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The context: Sorting by reversals

Biological motivations

Reconstruction of evolution scenarios
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The context: Sorting by reversals

Sorting by reversals: the problem and solution

The problem:
m INPUT: Two signed permutations o4 and o2
B ouTpPuT: A parsimonious scenario from o1 to o2 or o2

Parsimonious = shortest, i.e. minimal number of reversals.
Without loss of generality, co = Id=12...n

The solution:
m Hannenhalli-Pevzner theory
m Polynomial algorithms: from O(n*) to O(n+/nlog n)

Remark: the problem is NP-hard when permutations are unsigned.
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The problem we consider: Perfect sorting by reversals

Definition and motivation

Perfect sorting by reversals: do not break common intervals

Common interval between oy and o: windows of oy and o
containing the same elements (with no sign)
Example: oy =5137624ando,=6471325

When o> = Id, interval of o1 = window forming a range (in N)
Example: 04 =4756312

Biological argument: groups of identical (or homologous) genes
appearing together in two species are likely to be

m together in the common ancestor
m never separated during evolution
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The problem we consider: Perfect sorting by reversals

Algorithm and complexity

The problem:
m INPUT: Two signed permutations o4 and o2

m ouTpPuT: A parsimonious perfect scenario (=shortest among
perfect scenarios) from o1 to o2 or o2

Without loss of generality, oo = Id=12...n
Watch out!: Parsimonious perfect =% parsimonious
Complexity: NP-hard problem

Algorithm [Bérard, Bergeron, Chauve, Paul]: take advantage of
decomposition trees to produce a FPT algorithm (2 - n°())
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The problem we consider: Perfect sorting by reversals

Strong intervals of (signed) permutations

m Strong interval = does not overlap any other interval
m Interval lis strongiff VJ, ICJorJClorind =10

Example of intervals and strong intervals:
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The problem we consider: Perfect sorting by reversals

Strong intervals of (signed) permutations

m Strong interval = does not overlap any other interval
m Interval lis strongiff VJ, ICJorJClorind =10

Example of intervals and strong intervals:

56 7 9 4312 8101713751211 14187916

Trivial intervals are always among strong intervals
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The problem we consider: Perfect sorting by reversals

Strong intervals of (signed) permutations

m Strong interval = does not overlap any other interval
m Interval lis strongiff VJ, ICJorJClorind =10

Example of intervals and strong intervals:

56 7 9 4312 8101713751211 141819 1

Trivial intervals are always among strong intervals
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The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Also known as strong interval trees
m Inclusion order on strong intervals: a tree-like ordering

Computation: in linear time

Mathilde Bouvel
Average-case complexity analysis of perfect sorting by reversals



Perfect sorting by reversals
0000@0000

The problem we consider: Perfect sorting by reversals

Decomposition trees of (signed) permutations

Quotient permutation = Example:

order of the children (that are intervals) H‘Z 9
5.7 9 [1.4] ™3

Two types of nodes:
m Linear nodes (O):
B increasing, i.e. quotient permutation=12...k
= label m
m decreasing, i.e. quotient permutation = k (k —1)...21
= label B
m Prime nodes (O): the quotient permutation is simple

Simple permutations: Example: 425163, i.e.

the only intervals are 1, 2,..., nand o

4°2 5 1 6 3
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information = forget the leaves and intervals

[1..19]
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The problem we consider: Perfect sorting by reversals

Simplified decomposition tree

Remark: redundant information = forget the leaves and intervals

+ +

labels of internal nodes
+signs of the leaves
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The problem we consider: Perfect sorting by reversals

Idea of the algorithm to solve perfect sorting

Put labels + or — on the nodes of the decomposition tree of o
m Leaf: sign of the element in o
m Linear node: + for @ (increasing) and — for 8 (decreasing)
m Prime node whose parent is linear: sign of its parent

m Other prime node: 777
— Test labels + and — and choose the shortest scenario

Algorithm:

m Perform Hannenhalli-Pevzner (or improved version) on prime
nodes

m Signed node belongs to scenario iff its sign is different from
its linear parent
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The problem we consider: Perfect sorting by reversals

Example of labeled decomposition tree
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The problem we consider: Perfect sorting by reversals

Complexity results

Complexity:

m O(2Pn+/nlog n), with p = # prime nodes
m polynomial on separable permutations (p = 0)

Our work:
m polynomial with probability 1 asymptotically
m polynomial on average

m in a parsimonious perfect scenario for separable permutations

m average number of reversals ~ 1.27n
m average length of a reversal ~ 1.054 vn

Probability distribution: always uniform
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Average-case complexity analysis

“Average shape“ of decomposition trees

Enumeration of simple permutations: asymptotically g—;

= Asymptotically, a proportion —; of decom-

-position trees are reduced to one prime node.

