 1)− (maxx(e) + l) = k + 1− l, l = 1, . . . , k.
Hence the labels are (h + 1, k), (h + 2, k− 1), . . . , (h + k, 1).

Hence the growth of the Baxter inversion sequences corresponds to the succes-
sion rule ΩBax.

2.6.2 Second example

This example (presented by Guerrini [7] in subsection 1.3.5 and where some parts of
the proof are missing) is a bit different from the others in the sense that the objects
considered are permutations and not inversion sequences. But since the topic of pat-
tern avoidance in inversion sequences followed from the one of pattern avoidance in
permutations and because of the brief introduction in Section 1.2, I find it interesting
to give an example featuring permutations. The pattern we are interested in is 132.

Before proving the main result we need some definitions.

Definition 2.6.7. Let π = π1π2 . . . πn be a permutation of length n. A site is any position
between two consecutive elements πk and πk+1, for all k = 1, . . . , n− 1.

Definition 2.6.8. Let π = π1π2 . . . πn be a permutation of length n such that π avoids
a set of patterns β . An active site is a site where you can add the value n + 1 obtaining a
permutation π′ of length n + 1 that still avoids the patterns in β.

The following result provides a succession rule for the family Sn(132).

Proposition 2.6.9. There exists a growth of the 132-avoiding permutations that corresponds
to the succession rule

ΩCat =

{
(1)
(h) (1), (2), . . . , (h), (h + 1).

Proof. We describe a growth for 132-avoiding permutations in the following way.
We have to look at which are the active sites in a permutation that avoids 132. Let

π = π1π2 . . . πn be a permutation of length n that avoids 132. It holds that π avoids
132 if and only if π′ = (n + 1)π1π2 . . . πn avoids 132, and hence the site before π1 is
active.

But this is not the unique active site of π: a site of π is active also if it is in the
position after a RTL maximum, and viceversa. This holds for the following reason.
Consider an active site of π and assume it is in the position after an element, say
πi, which is not a RTL maximum. This implies that there exists an index j > i with
πj > πi. But then we obtain a permutation π′ of length n + 1 with i < i + 1 <
j + 1 and πi = π′i < π′i+1 = n + 1 > πj = π′j+1 and πi = π′i < πj = π′j+1,
hence π′ contains 132 and so our active site is in the position after a RTL maximum.
Conversely, we add n+ 1 immediately after a RTL maximum, say πi, and we assume
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that the resulting permutation π′ contains 132. Since π avoids 132, the role of 3 is
played by n + 1. Moreover, πi being a RTL maximum implies that there is no j > i
with πj > πi and so the role of 1 is not played by πi. From these two observations
we deduce that there exist k < i and j > i with πk < πj that together with n + 1
create a 132 in π′. But then we have k < i < j and πk < πj < πi, since πi is a RTL
maximum, which contradicts the 132-avoidance of π.

Now that we know the active sites of a 132-avoiding permutation, we want to de-
scribe the growth by adding n + 1 in the active sites of π. According to this growth,
the condition that every permutation in Sn(132) is represented only once in the gen-
erating tree is satisfied, since if you take away the maximal value of π′ ∈ Sn+1(132)
you obtain a permutation π ∈ Sn(132) and π′ can only be obtained from this π.

The label for our permutations in Sn(132) is (h), where h is the number of RTL
maxima. The root object is the permutation 1 of length 1, implying that h = 1 and so
the axiom of our succession rule is (1).

Let π ∈ Sn(132) with label (h). Considering our growth we obtain the following
productions. If a permutation has h RTL maxima, then we can add the value n + 1
after these h elements and before the first element π1 and so h + 1 permutations are
produced by π.

If n + 1 is added before π1, then n + 1 becomes a RTL maximum and hence π′

has h + 1 RTL maxima in total, producing the label (h + 1).
If n + 1 is added after a RTL maximum, say πi, then πi and all the RTL maxima

before πi are not anymore RTL maxima, since there is the index i + 1 > i such that
π′i+1 is greater than all elements, and n + 1 becomes a RTL maximum. Hence π′ has
h − l + 1 RTL maxima, where πi is the l-th RTL maximum of π and l = 1, . . . , h,
producing the labels (h), (h− 1), . . . , (1).

We obtain that the growth of the 132-avoiding permutations corresponds to the
succession rule ΩCat.

Table 2.6 shows a list of cases falling in the type of proof presented in this section.

Pattern Reference Section
(≥,−,≥) [2] 2.2
(≥,−,≥) [2] 2.2
(≥,≥,≥) [2] 3.2
*(≥,≥,>) [2] 4.2
(≥,>,−) [2] 5.2
*132 [7] 1.3.5
( 6=,≥,≥) [15] 8.1

TABLE 2.6: Cases falling in the type of proof "Generating tree".

