Studying permutation classes using the substitution decomposition

Mathilde Bouvel (Institut für Mathematik, Universität Zürich)

Combinatorics and interactions, Introductory school at CIRM, Jan. 2017 Permutation patterns and permutation classes

Permutations

Permutation of size n = Bijection from [1..n] to itself. Set \mathfrak{S}_n , and $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$.

Permutations

Permutation of size n = Bijection from [1..n] to itself. Set \mathfrak{S}_n , and $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$.

• Two-line notation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{pmatrix}$$

- One-line or word notation: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$
- Description as a product of cycles: $\sigma = (1) (2 \ 8 \ 7 \ 5 \ 4 \ 6) (3)$

• Graphical description, or diagram:

Permutations

Permutation of size n = Bijection from [1..n] to itself. Set \mathfrak{S}_n , and $\mathfrak{S} = \bigcup_n \mathfrak{S}_n$.

• Two-line notation:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{pmatrix}$$

- One-line or word notation: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$
- Description as a product of cycles: $\sigma = (1) (2 \ 8 \ 7 \ 5 \ 4 \ 6) (3)$

• Graphical description, or diagram:

This talk is about permutation patterns and permutation classes.

$$\begin{array}{c}1\\\\\\2\\\\3\\\\6\end{array}\end{array}$$

The stack sorting operator S

The stack sorting operator S

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1\ 2\ 3\ 6\ 4\ 5\ 7$$
 \leftarrow 6 1 3 2 7 5 4 = σ

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, where $n = \max(LnR)$

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4 = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, where $n = \max(LnR)$

First result on permutation patterns [Knuth 68] : A permutation σ is stack-sortable iff σ avoids the pattern 231

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4 = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, where $n = \max(LnR)$

First result on permutation patterns [Knuth 68] : A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no i < j < k such that $\sigma_k < \sigma_i < \sigma_j$, or equivalently no subsequences $\cdots \sigma_i \cdots \sigma_j \cdots \sigma_k \cdots$ of σ whose elements are in the same relative order as 231.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ \mathbf{6} \ 4 \ 5 \ 7 \leftarrow \mathbf{6} \ \mathbf{1} \ 3 \ 2 \ \mathbf{7} \ \mathbf{5} \ \mathbf{4} = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, where $n = \max(LnR)$

First result on permutation patterns [Knuth 68] : A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no i < j < k such that $\sigma_k < \sigma_i < \sigma_j$, or equivalently no subsequences $\cdots \sigma_i \cdots \sigma_j \cdots \sigma_k \cdots$ of σ whose elements are in the same relative order as 231.

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ \mathbf{6} \ 4 \ 5 \ 7 \leftarrow \mathbf{6} \ 1 \ 3 \ 2 \ \mathbf{7} \ 5 \ \mathbf{4} = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, where $n = \max(LnR)$

First result on permutation patterns [Knuth 68] : A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no i < j < k such that $\sigma_k < \sigma_i < \sigma_j$, or equivalently no subsequences $\cdots \sigma_i \cdots \sigma_j \cdots \sigma_k \cdots$ of σ whose elements are in the same relative order as 231.

Next: other sorting devices and patterns [Even & Itai 71, Tarjan 72, Pratt 73]

Permutation patterns

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Permutation patterns

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Permutation patterns

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Pattern relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is in the same relative order (\equiv) as π .

Notation: $\pi \preccurlyeq \sigma$.

```
Equivalently:
The normalization of \sigma_{i_1} \dots \sigma_{i_k} on [1..k] yields \pi.
```


Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Crucial remark: \preccurlyeq is a partial order on \mathfrak{S} and " $[\preccurlyeq]$ *is even more interesting than the [sorting] networks we were characterizing*" [Pratt 73]. This is the key to defining permutation classes.

Permutation classes

• A permutation class is a set C of permutations that is downward closed for \preccurlyeq , i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in C$, then $\pi \in C$.

Permutation classes

• A permutation class is a set C of permutations that is downward closed for \preccurlyeq , i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in C$, then $\pi \in C$.

• Notations: $Av(\pi)$ = the set of permutations that avoid the pattern π $Av(B) = \bigcap_{\pi \in B} Av(\pi)$

Fact: For every permutation class C, C = Av(B) for B = {σ ∉ C : ∀π ≼ σ such that π ≠ σ, π ∈ C}.
B is an antichain (set of elements incomparable for ≼), called the basis of C.

