Average-case complexity analysis of perfect sorting by reversals

Mathilde Bouvel with Cedric Chauve, Marni Mishna and Dominique Rossin

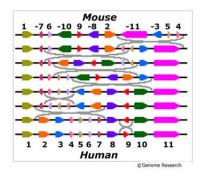
Algorithms and Permutations 2012

Outline of the talk

- 1 The context: Sorting by reversals
- 2 The problem we consider: Perfect sorting by reversals
- 3 Average-case complexity analysis
- 4 Restriction to the class of separable permutations
- 5 Conclusion and future work under non-uniform distributions

The context: Sorting by reversals

Biological motivations



Reconstruction of evolution scenarios

- → Operation on genome = reversal
 - Model for genome = signed permutation
 - Reversal = reverse a window of the permutation while changing the signs

176 10 9 8 2 4 5 3 11

Sorting by reversals: the problem and solution

The problem:

- INPUT: Two signed permutations σ_1 and σ_2
- lacktriangle output: A parsimonious scenario from σ_1 to σ_2 or $\overline{\sigma_2}$

Parsimonious = shortest, *i.e.* minimal number of reversals.

Without loss of generality, $\sigma_2 = Id = 1 \ 2 \dots n$

The solution:

- Hannenhalli-Pevzner theory
- Polynomial algorithms: from $O(n^4)$ to $O(n\sqrt{n\log n})$

Remark: the problem is NP-hard when permutations are unsigned.

Definition and motivation

Perfect sorting by reversals: do not break common intervals

Common interval between σ_1 and σ_2 : windows of σ_1 and σ_2 containing the same elements (with no sign)

Example: $\sigma_1 = 5\,\overline{1}\,\overline{3}\,7\,6\,\overline{2}\,4$ and $\sigma_2 = 6\,\overline{4}\,7\,1\,\overline{3}\,2\,\overline{5}$

When $\sigma_2 = Id$, interval of σ_1 = window forming a range (in \mathbb{N}) Example: $\sigma_1 = 4\overline{7}\overline{5}63\overline{1}2$

Biological argument: groups of identical (or homologous) genes appearing together in two species are likely to be

- together in the common ancestor
- never separated during evolution

Algorithm and complexity

The problem:

Sorting by reversals

- **■** INPUT: Two signed permutations σ_1 and σ_2
- output: A parsimonious perfect scenario (=shortest among perfect scenarios) from σ_1 to σ_2 or $\overline{\sigma_2}$

Without loss of generality, $\sigma_2 = Id = 1 \ 2 \dots n$

Watch out!: Parsimonious perfect ≠ parsimonious

Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of decomposition trees to produce a *FPT* algorithm $(2^p \cdot n^{O(1)})$

The problem we consider: Perfect sorting by reversals

Sorting by reversals

Strong intervals of (signed) permutations

- Strong interval = does not overlap any other interval
- Interval I is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J = \emptyset$

Example of intervals and strong intervals:

 $5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ 1\ 2\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ 12\ 11\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

Strong intervals of (signed) permutations

- Strong interval = does not overlap any other interval
- Interval *I* is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J = \emptyset$

Example of intervals and strong intervals:

 $5\ \overline{6}\ \overline{7}\ 9\ 4\ \overline{3}\ \overline{1}\ \underline{2}\ \overline{8}\ \overline{10}\ \overline{17}\ 13\ \overline{15}\ \overline{12}\ \overline{11}\ \overline{14}\ 18\ \overline{19}\ \overline{16}$

Trivial intervals are always among strong intervals

Strong intervals of (signed) permutations

- Strong interval = does not overlap any other interval
- Interval *I* is strong iff $\forall J, I \subseteq J$ or $J \subseteq I$ or $I \cap J = \emptyset$

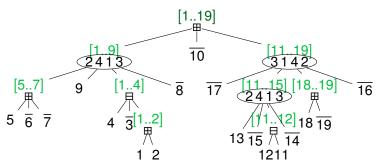
Example of intervals and strong intervals:

Trivial intervals are always among strong intervals

Decomposition trees of (signed) permutations

Also known as strong interval trees

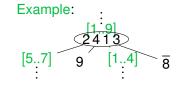
Inclusion order on strong intervals: a tree-like ordering