2.7 The kernel method

The seventh method I present is the kernel method. This method is actually a con-
tinuation of the previous one. When you know a succession rule for a certain family,
you can find a functional equation which has as solution the generating function of
this family. At this point the kernel method allows you to solve this equation and
consequently to find the desired generating function of the combinatorial class. But
this is not always the case, sometimes the kernel method doesn’t work.
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In this case the mentioned functional equation involves a bivariate generating
function where one variable stores the size of the considered object of our combina-
torial class and the other stores the label of the considered object in the generating
tree. At the end we will arrive at an equation that contains only the first variable.

This method can be used, if we go back to Section 2.6, to find the generating
function of the counting sequence that corresponds to the succession rule ΩCat of the
second example since the labels are arrays of length 1. Instead, the labels concerning
the first example are arrays of length 2 and this implies that two variables are not
enough to store the size, the first entry of the label and the second entry of the label
of the considered object. In this case we use another method that I will present in
the next section.

In the sequel I give an example (presented by Guerrini [7] in subsection 1.3.6) of
this method and more precisely I will go on with the second example of the previous
section.

Let C be the combinatorial class of the 132-avoiding permutations. We start with
the bivariate Catalan generating function

FCat(x, y) = ∑
n,h≥1

|Cn,h| xnyh

where Cn,h is the set of objects of C of size n and with label value h in the generating
tree, x stores the size and y stores the value of the label.

Putting the focus on the variable x, the bivariate Catalan generating function
takes the form

∑
n≥1

Gn(y)xn

where Gn(y) = ∑h≥1 |Cn,h| yh is the generating function of the objects appearing in
the generating tree associated to ΩCat that have size n, with y storing the value of
the label. Gn(y) is a polynomial in y which has degree n, since an object which has
size n stays at level n of the generating tree and here the labels have values at most
n. So Gn(y) = c · yn + O(yn−1), for a positive real number c.

Putting the focus on the variable y, the bivariate Catalan generating function
takes the form

∑
h≥1

Fh(x)yh

where Fh(x) = ∑n≥1 |Cn,h| xn is the generating function of the objects appearing in
the generating tree associated to ΩCat that have label (h), with x storing the size.

By looking at the succession rule ΩCat we can see that the object of size 1 with
label (1) contributes the term xy to FCat(x, y) and an object of size n with label (h)
produces h + 1 objects of size n + 1 with label (1), (2), . . . , (h + 1), respectively, and
these contribute the sum xn+1y + xn+1y2 + . . . + xn+1yh+1 to FCat(x, y). The bivariate
Catalan generating function satisfies

FCat(x, y) = xy + ∑
n≥1

∑
h≥1
|Cn,h| (xn+1y + xn+1y2 + . . . + xn+1yh+1)

= xy + ∑
h≥1

Fh(x)x(y + y2 + . . . + yh+1).

We go on with the functional equation satisfied by FCat(x, y).
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Proposition 2.7.1. The following functional equation for FCat(x, y) holds:

FCat(x, y) = xy +
xy

1− y
(FCat(x, 1)− yFCat(x, y)). (2.7.1)

Proof. Using the above form of FCat(x, y) and the geometric series we obtain that

FCat(x, y) = xy + x ∑
h≥1

Fh(x)(y + y2 + . . . + yh+1)

= xy + x ∑
h≥1

Fh(x)y(1 + y + . . . + yh)

= xy + x ∑
h≥1

Fh(x)
(

y(1− yh+1)

1− y

)
= xy +

xy
1− y ∑

h≥1
Fh(x)(1− yh+1)

= xy +
xy

1− y ∑
h≥1

(Fh(x)− Fh(x)yh+1)

= xy +
xy

1− y
(FCat(x, 1)− yFCat(x, y)).

Now that we have the functional equation for FCat(x, y), we can use the kernel
method in order to solve it and to find the solution FCat(x, 1).

Firstly, we collect the terms containing FCat(x, y) obtaining

FCat(x, y) +
xy2

1− y
FCat(x, y) = xy +

xy
1− y

FCat(x, 1)

i.e. FCat(x, y)
(

1 +
xy2

1− y

)
= xy +

xy
1− y

FCat(x, 1).

The last equation is called the kernel form of the functional equation 2.7.1 and the
coefficient KCat(x, y) = 1 + xy2

1−y of FCat(x, y) is called kernel.
Secondly, we equal the kernel to 0 and we solve the equation KCat(x, y) = 0 with

respect to the variable y,

KCat(x, y) = 0 ⇐⇒ 1 +
xy2

1− y
= 0

⇐⇒ 1− y + xy2

1− y
= 0

⇐⇒ 1− y + xy2 = 0

whose two solutions (since it is a quadratic polynomial in y) are

Y1(x) = 1+
√

1−4x
2x and Y2(x) = 1−

√
1−4x

2x .
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Using the formula (1+ z)α = 1+ ∑n≥1
α(α−1)...(α−n+1)

n! zn with z = −4x and α = 1
2 we

can compute

√
1− 4x = 1 +

1
2
(−4x) +

1/2(−1/2)
2

(−4x)2 +
1/2(−1/2)(−3/2)

6
(−4x)3

+
1/2(−1/2)(−3/2)(−5/2)