Permutation classes

• A permutation class is a set C of permutations that is downward closed for \preccurlyeq , i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in C$, then $\pi \in C$.

• Notations: $Av(\pi)$ = the set of permutations that avoid the pattern π $Av(B) = \bigcap_{\pi \in B} Av(\pi)$

Fact: For every permutation class C, C = Av(B) for B = {σ ∉ C : ∀π ≼ σ such that π ≠ σ, π ∈ C}.
B is an antichain (set of elements incomparable for ≼), called the basis of C.

- Remarks:
 - Conversely, every set Av(B) is a permutation class.
 - There exist infinite antichains in the permutation pattern poset, hence some permutation classes have infinite basis.

A biased overview of important results

Specific enumeration results

For C a permutation class, C_n is the set of permutations of size n in C and $C(z) = \sum_n |C_n| z^n$ is its generating function.

For C a permutation class, C_n is the set of permutations of size n in C and $C(z) = \sum_n |C_n| z^n$ is its generating function.

• One excluded pattern:

- of size 3: By symmetry, focus on Av(321) and Av(231) only.
 - Description of Av(321) [MacMahon 1915] and Av(231) [Knuth 68].
 - Enumeration by the Catalan numbers in both cases.
 - Bijections: [Simion, Schmidt 85] [Claesson, Kitaev 08].
 - But these two classes have a very different structure.

Specific enumeration results

For C a permutation class, C_n is the set of permutations of size n in C and $C(z) = \sum_n |C_n| z^n$ is its generating function.

- One excluded pattern:
 - of size 3: By symmetry, focus on Av(321) and Av(231) only.
 - of size 4: Only three different enumerations. Representatives are:
 - Av(1342) [Bóna 97], algebraic generating function
 - Av(1234) [Gessel 90], holonomic (or D-finite) generating function
 - Av(1324) ... remains an open problem

Specific enumeration results

For C a permutation class, C_n is the set of permutations of size n in C and $C(z) = \sum_n |C_n| z^n$ is its generating function.

- One excluded pattern:
 - of size 3: By symmetry, focus on Av(321) and Av(231) only.
 - of size 4: Only three different enumerations.

• Systematic enumeration of Av(B) when B contains small excluded patterns (size 3 or 4).

Often combining general methods briefly discussed later.

[Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West...in the nineties] [Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ... nowadays] For C a permutation class, C_n is the set of permutations of size n in C and $C(z) = \sum_n |C_n| z^n$ is its generating function.

- One excluded pattern:
 - of size 3: By symmetry, focus on Av(321) and Av(231) only.
 - of size 4: Only three different enumerations.

• Systematic enumeration of Av(B) when B contains small excluded patterns (size 3 or 4).

Often combining general methods briefly discussed later.

[Simion&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West...in the nineties] [Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ... nowadays]

• Enumeration of classes (with more excluded patterns) appearing in a different context (e.g. indices of Schubert varieties [Albert, Brignall 13])

- Upper growth rate: $\overline{Gr}(\mathcal{C}) = \limsup_n \sqrt[n]{|\mathcal{C}_n|}$
- Lower growth rate: $\underline{Gr}(\mathcal{C}) = \liminf_{n \neq n} \sqrt[n]{|\mathcal{C}_n|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture): $\overline{Gr}(\mathcal{C}) < \infty$ for any class $\mathcal{C} \neq \mathfrak{S}$. That is to say parametrize classes group at most synapsetic

That is to say, permutation classes grow at most exponentially.

- Upper growth rate: $\overline{Gr}(\mathcal{C}) = \limsup_n \sqrt[n]{|\mathcal{C}_n|}$
- Lower growth rate: $\underline{Gr}(\mathcal{C}) = \liminf_{n \neq n} \sqrt[n]{|\mathcal{C}_n|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture): $\overline{Gr}(\mathcal{C}) < \infty$ for any class $\mathcal{C} \neq \mathfrak{S}$. That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, $\overline{Gr}(C) = \underline{Gr}(C)$. Growth rate, denoted Gr(C). This holds for all principal classes, *i.e.*, $C = Av(\pi)$, and more generally for all sum-closed or skew-closed classes.

