Accompanying slides to the blackboard talk

Semi-Baxter and Strong-Baxter: two relatives of the Baxter sequence

Two Baxter families of permutations

Theorem:

- $\left|A v_{n}(2 \underline{41} 3,3 \underline{14} 2)\right|=B a x_{n} \quad$ (Baxter permutations)
- $\left|A v_{n}(2 \underline{41} 3,3 \underline{41} 2)\right|=B a x_{n} \quad$ (twisted Baxter permutations) where $B a x_{n}=\frac{2}{n(n+1)^{2}} \sum_{j=1}^{n}\binom{n+1}{j-1}\binom{n+1}{j}\binom{n+1}{j+1}$.

First few terms: $1,2,6,22,92,422,2074,10754$ [A001181]
Selected properties of the Baxter numbers:

- The generating function $\sum_{n} B a x_{n} x^{n}$ is not algebraic but is D-finite.
- There is a recursive formula for $B a x_{n}$:

$$
\operatorname{Bax}_{n}=\frac{7 n^{2}+7 n-2}{(n+3)(n+2)} B a x_{n-1}+\frac{8(n-2)(n-1)}{(n+3)(n+2)} \operatorname{Bax}_{n-2} .
$$

Schema of proof of $\left|A v_{n}(2 \underline{41} 3,3 \underline{14} 2)\right|=B a x_{n}$

Generating tree for Baxter permutations
\downarrow (they go together)
Succession rule with two labels: $\Omega_{\text {Bax }}$
\downarrow (automatic)
Functional equation for the multivariate generating function $F(x ; y, z)$
Coefficient of $x^{n} y^{h} z^{k}$ in $F(x ; y, z)$
$=$ number of Baxter permutations of size n with label (h, k)
\downarrow (the hard part, using obstinate kernel method)
Expression of the generating function
\downarrow (Lagrange inversion formula)
Formula for the coefficients

Generating function for semi-Baxter permutations

Notation:

- $S(y, z)=S(x ; y, z)=\sum_{n, h, k}$ number of semi-Baxter permutations of size n and label $(h, k) \cdot x^{n} y^{h} z^{k}$
- $S B_{n}=\left|A v_{n}(2413)\right|=\left[x^{n}\right] S(1,1)$, i.e. $S(1,1)=\sum_{n} S B_{n} x^{n}$

Theorem: Let W be the unique formal power series in x such that

$$
W=\frac{x}{a}(1+a)(W+1+a)(W+a)
$$

Then $S(1+a, 1+a)$ is obtained by keeping only the terms with non-negative powers of a in

$$
\begin{aligned}
& Q(a, W)=(1+a)^{2} \times+\left(\frac{1}{a^{5}}+\frac{1}{a^{4}}+2+2 a\right) \times W \\
& +\left(-\frac{1}{a^{5}}-\frac{1}{a^{4}}+\frac{1}{a^{3}}-\frac{1}{a^{2}}-\frac{1}{a}+1\right) \times W^{2}-\left(\frac{1}{a^{4}}-\frac{1}{a^{2}}\right) \times W^{3} .
\end{aligned}
$$

Corollary: $S(1,1)$ is D-finite but not algebraic.

The semi-Baxter sequence $S B_{n}$

Explicit formula: $S B_{n+1}=$

$$
\begin{aligned}
& \frac{1}{n} \sum_{j=0}^{n}\binom{n}{j}\left[2\binom{n+1}{j+2}\binom{n+j+2}{n+2}+\binom{n}{j+1}\binom{n+j+2}{n-3}+3\binom{n}{j+4}\binom{n+j+4}{n+1}\right. \\
& \left.+2\binom{n}{j+2}\binom{n+j+4}{n}\left(2-\frac{n+j+5}{n+1}-\frac{n}{j+5}\right)+\frac{2 n}{j+3}\binom{n}{j+2}\binom{n+j+2}{n}\right] .
\end{aligned}
$$

Proof: $S B_{n}=\left[x^{n}\right] S(1,1)=\left[a^{0} x^{n}\right] S(1+a, 1+a)=\left[a^{0} x^{n}\right] Q(a, W)$ and use Lagrange inversion formula.

Recursive formula: $S B_{n}=\frac{11 n^{2}+11 n-6}{(n+4)(n+3)} S B_{n-1}+\frac{(n-3)(n-2)}{(n+4)(n+3)} S B_{n-2}$.
Proof: Creative telescoping (an automatic method of Zeilberger).
Asymptotics: $S B_{n}=A \frac{\mu^{n}}{n^{6}}\left(1+O\left(\frac{1}{n}\right)\right)$,
where $\mu=\varphi^{5}=\frac{11}{2}+\frac{5}{2} \sqrt{5}, A=\frac{12 \varphi^{-15 / 2}}{\pi \cdot 5^{1 / 4}} \approx 94.34$ and $\varphi=\frac{\sqrt{5}-1}{2}$
Proof: Applying a method of M. Bousquet-Mélou and G. Xin.

Proof for the GF result

1. $S_{h, k}=\sum_{n} \sharp$ semi-Baxter perm. of size n and label $(h, k) \cdot x^{n}$.