24
(−4x)4

+
1/2(−1/2)(−3/2)(−5/2)(−7/2)

120
(−4x)5 + O(x6)

= 1− 2x− 2x2 − 4x3 − 10x4 − 28x5 + O(x6)

and substituting it in Y1(x) and Y2(x) we obtain the power series expansions of the
two solutions

Y1(x) =
1 + 1− 2x− 2x2 − 4x3 − 10x4 − 28x5 + O(x6)

2x
= x−1 − 1− x− 2x2 − 5x3 − 14x4 + O(x5),

Y2(x) =
1− 1 + 2x + 2x2 + 4x3 + 10x4 + 28x5 + O(x6)

2x
= 1 + x + 2x2 + 5x3 + 14x4 + O(x5).

Then we analyze the two solutions in order to understand which one we can use
in our process.

We know that KCat(x, Y1) = 0. Moreover, in order to see if FCat(x, Y1) is conver-
gent or not, we write FCat(x, y) as ∑n≥0 Gn(y)xn like in Equation 2.7. If we substitute
y = Y1 in the polynomial Gn(y) we obtain a series in x where from the term (x−1)n

we can see that the lowest power of x is −n and hence Gn(Y1) = Θ(x−n). Con-
sequently, multiplying Gn(Y1) by xn it follows that for all n Gn(Y1)xn = Θ(1). So
∑n≥0 Gn(Y1)xn = FCat(x, Y1) is not a convergent power series in x.

For the other solution, we also know that KCat(x, Y2) = 0. Furthermore, writing
FCat(x, y) as before and substituting y = Y2 in the polynomial Gn(y) we obtain a
series in x where from the term 1n we can see that the lowest power of x is zero and
hence Gn(Y2) = Θ(x0) = Θ(1). Then ∑n≥N Gn(Y2)xn = Θ(xN) since in this case the
lowest power of x is N and so we obtain that for all N

FCat(x, Y2) = ∑
n≥0

Gn(Y2)xn

= ∑
n<N

Gn(Y2)xn + ∑
n≥N

Gn(Y2)xn

= Θ(1) + Θ(xN) = Θ(1)

which implies that FCat(x, Y2) is a convergent power series in x.
After these considerations we deduce that substituting y = Y1 in the kernel form

of the functional equation gives KCat(x, Y1) = 0, but FCat(x, Y1) not convergent. So
we cannot deduce KCat(x, Y1)FCat(x, Y1) = 0. Instead, substituting y = Y2 in the
kernel form of the functional equation we can deduce KCat(x, Y2)FCat(x, Y2) = 0,
since KCat(x, Y2) = 0 and FCat(x, Y2) convergent.

So substituting y = Y2 in the kernel form of the functional equation leads to an
equation with only FCat(x, 1) as unknown

0 = xY2 +
xY2

1−Y2
FCat(x, 1)
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which then results in

FCat(x, 1) = −xY2
1−Y2

xY2
= Y2 − 1 =

1−
√

1− 4x
2x

− 1 =
1− 2x−

√
1− 4x

2x
,

which is the solution for the enumeration of our objects.
Setting this result in the kernel form of the functional equation we have

FCat(x, y) =

(
xy +

xy
1− y

1− 2x−
√

1− 4x
2x

)
1− y

1− y + xy2

=
xy(1− y)

1− y + xy2 +
xy(1− 2x−

√
1− 4x)

2x(1− y + xy2)

=
2x2y(1− y) + xy(1− 2x−

√
1− 4x)

2x(1− y + xy2)

=
y(2x(1− y) + 1− 2x−

√
1− 4x)

2(1− y + xy2)

=
y(1− 2xy−

√
1− 4x)

2(1− y + xy2)
,

which provides a refined enumeration of our objects, keeping also track of the value
of the label.

Substituting the term
√

1− 4x computed before in FCat(x, 1) and FCat(x, y), we
obtain their power series expansions

FCat(x, 1) =
1− 2x− 1 + 2x + 2x2 + 4x3 + 10x4 + 28x5 + O(x6)

2x
= x + 2x2 + 5x3 + 14x4 + O(x5),

FCat(x, y) =
y(1− 2xy− 1 + 2x + 2x2 + 4x3 + 10x4 + 28x5 + O(x6))

2(1− y + xy2)

=
y(−xy + x + x2 + 2x3 + 5x4 + 14x5 + O(x6))

1− y + xy2

= yx + (y + 1)yx2 + (y2 + 2y + 2)yx3 + (y3 + 3y2 + 5y + 5)yx4

+ (y4 + 4y3 + 9y2 + 14y + 14)yx5 + O(x6)
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where in the last equality we performed the Taylor expansion computing

FCat(0, y) = 0,

F′Cat(x, y) =
((1− y) + 2x + 6x2 + 20x3 + 70x4)(1− y + xy2)