- Upper growth rate: $\overline{Gr}(\mathcal{C}) = \limsup_n \sqrt[n]{|\mathcal{C}_n|}$
- Lower growth rate: $\underline{Gr}(\mathcal{C}) = \liminf_{n} \sqrt[n]{|\mathcal{C}_n|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture): $\overline{Gr}(\mathcal{C}) < \infty$ for any class $\mathcal{C} \neq \mathfrak{S}$. That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, $\overline{Gr}(C) = \underline{Gr}(C)$. Growth rate, denoted Gr(C).

Arratia's (false) conjecture: $Gr(Av(\pi)) \le (k-1)^2 = Gr(Av(k...21))$ for $|\pi| = k$

- Gr(Av(1324)) > 9.47 [Albert, Elder, Rechnitzer, Westcott, Zabrocki 06]
- Remark: Gr(Av(1324)) is > 9.81 [Bevan 15], < 13.74 [Bóna 15] and conjectured to be \approx 11.60 [Conway, Guttmann 15]
- $Gr(Av(\pi))$ is typically exponential in $|\pi|$ [Fox, 2017+]

- Upper growth rate: $\overline{Gr}(\mathcal{C}) = \limsup_n \sqrt[n]{|\mathcal{C}_n|}$
- Lower growth rate: $\underline{Gr}(\mathcal{C}) = \liminf_{n} \sqrt[n]{|\mathcal{C}_n|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture): $\overline{Gr}(\mathcal{C}) < \infty$ for any class $\mathcal{C} \neq \mathfrak{S}$. That is to say, permutation classes grow at most exponentially.

Conjecture: For any class C, $\overline{Gr}(C) = \underline{Gr}(C)$. Growth rate, denoted Gr(C).

Arratia's (false) conjecture: $Gr(Av(\pi)) \le (k-1)^2 = Gr(Av(k...21))$ for $|\pi| = k$

Classification of growth rates:

Exactly which numbers can occur as (upper) growth rates is known, except between $\xi \approx 2.305$ and $\lambda < 2.36$ [Vatter and collaborators].

- Before ξ : countably many growth rates, all characterized
- After λ : all real numbers

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
 - All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
 - Av(321) contains non D-finite subclasses.
 - However, every proper subclass of Av(321) which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
 - All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
 - Av(321) contains non D-finite subclasses.
 - However, every proper subclass of Av(321) which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].
- (Tight?) connection between wqo and nice GF:
 - A class is wqo (well quasi-ordered) if it contains no infinite antichains.
 - \bullet If a class ${\cal C}$ and all its subclasses are algebraic, then ${\cal C}$ is wqo.
 - Vatter conjectures that the converse holds.

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For Av(231) and Av(321): Catalan numbers, algebraic GF. But:
 - All proper subclasses of Av(231) are rational [Albert, Atkinson 05].
 - Av(321) contains non D-finite subclasses.
 - However, every proper subclass of Av(321) which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].
- (Tight?) connection between wqo and nice GF:
 - A class is wqo (well quasi-ordered) if it contains no infinite antichains.
 - \bullet If a class ${\cal C}$ and all its subclasses are algebraic, then ${\cal C}$ is wqo.
 - Vatter conjectures that the converse holds.

• Sufficient algebricity condition [Albert, Atkinson 05]: When a class contains finitely many simple permutations.

Typical diagrams of large permutations in classes: what do they look like?

Typical diagrams of large permutations in classes: what do they look like? • One excluded pattern of size 3:

Typical diagrams of large permutations in classes: what do they look like?

- One excluded pattern of size 3:
 - Precise local description of the asymptotic shape [Miner, Pak 14] [Madras and collaborators].
 - Scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].
 - For any pattern π, the following quantity converges in distribution to a strictly positive random variable [Janson 16]:

 $\frac{\text{number of occurrences of } \pi \text{ in uniform } \sigma \in Av_n(132)}{n(|\pi| + \text{ number of descents of } \pi+1))/2}$

Typical diagrams of large permutations in classes: what do they look like?

