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Non-uniform permutations

Context:
Analysis of algorithms working on arrays of numbers (sorting, . . . )

Average-case analysis of algorithms:

The uniform distribution on the data set is usually assumed.

It provides a first answer, but it is not always realistic.
E.g., sorting algorithms are often used on data which is already
“almost sorted”. (Ex. of TimSort, wait 30 minutes to know more!)

⇒ Find non-uniform models with good balance between simplicity (so that
we can study it) and accuracy (in terms of modeling data)

Some classical models for non-uniform permutations

Ewens: P(σ) is proportional to θnumber of cycles of σ

Mallows: P(σ) is proportional to θnumber of inversions of σ
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Our record-biased permutations

Goal: A non-uniform distribution on permutations, which gives higher
probabilities to permutations that are “almost sorted”.

Record-biased permutations:

A record is an element larger than all those preceding it.
Example: 3 4 1 2 6 8 7 9 5 has 5 records.

Roughly, a permutation with many records is “almost sorted”. More
formally, the number of non-records is a measure of presortedness.

In our model, P(σ) is proportional to θnumber of records of σ.

We focus on the regime where θ = λ · n, n being the size of σ.

Remark: Related to the Ewens distribution via Foata’s fundamental
bijection, which sends number of cycles to number of records.
Example: 2 4 3 1 9 6 8 7 5 = (3)(4 1 2)(6)(8 7)(9 5)→ 3 4 1 2 6 8 7 9 5
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Outline of the talk

Goal: Describe properties of the model of record-biased permutations.
Applications to the analysis of algorithms won’t be discussed so much.

Results obtained:

Random sampling can be done in linear time.

Behavior of classical permutation statistics:

We obtain their expected values and precise probabilities.
Applications to analysis of algorithms were presented at AofA 2016:
• expected running time of InsertionSort,
• expected number of mispredictions in MinMaxSearch

We plan to study their distribution.

What does a large record-biased permutation typically look like?

We describe the (deterministic) permuton limit for our model.
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Linear random samplers



Linear-time random samplers

Ewens-distributed permutations can be
sampled in linear time using a variant
of the Chinese restaurant process:

Insert i from 1 to n.
At step i , create a new cycle (i) with
probability θ

θ+i−1 , or insert i in an
existing cycle, immediately after a
previously inserted element, each
with probability 1

θ+i−1 .
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Using appropriate data structures, we can implement Foata’s
transform in linear time,
hence sampling record-biased permutation in linear time.

We can also do it directly, with appropriate data structures.
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Playing with the sampler: a typical diagram arises

The diagram of a permutation σ of size n
is the set of points at coordinates (i , σ(i))
for 1 ≤ i ≤ n.

The normalized diagram of σ is the same
picture, rescaled to the unit square.

σ = 3 1 2 8 5 4 7 9 6

Pictures obtained overlapping 10 000 permutations of size 100 sampled
according to the record-biased model with θ = 1, 50, 100 and 500:

We explain it by describing the permuton limit of record-biased
permutations.
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Playing with the sampler: number of records

A record of a permutation σ is given by an index i such that σ(i) > σ(j)
for all j < i .

Empirical distribution of the number of records
in record-biased permutations:
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Histograms for 106 permutations, of size n = 100, 200 and 500,
and for θ = 1, n2 , n and 5n.

Remark: Corresponds to number of cycles for Ewens distribution, known
to be Gaussian for fixed θ.
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Playing with the sampler: number of descents

A descent of a permutation σ is given by an index i s.t. σ(i − 1) > σ(i).

Empirical distribution of the number of descents
in record-biased permutations:
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Histograms for 106 permutations, of size n = 100, 200 and 500,
and for θ = 1, n2 , n and 5n.

Remark: Corresponds to number of anti-exceedances (given by i s.t.
σ(i) < i) for Ewens distribution, which can be proved Gaussian for fixed θ.
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Playing with the sampler: number of inversions

An inversion of σ is given by a pair i , j s.t. i < j and σ(i) > σ(j).

Empirical distribution of the number of inversions
in record-biased permutations:
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Histograms for 106 permutations, of size n = 100, 200 and 500,
and for θ = 1, n2 , n and 5n.