(1− y + xy2)2

− (x(1− y) + x2 + 2x3 + 5x4 + 14x5)y2

(1− y + xy2)2 ,

F′Cat(0, y) =
(1− y)2

(1− y)2 = 1,

F′′Cat(x, y) = ((2 + 12x + 60x2 + 280x3 − 2y− 12xy− 60x2y− 280x3y + 2xy2 + 12x2y2

+ 60x3y2 + 280x4y2)(1− y + xy2)2 − (1− 2y + 2x + 6x2 + 20x3 + 70x4 + y2

− 2xy− 6x2y− 20x3y− 70x4y + x2y2 + 4x3y2 + 15x4y2 + 56x5y2)2(1− y + xy2)y2

/(1− y + xy2)4,

F′′Cat(0, y) =
(2− 2y)(1− y)2 − (1− 2y + y2)2(1− y)y2

(1− y)4

=
2(1− y)(1− y)2 − (1− y)22(1− y)y2

(1− y)4

=
2(1− y)3(1− y2)

(1− y)4

=
2(1− y)3(1− y)(1 + y)

(1− y)4 = 2(1 + y),

F′′Cat(0, y)
2!

= 1 + y

and all the other terms F(k)
Cat(0,y)

k! , where the derivatives are computed with respect to
the variable x.

Table 2.7 shows a list of cases falling in the type of proof presented in this section.

Pattern/Class Reference Section
*132 [7] 1.3.6
Dyck paths [7] 1.3.7
(110, 102) [15] 4.2
(120, 102) [15] 4.3

TABLE 2.7: Cases falling in the type of proof "The kernel method".

2.8 The obstinate kernel method

The eighth method I present is the obstinate kernel method. This method is also
a continuation of the one of generating trees and it is a variant of the previously
presented kernel method. The idea is the same: you solve a functional equation,
obtained from the succession rule, which has as solution the generating function of
the combinatorial class you are interested in. The obstinate kernel method applies to
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some cases (not all) where labels are pairs of integers, but sometimes it doesn’t work
(see for example the fifth chapter of [3]).

But in this case the functional equation involves a trivariate generating function
where one variable stores the size of the considered object of our combinatorial class,
one variable stores the first entry of the label of the considered object in the generat-
ing tree and the other stores the second entry of the label. At the end we will arrive
at a system of equations that contain only the first and the second variable.

This method can be used, if we go back to Section 2.6, to find the generating
function of the counting sequence that corresponds to the succession rule ΩBax of
the first example since the labels are arrays of length 2.

In what follows, I give an example (presented by Kim-Lin [8] in Chapter 4) of
this method, in particular I will continue the first example of Section 2.6. We want
to prove that |In(≥,≥,>)| = Bn, where Bn is the n-th Baxter number that is known
to count the Baxter permutations, that is the permutations that avoid the vincular
patterns 2413 and 3142.

We start with the trivariate generating function of In(≥,≥,>)

FBax(x, y, z) = ∑
n,h,k≥1

|Bn,h,k| xnyhzk

where Bn,h,k is the set of objects of In(≥,≥,>) of size n and with label’s values h and
k in the generating tree, x stores the size, y stores the first entry of the label and z
stores the second entry of the label.

Putting the focus on the values of the label, the trivariate generating function of
In(≥,≥,>) takes the form

∑
h,k≥1

Fh,k(x)yhzk

where Fh,k(x) = ∑n≥1 |Bn,h,k| xn is the generating function of the objects appearing in
the generating tree associated to ΩBax that have label (h, k), with x storing the size.

By looking at the succession rule ΩBax we can see that the object of size 1 with
label (1, 1) contributes the term xyz to FBax(x, y, z) and an object of size n with label
(h, k) produces h + k objects of size n + 1 with labels

(h− 1, k + 1), . . . , (1, k + 1), (1, k + 1), (h + 1, k), . . . , (h + k, 1),

respectively, and these contribute the sum

xn+1yh−1zk+1 + . . . + xn+1yzk+1 + xn+1yzk+1 + xn+1yh+1zk + . . . + xn+1yh+kz

to FBax(x, y, z). The trivariate generating function of In(≥,≥,>) satisfies

FBax(x, y, z) = xyz + ∑
n≥1

∑
h,k≥1
|Bn,h,k| (xn+1yh−1zk+1 + . . . + xn+1yzk+1 + xn+1yzk+1

+ xn+1yh+1zk + . . . + xn+1yh+kz)

= xyz + ∑
h,k≥1

Fh,k(x)x(yh−1zk+1 + . . . + yzk+1 + yzk+1 + yh+1zk + . . . + yh+kz)

= xyz + ∑
h,k≥1

Fh,k(x)x((yh−1 + . . . + y)zk+1 + yzk+1 + (yh+1zk + . . . + yh+kz)).

We go on with the functional equation satisfied by FBax(x, y, z).
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Proposition 2.8.1. The following functional equation for FBax(x, y, z) holds:(
1 +

xz
1− y

+
xz

1− z
y

)
FBax(x, y, z) = xyz+ xyz

(
1 +

1
1− y

)
FBax(x, 1, z)+

xz
1− z

y
FBax(x, y, y).