- One excluded pattern of size 3:
 - Precise local description of the asymptotic shape [Miner, Pak 14] [Madras and collaborators].
 - Scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].
 - For any pattern π, the following quantity converges in distribution to a strictly positive random variable [Janson 16]:

 $\frac{\text{number of occurrences of } \pi \text{ in uniform } \sigma \in Av_n(132)}{n^{(|\pi| + \text{ number of descents of } \pi + 1))/2}}$

- Other known cases:
 - Connected monotone grid classes (deterministic limit) [Bevan 15]
 - Separable permutations (non-deterministic limit) [Bassino, B., Féray, Gerin, Pierrot 2017+]

Some general methods

To prove general results on families of permutation classes (*e.g.* growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

Some general methods

To prove general results on families of permutation classes (*e.g.* growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

- Generating trees
- Substitution decomposition
- Merging and splitting
- (Geometric) grid classes
- Encodings by words over a finite alphabet

• . . .

Some general methods

To prove general results on families of permutation classes (*e.g.* growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

- Generating trees
- Substitution decomposition
- Merging and splitting
- (Geometric) grid classes
- Encodings by words over a finite alphabet

• . . .

These methods are also sometimes used to prove results about (or enumerate) specific classes.

Substitution decomposition

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for substitution (or inflation): $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ with k = size of π .

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for **substitution** (or inflation): $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ with k = size of π .

Example: Here,
$$\pi = 132$$
, and
$$\begin{cases} \alpha^{(1)} = 21 = \textcircled{\bullet} \\ \alpha^{(2)} = 132 = \textcircled{\bullet} \\ \alpha^{(3)} = 1 = \textcircled{\bullet} \end{cases}$$

Hence $\sigma = 132[21, 132, 1] = 214653$.

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for **substitution** (or inflation): $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ with k = size of π .

Example: Here, $\pi = 132$, and \langle

$$\begin{cases} \alpha^{(1)} = 21 = \mathbf{0} \\ \alpha^{(2)} = 132 = \mathbf{0} \\ \alpha^{(3)} = 1 = \mathbf{0} \end{cases}$$

Hence $\sigma = 132[21, 132, 1] = 214653$.

In general, many substitutions give σ , but we will see a canonical one.

Simple permutations

Interval (or block) = set of elements of σ whose positions **and** values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation = permutation with no interval, except the trivial ones: 1, 2, ..., n and σ Example: 3174625 is simple

Simple permutations

Interval (or block) = set of elements of σ whose positions **and** values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation = permutation with no interval, except the trivial ones: 1, 2, ..., n and σ Example: 3174625 is simple

The smallest simple permutations: 12, 21, 2413, 3142, 6 of size 5, ... But: For us, it is convenient to consider that 12 and 21 are **not** simple permutations.

Simple permutations

Interval (or block) = set of elements of σ whose positions **and** values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation = permutation with no interval, except the trivial ones: 1, 2, ..., n and σ Example: 3174625 is simple

The smallest simple permutations: 12, 21, 2413, 3142, 6 of size 5, ... But: For us, it is convenient to consider that 12 and 21 are **not** simple permutations.

Remark: Enumeration of simple permutations:

- Generating function is not D-finite
- Asymptotically $\frac{n!}{e^2}$ of size *n* [Albert, Atkinson, Klazar 03]

Notation:

- \oplus represents any permutation $12 \dots k$ for $k \ge 2$
- \ominus represents any permutation $k \dots 21$ for $k \ge 2$
- \oplus -indecomposable: that cannot be written as $\oplus [\beta^{(1)}, \beta^{(2)}]$
- \ominus -indecomposable: that cannot be written as \ominus [$\beta^{(1)}, \beta^{(2)}$]

Notation:

- \oplus represents any permutation $12 \dots k$ for $k \ge 2$
- \ominus represents any permutation $k \dots 21$ for $k \ge 2$
- \oplus -indecomposable: that cannot be written as $\oplus [\beta^{(1)}, \beta^{(2)}]$
- \ominus -indecomposable: that cannot be written as $\ominus[\beta^{(1)},\beta^{(2)}]$

Theorem: [Albert, Atkinson, Klazar 03]

Every $\sigma \ (\neq 1)$ is uniquely decomposed as

- $\oplus [\alpha^{(1)}, \dots, \alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable
- \ominus [$\alpha^{(1)},\ldots,\alpha^{(k)}$], where the $\alpha^{(i)}$ are \ominus -indecomposable
- $\pi[\alpha^{(1)}, \ldots, \alpha^{(k)}]$, where π is simple of size $k \ge 4$

Proof idea: The $\alpha^{(i)}$ represent the maximal proper intervals of σ .