Remark: No known natural analogue for Ewens distribution
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Playing with the sampler: first value

Empirical distribution of the first value σ(1) in record-biased permutations:
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Histogram for 106 permutations,
of size n = 100,
and for θ = 0.2, 0.5, 1, 10 and 50.

Remark: Corresponds to the minimum over all cycles of the maximal
value in a cycle for Ewens distribution
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Behavior of classical statistics



Example: the number of descents [from AofA 2016]

Proposition: In record-biased permutations of size n, for any
i ∈ {2, . . . , n}, the probability that there is a descent at position i is

P
(
σ(i − 1) > σ(i)

)
= (i−1)(2θ+i−2)

2(θ+i−1)(θ+i−2) .

Corollary: In record-biased permutations of size n, the expected value of
the number of descents is E[number of descents] = n(n−1)

2(θ+n−1) .

In particular, when θ = λn, E[number of descents]∼ n/2(λ+ 1).

Application (using the precise probabilities given by the proposition):
Average number of mispredictions in algorithms solving MinMaxSearch.

Question: Can we say more than just the expectation when θ = λn? Can
we find the limiting distribution?

More examples: Similar statements for number of records, number of
inversions and first value, with applications to the analysis of
InsertionSort and MinMaxSearch.
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Permuton limit
of record-biased permutations



The framework of permutons [Hoppen et al., 2013]

Definition: A permuton µ is a probability measure on the unit square with
uniform projections (or marginals):

for all a < b in [0, 1], µ([a, b]× [0, 1]) = µ([0, 1]× [a, b]) = b − a.

Remark: The normalized diagrams of
permutations (denoted σ) are essentially
permutons (denoted µσ)
Replacing each point (i/n, σ(i)/n) by a little square [(i − 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n], and

distributing the mass 1 uniformly on these little squares

Convergence of a sequence of permutations (σn) to a permuton µ:

inherited from the weak convergence of measures, namely:

σn → µ when sup
R rectangle ⊂[0,1]2

|µσn(R)− µ(R)| → 0 as n→ +∞.

If each σn has size n, taking R of the form [0, i/n]× [0, j/n] is enough.

Mathilde Bouvel Record-biased permutations 15 / 18



Permuton limit of record-biased permutations

Theorem:
Let σn be a random record-biased permutation of size n for θ = λn.
µσn converges in probability to µ = µc + µu defined below.

Letting fλ(x) = x(λ+1)
λ+x , we define

µu is the uniform measure
of total mass cλ

∫ 1
0 fλ for cλ = 1

λ+1
on the area under the curve y = fλ(x);

µc is the measure
supported by the curve y = fλ(x)
with density λ

λ+x with respect to Lebc ,
defined by Lebc(x , fλ(x)) = Lebesgue(x)

Two steps towards this statement:
guessing µ and proving convergence.

f0.01:

f0.2:

f3:
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Guessing the limit µ

The pictures suggest to decompose µ as µu + µc , with µc on a curve,
and µu uniform under the curve. To determine are:

the equation y = fλ(x) of the curve,

how to distribute the mass between µc and µu.

To find the equation y = fλ(x) of the curve,

we estimate P(max before position i is j) for i ≈ xn and j ≈ yn;

we find the relation between x and y which makes this probability not
larger than 1, and non-zero once summed over j .

To find the relative measures on the curve and below,

we compute the measure of the records in σn and take the limit in n:
this gives the measure

∫ 1
0

λ
λ+x dx on the curve;

we distribute uniformly the mass cλ
∫ 1
0 fλ(x)dx below the curve,

for cλ s.t.
∫ b
a ( λ

λ+x + cλfλ(x))dx = b − a.
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Stay tuned

What was done: [AofA 2016]

Definition of the record-biased model

Behavior of statistics (precise probabilities, expectation)

Applications to the analysis of algorithms

What is new: [AofA 2021]
(but needs to be written down. . . ) and on Arxiv “soon”

Efficient random samplers

Permuton limit

What is left to do: hopefully before AofA 2026!

Is the number of inversions Gaussian?

Do the Gaussian limiting distributions hold also in the θ = λn regime?

!! Thank you !!
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