(2.8.1)

Proof. Using the above form of FBax(x, y, z) and the geometric series we obtain that

FBax(x, y, z) = xyz + ∑
h,k≥1

Fh,k(x)x((yh−1 + . . . + y)zk+1 + yzk+1 + (yh+1zk + . . . + yh+kz))

= xyz + ∑
h,k≥1

Fh,k(x)xyzk+1 + x ∑
h,k≥1

Fh,k(x)(yh−1 + . . . + y)zk+1

+ x ∑
h,k≥1

Fh,k(x)(yh+1zk + . . . + yh+kz)

= xyz + xyzFBax(x, 1, z) + x ∑
h,k≥1

Fh,k(x)
(

1− yh

1− y
− 1
)

zk+1

+ x ∑
h,k≥1

Fh,k(x)

(
1− ( y

z )
k

1− y
z

)
yh+1zk

= xyz + xyzFBax(x, 1, z) + x ∑
h,k≥1

Fh,k(x)
(

y− yh

1− y

)
zk+1

+
xyz

z− y
( ∑

h,k≥1
Fh,k(x)yhzk − ∑

h,k≥1
Fh,k(x)yhyk)

= xyz + xyzFBax(x, 1, z) +
xz

1− y
( ∑

h,k≥1
Fh,k(x)yzk − ∑

h,k≥1
Fh,k(x)yhzk)

+
xyz

z− y
(FBax(x, y, z)− FBax(x, y, y))

= xyz + xyzFBax(x, 1, z) +
xz

1− y
(yFBax(x, 1, z)− FBax(x, y, z))

+
xz

z
y − 1

(FBax(x, y, z)− FBax(x, y, y)).

Putting together the terms containing FBax(x, y, z)(
1 +

xz
1− y

+
xz

1− z
y

)
FBax(x, y, z) = xyz+ xyz

(
1 +

1
1− y

)
FBax(x, 1, z)+

xz
1− z

y
FBax(x, y, y)

and Equation 2.8.1 holds.

We move the attention on Baxter permutations.

Definition 2.8.2. A permutation π = π1π2 . . . πn is a Baxter permutation if there are
no i < j < k with 1 ≤ j < j + 1 < k ≤ n such that πj+1 < πi < πk < πj or
πj < πk < πi < πj+1.

Proposition 2.8.3. A Baxter permutation is a permutation that avoids the vincular patterns
2413 and 3142.

We consider a growth for Baxter permutations by adding the point n + 1 either
immediately before a LTR maximum of π or immediately after a RTL maximum of
π. Moreover, the labels for our objects are (p, q), where p=number of LTR maxima of
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the Baxter permutation π and q=number of RTL maxima of the Baxter permutation
π.

We obtain our enumerative result if we prove the following theorem.

Theorem 2.8.4. For n ≥ 1 it holds

∑
h,k≥1

∑
e∈In(≥,≥,>)
with label(h,k)

yh+k = ∑
π∈Sn(2413,3142)

yltrma(π)+rtlma(π),

where ltrma(π) is the number of LTR maxima of π and rtlma(π) is the number of RTL
maxima of π.

Let GBax(x, y, z) = ∑n≥1 ∑π∈Sn(2413,3142) xnyltrma(π)zrtlma(π) be the generating func-
tion of Baxter permutations, where ltrma(π) and rtlma(π) are the two entries of the
label of the succession rule associated to the growth of Baxter permutations. Now
that we have the functional equation for FBax(x, y, z), we use the obstinate kernel
method in order to solve it. We show that FBax(x, y, y) = GBax(x, y, y), and then the
theorem is proved since

GBax(x, y, y) = FBax(x, y, y)⇔ ∑
n≥1

xn ∑
π∈Sn(2413,3142)

yltrma(π)+rtlma(π)

= ∑
n,h,k≥1

|Bn,h,k| xnyh+k

= ∑
n≥1

xn ∑
e∈In(≥,≥,>)

yh+k.

Proof. Equation 2.8.1 is already in the kernel form with the kernel KBax(x, y, z) =(
1 + xz

1−y +
xz

1− z
y

)
. Setting w = z

y , for convenience, Equation 2.8.1 becomes

(
1 +

xyw
1− y

+
xyw

1− w

)
FBax(x, y, yw) = xy2w+ xy2w

(
1 +

1
1− y

)
FBax(x, 1, yw)+

xyw
1− w

FBax(x, y, y)

and setting y = 1 + t and w = 1 + u in the last equation we obtain(
1 +

x(1 + t)(1 + u)
−t

+
x(1 + t)(1 + u)

−u

)
FBax(x, 1 + t, (1 + t)(1 + u))

=x(1 + t)2(1 + u) + x(1 + t)2(1 + u)
(

1 +
1
−t

)
FBax(x, 1, (1 + t)(1 + u))

+
x(1 + t)(1 + u)

−u
FBax(x, 1 + t, 1 + t).