Notation:

- \oplus represents any permutation $12 \dots k$ for $k \ge 2$
- \ominus represents any permutation $k \dots 21$ for $k \ge 2$
- \oplus -indecomposable: that cannot be written as $\oplus [\beta^{(1)}, \beta^{(2)}]$
- \ominus -indecomposable: that cannot be written as $\ominus[\beta^{(1)}, \beta^{(2)}]$

Theorem: [Albert, Atkinson, Klazar 03]

Every $\sigma \ (\neq 1)$ is uniquely decomposed as

- $\oplus [\alpha^{(1)},\ldots,\alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable
- \ominus [$\alpha^{(1)}, \ldots, \alpha^{(k)}$], where the $\alpha^{(i)}$ are \ominus -indecomposable
- $\pi[\alpha^{(1)},\ldots,\alpha^{(k)}]$, where π is simple of size $k\geq 4$

Proof idea: The $\alpha^{(i)}$ represent the maximal proper intervals of σ . Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ **decomposition tree**

Decomposition tree

Example: Decomposition tree of

 $\sigma = {}_{10\,13\,12\,11\,14\,1\,18\,19\,20\,21\,17\,16\,15\,4\,8\,3\,2\,9\,5\,67}$

Notation and properties:

- Nodes labeled by \oplus , \ominus or π simple of size \geq 4.
- No edge $\oplus \oplus$ nor $\ominus \ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

 $\sigma = \texttt{3142}[\oplus [1, \ominus [1, 1, 1], 1], 1, \ominus [\oplus [1, 1, 1, 1], 1, 1, 1], 2 \texttt{4153}[1, 1, \ominus [1, 1], 1, \oplus [1, 1, 1]]]$

Decomposition tree

Example: Decomposition tree of

 $\sigma = {}_{10\,13\,12\,11\,14\,1\,18\,19\,20\,21\,17\,16\,15\,4\,8\,3\,2\,9\,5\,67}$

Notation and properties:

- Nodes labeled by \oplus , \ominus or π simple of size \geq 4.
- No edge $\oplus \oplus$ nor $\ominus \ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

 $\sigma = \texttt{3142}[\oplus [1, \ominus [1, 1, 1], 1], 1, \ominus [\oplus [1, 1, 1, 1], 1, 1, 1], 2 \texttt{4153}[1, 1, \ominus [1, 1], 1, \oplus [1, 1, 1]]]$

The substitution decomposition theorem provides a **bijection** between permutations of size n and decomposition trees with n leaves.

Decomposition tree

Example: Decomposition tree of

 $\sigma = {}_{10\,13\,12\,11\,14\,1\,18\,19\,20\,21\,17\,16\,15\,4\,8\,3\,2\,9\,5\,6\,7}$

Notation and properties:

- Nodes labeled by \oplus , \ominus or π simple of size \geq 4.
- No edge $\oplus \oplus$ nor $\ominus \ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

```
\sigma = \texttt{3142}[\oplus [1, \ominus [1, 1, 1], 1], 1, \ominus [\oplus [1, 1, 1, 1], 1, 1, 1], \texttt{24153}[1, 1, \ominus [1, 1], 1, \oplus [1, 1, 1]]]
```

The substitution decomposition theorem provides a **bijection** between permutations of size n and decomposition trees with n leaves.

Very convenient, since "trees are the prototypical recursive structure" [Flajolet, Sedgewick 09]

A tree grammar for permutations

With ${\mathcal S}$ the set of simple permutations, the substitution decomposition theorem says:

A tree grammar for permutations

With ${\mathcal S}$ the set of simple permutations, the substitution decomposition theorem says:

Can we specialize this tree grammar to subsets of \mathfrak{S} , and in particular to permutation classes $\mathcal{C} = Av(B)$?

Can we do it automatically? even algorithmically?

What kind of results can be obtained from such a tree grammar describing a permutation class C?

Some (general) results obtained using substitution decomposition

• Theorem [Albert, Atkinson 05]: For any permutation class C, if C contains finitely many simple permutations, then C has a finite basis and an algebraic generating function C(z).

How it all started

• Theorem [Albert, Atkinson 05]: For any permutation class C, if C contains finitely many simple permutations, then C has a finite basis and an algebraic generating function C(z).