Computation: in linear time

Decomposition trees of (signed) permutations

Quotient permutation = order of the children (that are intervals)

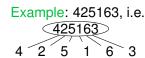


Two types of nodes:

- Linear nodes (□):
 - increasing, *i.e.* quotient permutation = $1 \ 2 \dots k$
 - ⇒ label ⊞
 - decreasing, i.e. quotient permutation = k(k-1)...21
 - ⇒ label □
- Prime nodes (○): the quotient permutation is simple

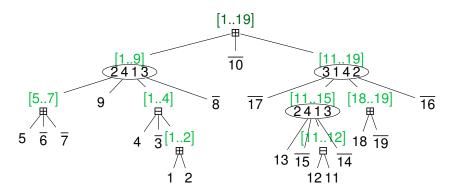
Simple permutations:

the only intervals are 1, 2,..., n and σ



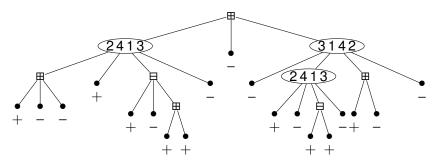
Simplified decomposition tree

Remark: redundant information ⇒ forget the leaves and intervals



Simplified decomposition tree

Remark: redundant information ⇒ forget the leaves and intervals



Tree uniquely defined by { labels of internal nodes +signs of the leaves

Idea of the algorithm to solve perfect sorting

Put labels + or - on the nodes of the decomposition tree of σ

- Leaf: sign of the element in σ
- Linear node: + for

 (increasing) and for

 (decreasing)
- Prime node whose parent is linear: sign of its parent
- Other prime node: ???
 - → Test labels + and and choose the shortest scenario

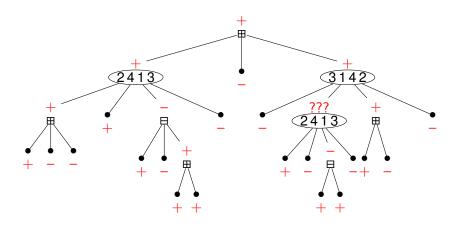
Algorithm:

- Perform Hannenhalli-Pevzner (or improved version) on prime nodes
- Signed node belongs to scenario iff its sign is different from its linear parent

The problem we consider: Perfect sorting by reversals

Sorting by reversals

Example of labeled decomposition tree



Complexity results

Complexity:

Sorting by reversals

- $O(2^p n \sqrt{n \log n})$, with $p = \sharp$ prime nodes
- lacktriangle polynomial on separable permutations (p=0)

Our work:

- polynomial with probability 1 asymptotically
- polynomial on average
- in a parsimonious perfect scenario for separable permutations
 - average number of reversals ~ 1.27n
 - average length of a reversal $\sim 1.054 \sqrt{n}$

Probability distribution: always uniform

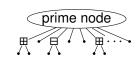
"Average shape" of decomposition trees

Enumeration of simple permutations: asymptotically $\frac{n!}{2}$

 \Rightarrow Asymptotically, a proportion $\frac{1}{a^2}$ of decom--position trees are reduced to one prime node.

Separable permutations

Thm: Asymptotically, the proportion of decomposition trees made of a prime root with children that are leaves or twins is 1.



twin = linear node with only two children, that are leaves Consequence: Asymptotically, with probability 1, the algorithm runs in polynomial time.

Rem.: The number of twins follows a Poisson distribution of parameter 2.

Average complexity

Average complexity on permutations of size *n*:

$$\sum_{p=0}^{n} \#\{\sigma \text{ with } p \text{ prime nodes}\} C 2^{p} n \sqrt{n \log n}$$

Thm: When $p \ge 2$, the number of (unsigned) permutations of size n with p prime nodes is at most $\frac{48(n-1)!}{2^p}$.

Proof: induction on *p*

Consequence: Average complexity on permutations of size n is $\leq 51Cn\sqrt{n\log n}$. In particular, **polynomial on average.**

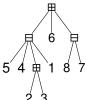
Separable (= commuting) permutations

Def.: Commuting permutation = permutation sorted by a scenario where any pair of reversals commutes (= does not overlap)

Rem.: Here, scenario = set of intervals, in any order

Equivalently: Commuting permutation = permutation with no prime node in its decomposition tree
Also called separable permutations.