Multiplying by tu
x(1+t)(1+u) the last equation takes the form

tu− x(1 + t)(1 + u)(t + u)
x(1 + t)(1 + u)

FBax(x, 1 + t, (1 + t)(1 + u)) =

tu(1 + t)− u(1− t2)FBax(x, 1, (1 + t)(1 + u))− tFBax(x, 1 + t, 1 + t). (2.8.2)

The kernel of the functional equation 2.8.2 is now KBax(x, t, u) = tu−x(1+t)(1+u)(t+u)
x(1+t)(1+u)

(where KNBax(x, t, u) = tu− x(1 + t)(1 + u)(t + u) is the numerator of the kernel),
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we equal it to 0 and we solve the equation KBax(x, t, u) = 0 with respect to the vari-
able u,

tu− x(1 + t)(1 + u)(t + u)
x(1 + t)(1 + u)

= 0 ⇐⇒ tu− x(1 + t)(1 + u)(t + u) = 0.

The quadratic polynomial in u has the form

tu− x(1 + u + t + tu)(t + u) = tu− x(t + tu + t2 + t2u + u + u2 + tu + tu2)

= −x(1 + t)u2 − (x(1 + t)2 − t)u− xt(1 + t)

whose two solutions are

Y1(x, t) =
x(1 + t)2 − t−

√
((x(1 + t)2 − t)2 − 4x2(1 + t)2t
−2x(1 + t)

=
1− x(1 + t)(1 + 1

t ) +
√

1− 2x(1 + t)(1 + 1
t ) +

x2

t2 (1 + t)2(1 + t)2 − 4x2(1 + t)(1 + 1
t )

2x(1 + 1
t )

=
1− x(1 + t)(1 + 1

t ) +
√

1− 2x(1 + t)(1 + 1
t )− x2(1− t2)(1− ( 1

t )
2)

2x(1 + 1
t )

and

Y2(x, t) =
1− x(1 + t)(1 + 1

t )−
√

1− 2x(1 + t)(1 + 1
t )− x2(1− t2)(1− ( 1

t )
2)

2x(1 + 1
t )

.

Then we analyze the two solutions in order to understand which one we can use
in our process. We know that

KBax(x, 1 + t, (1 + t)(1 + Y1)) = KBax(x, 1 + t, (1 + t)(1 + Y2)) = 0.

So we would like to substitute u = Y1 or Y2 in the LHS of 2.8.2, so that its RHS is
also 0. But the term FBax(x, 1 + t, (1 + t)(1 + Y1)) is not a convergent power series
in t, because the power series expansion of Y1(x, t) is not the Taylor expansion in t.
Instead, Y2(x, t) is a well-defined power series in t and so it is convergent. Therefore
we can substitute only u = Y2 in 2.8.2, obtaining the equation

tY2 − x(1 + t)(1 + Y2)(t + Y2)

x(1 + t)(1 + Y2)
FBax(x, 1 + t, (1 + t)(1 + Y2)) =

tY2(1 + t)−Y2(1− t2)FBax(x, 1, (1 + t)(1 + Y2))− tFBax(x, 1 + t, 1 + t). (2.8.3)

Until now we have applied the common kernel method. But the resulting equation
still has 2 variables and so the kernel method is not enough to solve the problem.

At this point we can use the obstinate kernel method in order to find pairs (t, u)
such that KBax(x, 1 + t, (1 + t)(1 + u)) = 0 and such that the substitution is legal.
The transformations

α : (t, u) 7→
(u

t
, u
)

, β : (t, u) 7→
(

u
t

,
1
t

)
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cancel the kernel KBax(x, t, u) since

KNBax

(
x,

u
t

, u
)
=
[u

t
u− x

(
1 +

u
t

)
(1 + u)

(u
t
+ u

)]
=

[
u
t
− x

(
1 +

u
t

)
(1 + u)

(
1
t
+ 1
)]

u

= [tu− x(t + u)(1 + u)(1 + t)]
u
t2

= KNBax(x, t, u) · u
t2

and

KNBax

(
x,

u
t

,
1
t

)
=

u
t
· 1

t
− x

(
1 +

u
t

)(
1 +

1
t

)(
u
t
+

1
t

)
= [tu− x(t + u)(1 + t)(1 + u)]

1
t3

= KNBax(x, t, u) · 1
t3 .

The transformations

α′ : (t, u) 7→
(

u,
u
t

)
, β′ : (t, u) 7→

(
1
t

,
u
t

)
do the same, since the kernel is symmetric. So the desired pairs, i.e. the pairs that
cancel the kernel, are (t, Y2),

(
Y2
t , Y2

)
,
(

Y2
t , 1

t

)
, (Y2, t),

(
Y2, Y2

t

)
,
(

1
t , Y2

t

)
.