From $\Omega_{\text {semi }}$, we get $S(y, z)$

$$
\begin{aligned}
& =x y z+x \sum_{h, k \geq 1} S_{h, k}\left(\left(y+y^{2}+\ldots+y^{h}\right) z^{k+1}+\left(y^{h+k} z+y^{h+k-1} z^{2}+\ldots+y^{h+1} z^{k}\right)\right) \\
& =x y z+x \sum_{h, k \geq 1} S_{h, k}\left(\frac{1-y^{h}}{1-y} y z^{k+1}+\frac{1-\left(\frac{y}{2}\right)^{k}}{1-\frac{y}{z}} y^{h+1} z^{k}\right) \\
& =x y z+\frac{x y z}{1-y}(S(1, z)-S(y, z))+\frac{x y z}{z-y}(S(y, z)-S(y, y)) .
\end{aligned}
$$

2. Write this functional equation in kernel form, for $S(1+a, z)$:
($)^{\prime} \quad K(a, z) S(1+a, z)=x z(1+a)+\frac{x z(1+a)}{a} S(1, z)-\frac{x z(1+a)}{z-1-a} S(1+a, 1+a)$, with kernel $K(a, z)=1-\frac{x z(1+a)}{a}-\frac{x z(1+a)}{z-1-a}$.
3. Solve $K(a, z)=0$ for z.

Of the two roots, only one (denoted Z) is a f.p.s. in x.
4. Substitute $z=Z$ in (\star): LHS is 0 .

Proof for the GF result

(2/2)

5. The obstinate trick: Find rational transformations $(a, z) \mapsto(f(a, z), g(a, z))$ that leave $K(a, z)$ unchanged.
Here, we find two, which generate a group of order 10.
6. Identify those such that $f(a, Z)$ and $g(a, Z)$ are f.p.s. in x. Here, we find 5.
7. Substituting in (\star) gives a system of 5 equations (with LHS 0).
8. Eliminate $S(1, Z)$ and similar unknowns from the system. Here, we obtain $S(1+a, 1+a)-\frac{(1+a)^{2} x}{a^{4}} S\left(1,1+\frac{1}{a}\right)+Q(a, W)=0$ where $W=Z-(1+a)$.
9. $W=Z-(1+a)$ and $K(a, Z)=0$ define W as claimed.
10. Extract the non-negative powers of a in the above equation for $S(1+a, 1+a)$.

Generating function for strong-Baxter permutations

$$
\begin{aligned}
I(y, z)=I(x ; y, z) & =\sum_{n, h, k} \text { number of strong-Baxter } \\
& \text { permutations of size } n \text { and label }(h, k) \cdot x^{n} y^{h} z^{k}
\end{aligned}
$$

1. From $\Omega_{\text {strong }}$, functional equation for $I(y, z)$:
$I(y, z)=x y z+\frac{x}{1-y}(y I(1, z)-I(y, z))+x z I(y, z)+\frac{x y z}{1-z}(I(y, 1)-I(y, z))$.
2. Kernel form of the equation, for $J(a, b)=I(1+a, 1+b)$:
$K(a, b) J(a, b)=x(1+a)(1+b)-x \frac{1+a}{a} J(0, b)-x \frac{(1+a)(1+b)}{b} J(a, 0)$,
with $K(a, b)=(1-x Q(a, b))$ where $Q(a, b)=\frac{1}{a}+\frac{1}{b}+\frac{a}{b}+a+b+2$.
3. There are two rational transformations that leave the kernel unchanged. Here, they generate a group which seems to be infinite.
\Rightarrow The obstinate kernel method fails ...

Generating function for strong-Baxter permutations

$I(y, z)=I(x ; y, z)=\sum_{n, h, k}$ number of strong-Baxter permutations of size n and label $(h, k) \cdot x^{n} y^{h} z^{k}$

1. From $\Omega_{\text {strong }}$, functional equation for $I(y, z)$:
$I(y, z)=x y z+\frac{x}{1-y}(y I(1, z)-I(y, z))+x z I(y, z)+\frac{x y z}{1-z}(I(y, 1)-I(y, z))$.
2. Kernel form of the equation, for $J(a, b)=I(1+a, 1+b)$:
$K(a, b) J(a, b)=x(1+a)(1+b)-x \frac{1+a}{a} J(0, b)-x \frac{(1+a)(1+b)}{b} J(a, 0)$,
with $K(a, b)=(1-x Q(a, b))$ where $Q(a, b)=\frac{1}{a}+\frac{1}{b}+\frac{a}{b}+a+b+2$.
3. There are two rational transformations that leave the kernel unchanged. Here, they generate a group which seems to be infinite.
\Rightarrow The obstinate kernel method fails...
... but the kernel equation is reminiscent of walks in the quarter plane.

Connection to walks in the quarter plane

Notation:

- $W_{n, h, k}=$ number of walks in \mathbb{N}^{2}, starting at $(0,0)$, on step set $\mathfrak{S}=\{(-1,0),(0,-1),(1,-1),(1,0),(0,1)\}$, with n steps, and ending in (h, k).
- $Y_{n, h, k}=$ same, with step set $\mathfrak{S} \cup\{(0,0),(0,0)\}$
- $W(t ; a, b)$ and $Y(t ; a, b)$ their generating functions.

Theorem [Bostan, Raschel, Salvy]:
The generating function $W(t ; a, b)=W(a, b)$ satisfies $W(a, b)=1+t\left(\frac{1}{a}+\frac{1}{b}+\frac{a}{b}+a+b\right) W(a, b)-\frac{t}{a} W(0, b)-t \frac{(1+a)}{b} W(a, 0)$. Moreover neither $W(a, b)$ nor $W(0,0)$ are D-finite.
Fact 1: $Y(x ; a, b)=W\left(\frac{x}{1-2 x} ; a, b\right) \frac{1}{1-2 x}$ (combinatorial argument).
Fact 2: $J(x ; a, b)=(1+a)(1+b) \times Y(x ; a, b)$ (same kernel eq.).
Corollary: The generating function $I(1,1)=J(0,0)$ of strong-Baxter numbers is not D-finite (and neither is $J(a, b)$).