- Constructive proof (of the *GF* part of the theorem):
 - Propagate avoidance constraints in

$$\begin{cases} \mathfrak{S} = \bullet + \overset{\oplus}{\mathfrak{S}^{+}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} \\ \mathfrak{S}^{+} = \bullet + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} + \overset{\oplus}{\mathfrak{S}^{-}} \overset{\frown}{\mathfrak{S}^{-}} & \overset{\oplus}{\mathfrak{S}^{-}} \\ \mathfrak{S}^{-} = \bullet + \overset{\oplus}{\mathfrak{S}^{+}} \overset{\oplus}{\mathfrak{S}^{+}} + \overset{\oplus}{\mathfrak{S}^{-}} \overset{\oplus}{\mathfrak{S}^{-}} \overset{\frown}{\mathfrak{S}^{-}} \overset{\bullet}{\mathfrak{S}^{-}} \overset{\bullet}{\mathfrak{S}^{-$$

- Obtain a (possibly ambiguous) context-free tree grammar for \mathcal{C} .
- Inclusion-exclusion gives a polynomial system for C(z).

How it all started

• Theorem [Albert, Atkinson 05]: For any permutation class C, if C contains finitely many simple permutations, then C has a finite basis and an algebraic generating function C(z).

- Constructive proof (of the *GF* part of the theorem):
 - Propagate avoidance constraints in

$$\begin{cases} \mathfrak{S} = \bullet + \mathfrak{S}^{+} \cdots \mathfrak{S}^{+} + \mathfrak{S}^{-} \cdots \mathfrak{S}^{-} + \sum_{\pi \in \mathcal{S}} \mathfrak{S}^{-} \mathfrak{S}^{-} \cdots \mathfrak{S}^{-} \\ \mathfrak{S}^{+} = \bullet + \mathfrak{S}^{-} \cdots \mathfrak{S}^{-} + \sum_{\pi \in \mathcal{S}} \mathfrak{S}^{-} \mathfrak{S}^{-} \cdots \mathfrak{S}^{-} \\ \mathfrak{S}^{-} = \bullet + \mathfrak{S}^{+} \cdots \mathfrak{S}^{+} + \sum_{\pi \in \mathcal{S}} \mathfrak{S}^{-} \mathfrak{S}^{-} \cdots \mathfrak{S}^{-} \end{cases}$$

- Obtain a (possibly ambiguous) context-free tree grammar for \mathcal{C} .
- Inclusion-exclusion gives a polynomial system for C(z).
- Next steps: Automatic computation of a tree grammar for C, possibly unambiguous (=combinatorial specification).

• Input: a finite basis B defining C = Av(B)

- Input: a finite basis B defining C = Av(B)
- Decide whether C contains finitely many simples:
 - Naive semi-decision procedure [Schmerl, Trotter 93]
 - Decision procedure [Brignall, Ruškuc, Vatter 08]
 - "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]

- Input: a finite basis B defining C = Av(B)
- Decide whether C contains finitely many simples:
 - Naive semi-decision procedure [Schmerl, Trotter 93]
 - Decision procedure [Brignall, Ruškuc, Vatter 08]
 - "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]
- Compute the set of simples in \mathcal{C} :
 - In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
 - Using the structure of the poset of simples [Pierrot, Rossin 2017+]

- Input: a finite basis B defining C = Av(B)
- Decide whether ${\mathcal C}$ contains finitely many simples:
 - Naive semi-decision procedure [Schmerl, Trotter 93]
 - Decision procedure [Brignall, Ruškuc, Vatter 08]
 - "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]
- Compute the set of simples in \mathcal{C} :
 - In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
 - Using the structure of the poset of simples [Pierrot, Rossin 2017+]
- Compute an unambiguous tree grammar for \mathcal{C} :
 - With query-complete sets (not effective) [Brignall, Huczynska, Vatter 08]
 - Algorithm propagating pattern avoidance and containment constraints in the tree grammar [Bassino, B., Pierrot, Pivoteau, Rossin 2017+]

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C. From it, we automatically derive a Boltzmann sampler of permutations in C [Flajolet, Fusy, Pivoteau 07].

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C. From it, we automatically derive a Boltzmann sampler of permutations in C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413, 3142) the class of separable permutations: Two separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size:

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for C. From it, we automatically derive a Boltzmann sampler of permutations in C [Flajolet, Fusy, Pivoteau 07].

Example: C = Av(2413, 3142) the class of separable permutations: Two separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size:

Goal: Explain these diagrams, by describing the "limit shape" of random separable permutations of size $n \to +\infty$.