We substitute them in Equation 2.8.2 and we obtain

1. tY2−x(1+t)(1+Y2)(t+Y2)
x(1+t)(1+Y2)

FBax(x, 1 + t, (1 + t)(1 + Y2)) = tY2(1 + t)−Y2(1− t2)

FBax(x, 1, (1 + t)(1 + Y2))− tF̃Bax(t)

2.
Y2
t Y2−x

(
1+ Y2

t

)
(1+Y2)

(
Y2
t +Y2

)
x
(

1+ Y2
t

)
(1+Y2)

FBax

(
x, 1 + Y2

t ,
(

1 + Y2
t

)
(1 + Y2)

)
= Y2

t Y2

(
1 + Y2

t

)
−

Y2(1−
(

Y2
t

)2
)FBax

(
x, 1,

(
1 + Y2

t

)
(1 + Y2)

)
− Y2

t F̃Bax(
Y2
t )

3.
Y2
t

1
t−x

(
1+ Y2

t

)
(1+ 1

t )
(

Y2
t + 1

t

)
x
(

1+ Y2
t

)
(1+ 1

t )
FBax

(
x, 1 + Y2

t ,
(

1 + Y2
t

) (
1 + 1

t

))
= Y2

t
1
t

(
1 + Y2

t

)
− 1

t

(
1−

(
Y2
t

)2
)

FBax

(
x, 1,

(
1 + Y2

t

) (
1 + 1

t

))
− Y2

t F̃Bax(
Y2
t )

4. Y2t−x(1+Y2)(1+t)(Y2+t)
x(1+Y2)(1+t) FBax(x, 1+Y2, (1+Y2)(1+ t)) = Y2t(1+Y2)− t(1− (Y2)2)

FBax(x, 1, (1 + Y2)(1 + t))−Y2F̃Bax(Y2)

5.
Y2

Y2
t −x(1+Y2)

(
1+ Y2

t

)(
Y2+

Y2
t

)
x(1+Y2)

(
1+ Y2

t

) FBax

(
x, 1 + Y2, (1 + Y2)

(
1 + Y2

t

))
= Y2

Y2
t (1 + Y2)

− Y2
t (1− (Y2)2)FBax

(
x, 1, (1 + Y2)

(
1 + Y2

t

))
−Y2F̃Bax(Y2)

6.
1
t

Y2
t −x(1+ 1

t )
(

1+ Y2
t

)(
1
t +

Y2
t

)
x(1+ 1

t )
(

1+ Y2
t

) FBax

(
x, 1 + 1

t ,
(
1 + 1

t

) (
1 + Y2

t

))
= 1

t
Y2
t

(
1 + 1

t

)
− Y2

t

(
1−

( 1
t

)2
)

FBax

(
x, 1,

(
1 + 1

t

) (
1 + Y2

t

))
− 1

t F̃Bax(
1
t )
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We multiply 1 by −(1− Y2
2 )t, 2 by −

( 1
t −Y2

2
1
t

)
, 3 by −

(
Y2

1
t −Y2(

1
t )

3), 4 by −(1−
t2)Y2, 5 by −

(
1−Y2

2 (
1
t )

2), 6 by −
( 1

t −Y2
2 (

1
t )

3). We subtract, remembering that the
left hand sides are equal to 0, equation 4 from equation 1, equation 5 from equation
2 and equation 6 from equation 3. Then we arrive at the following system


(t− tY2

2 )F̃Bax(t)− (Y2 − t2Y2)F̃Bax(Y2) = (Y2 −Y3
2 )(t

2 + t3)− (t− t3)(Y2
2 + Y3

2 )(
1
t −

Y2
2
t

)
F̃Bax

(
Y2
t

)
−
(

1− Y2
2

t2

)
F̃Bax(Y2) = (Y2 −Y3

2 )
(

Y2
t2 +

Y2
2

t3

)
−
(

1
t −

Y2
2

t3

)
(Y2

2 + Y3
2 )(

Y2
t −

Y2
t3

)
F̃Bax

(
Y2
t

)
−
(

1
t −

Y2
2

t3

)
F̃Bax

( 1
t

)
=
( 1

t −
1
t3

) (Y2
2

t2 +
Y3

2
t3

)
−
(

Y2
t −

Y3
2

t3

) ( 1
t2 +

1
t3

)
where F̃Bax(t) = tFBax(x, 1 + t, 1 + t). After some computations that permit to cancel
the terms F̃Bax(Y2) and F̃Bax

(
Y2
t

)
we obtain

tFBax(x, 1+ t, 1+ t)+
1
t

FBax

(
x, 1 +

1
t

, 1 +
1
t

)
=

Y2(1 + t)(t4 − 2Y2t3 + 2Y2
2 t− 2Y2 + 1)

t2(Y2 − 1)(Y2 − t)
.

(2.8.4)
Note that tFBax(x, 1 + t, 1 + t) is a formal power series in x with coefficients in tN[t]
and 1

t FBax
(
x, 1 + 1

t , 1 + 1
t

)
is a formal power series in x with coefficients in 1

t N
[ 1

t

]
.

Consequently tFBax(x, 1 + t, 1 + t) is the positive part in t of the right hand side of
Equation 2.8.4.

Moreover, moving the attention on the generating function of Baxter permuta-
tions we present some facts.