Example: 54231687 i.e.



Scenarios for separable permutations

In general, in the computed scenario, reversals are

- linear nodes with label different from its linear parent
- inside prime nodes

```
Prop.: No \blacksquare - \blacksquare nor \blacksquare - \blacksquare edge in decomposition trees
Consequence: For separable permutations,
reversals = linear nodes with label different from its linear parent
             = { all internal nodes except the root 
 +leaves with label different from its parent
```

Reversals \approx internals nodes – the root + half of the leaves

⇒ The shape of the tree is sufficient to study reversals

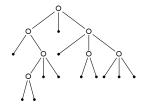
Bijection between separable perm. and Schröder trees

Decomposition trees of (unsigned) separable permutation

5 12 # # 9

 $\begin{array}{ccc} \text{size of } \sigma & \longleftrightarrow \\ \text{reversal of length} \geq 2 & \longleftrightarrow \\ \text{reversal of length 1} & \longleftrightarrow \\ \text{length of a reversal} & \longleftrightarrow \end{array}$

Schröder trees + label ⊞ or ⊟ on the root



number of leaves internal node except the root some leaves (half of them) size (= # leaves) of the subtree

Separable permutations

000000

Sorting by reversals

Parameters on Schröder trees

Two parameters on Schröder trees:

- Number of internal nodes
- Pathlength = sum of the sizes of the subtrees

Study their average gives access to:

- Average number of reversals
- Average length of a reversal

in a scenario for a separable permutation

Analytic combinatorics:

average from bivariate generating functions $S(x, y) = \sum s_{n,k} x^n y^k$ where $s_{n,k}$ = number of Schröder trees with n leaves and kinternal nodes (resp. pathlength k)

Average value of a parameter (number of internal nodes)

Definition: $S(x, y) = \sum s_{n,k} x^n y^k$,

where $s_{n,k}$ = number of Schröder trees with n leaves and k internal nodes

Combinatorial specification:
$$S = \bullet + S S \cdots S$$

Functional equation:
$$S(x, y) = x + y \frac{S(x, y)^2}{1 - S(x, y)}$$

Solution:
$$S(x, y) = \frac{(x+1) - \sqrt{(x+1)^2 - 4x(y+1)}}{2(y+1)}$$

Average number of internal nodes =
$$\frac{\sum_{k} k s_{n,k}}{\sum_{k} s_{n,k}} = \frac{[x^n] \frac{\partial S(x,y)}{\partial y}|_{y=1}}{[x^n] S(x,1)}$$

Asymptotic estimate of $[x^n]S(x,1)$ when $n \to +\infty$: from asymptotic estimate of S(x,1) when $x \to$ dominant singularity

Results

Sorting by reversals

Application of the methodology of [Flajolet, Sedgewick]

In Schröder trees with n leaves:

- Average number of internal nodes: $\sim \frac{n}{\sqrt{2}}$
- Average pathlength: $\sim 1.27n^{\frac{3}{2}}$

In scenarios for separable permutations of size n:

- Average number of reversals:~ $\frac{1+\sqrt{2}}{2}n$
- Average length of a reversal: $\sim 1.054 \sqrt{n}$

Results so far and future work

Perfect sorting by reversals for signed permutations:

- NP-hard problem
- algorithm running in polynomial time
 - → on average
 - → asymptotically with probability 1
 - \hookrightarrow for the uniform distribution on permutations of size n

Special case of separable permutations (no prime nodes):

- expected length of a parsimonious perfect scenario ~ 1.27n
- expected length of a reversal in such a scenario $\sim 1.054 \sqrt{n}$ using analytic combinatorics techniques

Work in progress: influence on the probability distribution to obtain a model closer to the biological observations

Sorting by reversals

Non-uniform distributions

Sorting by reversals

Results under the uniform distribution: mostly theoretical results Biological data: not uniformly distributed (few prime nodes,...)

Combinatorial specification as decomposition trees: allows to introduce some constraints on the prime nodes (maximal arity, number, ...) for:

- the study of parameters (on average)
- (Boltzmann) random generation

under non uniform distributions

Comparison between these results (theoretical or simulation) and biological data

- → to describe models that are closer to the biological reality
- → to identify non-random evolution (w.r.t. a good distribution)