Thm: Asymptotically, the proportion of
decomposition trees made of a prime root B
with children that are leaves or twins is 1. R /E\

twin = linear node with only two children, that are leaves

Consequence: Asymptotically, with probability 1, the algorithm
runs in polynomial time.

Rem.: The number of twins follows a Poisson distribution of parameter 2.
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Average-case complexity analysis

Average complexity

Average complexity on permutations of size n:

n
Z #{o- with p prime nodes} C 2°n+/nlogn

p=0

n!

Thm: When p > 2, the number of (unsigned) permutations of size
n with p prime nodes is at most —48(” L

Proof: induction on p

Consequence: Average complexity on permutations of size n is
< 51Cn+/nlog n. In particular, polynomial on average.
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Restriction to the class of separable permutations

Separable (= commuting) permutations

Def.: Commuting permutation = permutation
sorted by a scenario where any pair of reversals

Example:
commutes (= does not overlap) 54231687 i.e.
2|
Rem.: Here, scenario = set of intervals, in any L
order
5 1

Equivalently: Commuting permutation =
permutation with no prime node in its
decomposition tree

Also called separable permutations.
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Restriction to the class of separable permutations

Scenarios for separable permutations

In general, in the computed scenario, reversals are
m linear nodes with label different from its linear parent
m inside prime nodes

Prop.: No B — B nor 8 — 8 edge in decomposition trees

Consequence: For separable permutations,
reversals = linear nodes with label different from its linear parent
{all internal nodes except the root

+leaves with label different from its parent

\ Reversals ~ internals nodes — the root + half of the Ieaves\

= The shape of the tree is sufficient to study reversals
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Restriction to the class of separable permutations

Bijection between separable perm. and Schrdder trees

Decomposition trees of (unsigned) Schréder trees
separable permutation + label @ or 8 on the root

o

IO N
N A TN
B/ R/ SN AN
2 A
size of 0 «— number of leaves
reversal of length > 2 «— internal node except the root

reversal of length 1 «— some leaves (half of them)
length of a reversal «— size (= # leaves) of the subtree
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Restriction to the class of separable permutations

Parameters on Schroder trees

Two parameters on Schrdder trees:
m Number of internal nodes
m Pathlength = sum of the sizes of the subtrees

Study their average gives access to:
m Average number of reversals
m Average length of a reversal
in a scenario for a separable permutation
Analytic combinatorics:
average from bivariate generating functions S(x,y) = X spxx"y

where s,k = number of Schréder trees with n leaves and k
internal nodes (resp. pathlength k)
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Restriction to the class of separable permutations

Average value of a parameter (number of internal nodes)

Definition: S(x,y) = X snkx"yk,
where s, x = number of Schréder trees with n leaves and k
internal nodes

(0}
\
Combinatorial specification: S =e + é/ \S

Functional equation: S(x,y) = x + y%

. Y vy o ey
Solution: S(x,y) = &+ é’((yt:ﬁ ax(y11)

4S(x.
Yk Ksnk [x" 7((9; 2 ly=1

2kSnk  [x"S(x.1)

Asymptotic estimate of [x"]S(x, 1) when n — +o0: from
asymptotic estimate of S(x, 1) when x — dominant singularity
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Restriction to the class of separable permutations

Results

Application of the methodology of [Flajolet, Sedgewick]

In Schroder trees with n leaves:

m Average number of internal nodes: ~ %

3
2

m Average pathlength: ~ 1.27n

In scenarios for separable permutations of size n:
m Average number of reversals:~ Y2

m Average length of a reversal: ~ 1.054v/n
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Conclusion and future work under non-uniform distributions

Results so far and future work

Perfect sorting by reversals for signed permutations:

m NP-hard problem
m algorithm running in polynomial time

< 0n average
— asymptotically with probability 1
— for the uniform distribution on permutations of size n

Special case of separable permutations (no prime nodes):
m expected length of a parsimonious perfect scenario ~ 1.27n
m expected length of a reversal in such a scenario ~ 1.054 v/n
using analytic combinatorics techniques

Work in progress: influence on the probability distribution to obtain
a model closer to the biological observations
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Conclusion and future work under non-uniform distributions

Non-uniform distributions

Results under the uniform distribution: mostly theoretical results
Biological data: not uniformly distributed (few prime nodes.. . .)

Combinatorial specification as decomposition trees: allows to
introduce some constraints on the prime nodes (maximal arity,
number, . ..) for:

m the study of parameters (on average)
m (Boltzmann) random generation
under non uniform distributions
Comparison between these results (theoretical or simulation) and
biological data
— to describe models that are closer to the biological reality
— to identify non-random evolution (w.r.t. a good distribution)
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