In [7] we can see that the following functional equation for GBax(x, y, z) holds:

GBax(x, y, z) = xyz+
xyz

1− y
(GBax(x, 1, z)−GBax(x, y, z))+

xyz
1− z

(GBax(x, y, 1)−GBax(x, y, z)).

(2.8.5)
If we transform the functional equation into its kernel form and we make some
change of variables, we obtain the following equation involving tGBax(x, 1 + t, 1)

t2 − 2tx(1 + t)2

x(1 + t)2 GBax(x, 1 + t, 1 + t) = t2 − 2tGBax(x, 1 + t, 1), (2.8.6)

where we used the fact that Equation 2.8.5 is symmetric in y and z. Moreover, fol-
lowing the same method as in [7], we arrive at a system of equations from which we
obtain that

tGBax(x, 1 + t, 1) +
1
t

GBax(x, 1 +
1
t

, 1) =
1
t2 Y2(t3 − tY2 + 1), (2.8.7)
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where Y2 is the same solution as before, being KBax(x, t, u) and the kernel in [7] equal.
From 2.8.6 and 2.8.7 we deduce that

tGBax(x, 1 + t, 1 + t) +
1
t

GBax

(
x, 1 +

1
t

, 1 +
1
t

)
=

x(1 + t)2

t− 2x(1 + t)2 (t
2 − 2tGBax(x, 1 + t, 1)) +

x
(
1 + 1

t

)2

1
t − 2x

(
1 + 1

t

)2

(
1
t2 − 2

1
t

GBax

(
x, 1 +

1
t

, 1
))

=
x(1 + t)2

t− 2x(1 + t)2

(
t2 +

1
t2 − 2

(
tGBax(x, 1 + t, 1) +

1
t

GBax

(
x, 1 +

1
t

, 1
)))

=
x(1 + t)2

t− 2x(1 + t)2

(
t2 +

1
t2 − 2

1
t2 Y2(t3 − tY2 + 1)

)
(2.8.8)

and for the same reasoning as before tGBax(x, 1 + t, 1 + t) is the positive part in t of
the right hand side of 2.8.8.

By Maple the right hand side of 2.8.4 is equal to the right hand side of 2.8.8,
implying the desired equality FBax(x, 1+ t, 1+ t) = GBax(x, 1+ t, 1+ t). This equality
provides a refined enumeration of our objects, it keeps also track of the sum of the
entries of the label: FBax(x, 1, 1) = GBax(x, 1, 1) is enough to obtain our enumerative
result.

Table 2.8 shows a list of cases falling in the type of proof presented in this section.

Pattern Reference Section
(2413, 3142) [7] 1.4.5
2413 [7] 3.3.1
*(≥,≥,>) [8] 4

TABLE 2.8: Cases falling in the type of proof "The obstinate kernel
method".
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Chapter 3

Conclusion

We have seen different methods for proving an enumerative result, each one with its
characteristics. We can’t do generalizations since, for one statement, there could be
more than one proof; however, we can draw some considerations from our results.

The proof that uses only the combinatorial characterization of the family of in-
terest is often used for the triples of relations and for the multiple patterns. Some-
how, this is because these avoidance constraints are more restrictive (for example
you have a weak inequality instead of a strict inequality, you have more than one
pattern, and other restrictions), resulting in a "very constrained structure", as we
discussed in Section 2.1.

The inductive proof is not so much used, but it shows that "classical" methods
must not be forgotten. The reason of this fact could be that if you want to use this
approach you need a "good guess" (like the formula for the number of derangements
in Section 2.2), but it is not easy to guess in general.

The proof by recursive construction involves the classical patterns, the triples
of relations, and the consecutive patterns. This approach is the most used among
the consecutive patterns: in this case the containment of a consecutive pattern p in
an inversion sequence e of size n, produced by adding a new entry to an inversion
sequence e′ of length n− 1 that avoids p, depends only on the last two entries of e′.

The bijective proof is the most used method and it involves all pattern types.
Since this approach is very useful if you want to compare cardinalities of different
combinatorial classes, it is used very often for proving Wilf-equivalences. Many
Wilf-equivalences can be proven and moreover we can prove them for all pattern
types, explaining the previous considerations.

The proof that uses generating functions is a little bit less used and we can see
it for the triples of relations and the classical patterns. The same holds for the proof
that uses generating trees. In order to use the generating function approach you
have to know the generating function of a certain combinatorial class, and this is not
always immediate. For the generating tree approach you have to define a growth
for the combinatorial class, you have to define the label for your objects, and this is
not always an easy task.

The kernel method and the obstinate kernel method are applied when you have
a succession rule and this is not something that you find instantly. So there are obvi-
ously fewer examples compared for example to the proof by recursive construction,
and different types of pattern are involved.

Moreover, for what concerns the topic of pattern-avoiding inversion sequences in
general, it would be interesting to see what happens (in general and for the methods
of proof) if you consider other pattern types, like longer patterns or longer sets of
classical patterns.
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