Proportion of patterns in separable permutations

• Notation:

• $\widetilde{\operatorname{occ}}(\pi, \sigma) = \frac{\operatorname{number of occurrences of } \pi \operatorname{in } \sigma}{\binom{n}{k}}$ for $n = |\sigma|$ and $k = |\pi|$

- $\sigma_n =$ a uniform random separable permutation of size n
- Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]: There exist random variables (Λ_{π}), π ranging over all permutations, such that for all π , $0 \leq \Lambda_{\pi} \leq 1$ and when $n \to +\infty$, $\widetilde{\operatorname{occ}}(\pi, \mathcal{O}_n)$ converges in distribution to Λ_{π} .

Substitution decomposition is essential to the proof.

Proportion of patterns in separable permutations

• Notation:

• $\widetilde{\operatorname{occ}}(\pi, \sigma) = \frac{\operatorname{number of occurrences of } \pi \operatorname{in } \sigma}{\binom{n}{k}}$ for $n = |\sigma|$ and $k = |\pi|$

- $\sigma_n = a$ uniform random separable permutation of size n
- Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]: There exist random variables (Λ_{π}), π ranging over all permutations, such that for all π , $0 \leq \Lambda_{\pi} \leq 1$ and when $n \to +\infty$, $\widetilde{\operatorname{occ}}(\pi, \mathcal{O}_n)$ converges in distribution to Λ_{π} .

Substitution decomposition is essential to the proof.

Moreover,

- We describe a construction of Λ_{π} .
- This holds jointly for patterns π_1, \ldots, π_r .
- If π is separable of size at least 2, Λ_{π} is non-deterministic.
- Combinatorial formula for all moments of Λ_{π} .

What does this say about limit shapes of diagrams?

• Permutons and permuton convergence:

- Permuton = measure on $[0,1]^2$ with uniform marginals \approx diagram of a finite or infinite permutation.
- The convergence of occ(π, σ) for all π characterizes the convergence of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought to a probabilistic setting].
- Hence, denoting μ_{σ} the permuton associated with σ , there exists a random permuton μ such that μ_{σ_n} tends to μ in distribution (in the weak convergence topology).

What does this say about limit shapes of diagrams?

• Permutons and permuton convergence:

- Permuton = measure on $[0,1]^2$ with uniform marginals \approx diagram of a finite or infinite permutation.
- The convergence of occ(π, σ) for all π characterizes the convergence of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought to a probabilistic setting].
- Hence, denoting μ_{σ} the permuton associated with σ , there exists a random permuton μ such that μ_{σ_n} tends to μ in distribution (in the weak convergence topology).
- Properties of μ :
 - μ is not deterministic [Bassino, B., Féray, Gerin, Pierrot 2017+].
 - Construction of μ directly in the continuum [Maazoun 2017+].
 - μ has Hausdorff dimension 1 [Maazoun 2017+].

Extension to substitution-closed classes

A permutation class ${\mathcal C}$ is substitution-closed when:

- $\pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ belongs to $\mathcal C$ as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in C are all decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Extension to substitution-closed classes

A permutation class ${\mathcal C}$ is substitution-closed when:

- $\pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ belongs to $\mathcal C$ as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in C are all decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]: Let C be a substitution-closed class, whose set S of simple permutations satisfies (mild?) enumeration conditions. (e.g. S finite, or $|S_n|$ uniformly bounded, or GF of S rational or of radius of convergence $> \sqrt{2} - 1, \ldots$ are sufficient conditions)

There exists a random permuton $\mu^{\mathcal{C}}$ (a one-parameter deformation of μ) which is the limit of permutons of uniform random permutations in \mathcal{C} .

Extension to substitution-closed classes

A permutation class ${\mathcal C}$ is substitution-closed when:

- $\pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}]$ belongs to $\mathcal C$ as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in C are all decomposition trees built using simple permutations in C.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]: Let C be a substitution-closed class, whose set S of simple permutations satisfies (mild?) enumeration conditions. (e.g. S finite, or $|S_n|$ uniformly bounded, or GF of S rational or of radius of convergence $> \sqrt{2} - 1, \ldots$ are sufficient conditions)

There exists a random permuton $\mu^{\mathcal{C}}$ (a one-parameter deformation of μ) which is the limit of permutons of uniform random permutations in \mathcal{C} .

Thank you for listening!