Studying permutation classes using the substitution decomposition

Mathilde Bouvel
(Institut für Mathematik, Universität Zürich)

Universität Zürich ${ }^{\text {VZ }}$

Combinatorics and interactions, Introductory school at CIRM, Jan. 2017

Permutation patterns and permutation classes

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$.

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$.

- Graphical description,
- Two-line notation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- One-line or word notation:

$$
\sigma=18364257
$$

- Description as a product of cycles:

$$
\sigma=(1)(287546)
$$ or diagram:

Permutations

Permutation of size $n=$ Bijection from [1..n] to itself. Set \mathfrak{S}_{n}, and $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$.

- Graphical description,
- Two-line notation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- One-line or word notation:

$$
\sigma=18364257
$$

- Description as a product of cycles:

$$
\sigma=(1)(287546)
$$ or diagram:

This talk is about permutation patterns and permutation classes.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

32754

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

32754

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12

754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123

754

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

$$
754
$$

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

4

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12364

The origin of permutation patterns: Stack sorting

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123645

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$, where $n=\max (L n R)$

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$, where $n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$, where $n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$, where $n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231 meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.

The origin of permutation patterns: Stack sorting

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$, where $n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
A permutation σ is stack-sortable iff σ avoids the pattern 231
meaning that there are no $i<j<k$ such that $\sigma_{k}<\sigma_{i}<\sigma_{j}$, or equivalently no subsequences $\cdots \sigma_{i} \cdots \sigma_{j} \cdots \sigma_{k} \cdots$ of σ whose elements are in the same relative order as 231.
Next: other sorting devices and patterns [Even \& Itai 71, Tarjan 72, Pratt 73]

Permutation patterns

Pattern relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on
[1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutation patterns

Pattern relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Permutation patterns

Pattern relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is in the same relative order (\equiv) as π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Crucial remark: \preccurlyeq is a partial order on \mathfrak{S} and " $[\preccurlyeq]$ is even more interesting than the [sorting] networks we were characterizing" [Pratt 73].
This is the key to defining permutation classes.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.
- Notations: $\operatorname{Av}(\pi)=$ the set of permutations that avoid the pattern π

$$
A v(B)=\bigcap_{\pi \in B} A v(\pi)
$$

- Fact: For every permutation class $\mathcal{C}, \mathcal{C}=\operatorname{Av}(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$. B is an antichain (set of elements incomparable for \preccurlyeq), called the basis of \mathcal{C}.

Permutation classes

- A permutation class is a set \mathcal{C} of permutations that is downward closed for \preccurlyeq, i.e. whenever $\pi \preccurlyeq \sigma$ and $\sigma \in \mathcal{C}$, then $\pi \in \mathcal{C}$.
- Notations: $\operatorname{Av}(\pi)=$ the set of permutations that avoid the pattern π

$$
A v(B)=\bigcap_{\pi \in B} A v(\pi)
$$

- Fact: For every permutation class $\mathcal{C}, \mathcal{C}=\operatorname{Av}(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$. B is an antichain (set of elements incomparable for \preccurlyeq), called the basis of \mathcal{C}.
- Remarks:
- Conversely, every set $A v(B)$ is a permutation class.
- There exist infinite antichains in the permutation pattern poset, hence some permutation classes have infinite basis.

A biased overview of important results

Specific enumeration results

For \mathcal{C} a permutation class, \mathcal{C}_{n} is the set of permutations of size n in \mathcal{C} and $C(z)=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}$ is its generating function.

Specific enumeration results

For \mathcal{C} a permutation class, \mathcal{C}_{n} is the set of permutations of size n in \mathcal{C} and $C(z)=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}$ is its generating function.

- One excluded pattern:
- of size 3: By symmetry, focus on $\operatorname{Av(321)~and~} \operatorname{Av}(231)$ only.
- Description of $\operatorname{Av}(321)$ [MacMahon 1915] and $\operatorname{Av}(231)$ [Knuth 68].
- Enumeration by the Catalan numbers in both cases.
- Bijections: [Simion, Schmidt 85] [Claesson, Kitaev 08].
- But these two classes have a very different structure.

Specific enumeration results

For \mathcal{C} a permutation class, \mathcal{C}_{n} is the set of permutations of size n in \mathcal{C} and $C(z)=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}$ is its generating function.

- One excluded pattern:
- of size 3: By symmetry, focus on $\operatorname{Av}(321)$ and $\operatorname{Av}(231)$ only.
- of size 4: Only three different enumerations. Representatives are:
- Av(1342) [Bóna 97], algebraic generating function
- $A v$ (1234) [Gessel 90], holonomic (or D-finite) generating function
- $\operatorname{Av}(1324) \ldots$ remains an open problem

Specific enumeration results

For \mathcal{C} a permutation class, \mathcal{C}_{n} is the set of permutations of size n in \mathcal{C} and $C(z)=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}$ is its generating function.

- One excluded pattern:
- of size 3: By symmetry, focus on $\operatorname{Av}(321)$ and $\operatorname{Av}(231)$ only.
- of size 4: Only three different enumerations.
- Systematic enumeration of $\operatorname{Av}(B)$ when B contains small excluded patterns (size 3 or 4).
Often combining general methods briefly discussed later.
[Simion\&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties] [Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ... nowadays]

Specific enumeration results

For \mathcal{C} a permutation class, \mathcal{C}_{n} is the set of permutations of size n in \mathcal{C} and $C(z)=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}$ is its generating function.

- One excluded pattern:
- of size 3: By symmetry, focus on $\operatorname{Av}(321)$ and $A v(231)$ only.
- of size 4: Only three different enumerations.
- Systematic enumeration of $\operatorname{Av}(B)$ when B contains small excluded patterns (size 3 or 4).
Often combining general methods briefly discussed later.
[Simion\&Schmidt, Gessel, Bóna, Gire, Guibert, Stankova, West. . . in the nineties] [Albert, Atkinson, Brignall, Callan, Kremer, Pantone, Shiu, Vatter, ... nowadays]
- Enumeration of classes (with more excluded patterns) appearing in a different context (e.g. indices of Schubert varieties [Albert, Brignall 13])

Growth rates of permutation classes

- Upper growth rate: $\overline{\operatorname{Gr}}(\mathcal{C})=\lim \sup _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$
- Lower growth rate: $\underline{\operatorname{Gr}(\mathcal{C})}=\lim \inf _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture): $\overline{\operatorname{Gr}}(\mathcal{C})<\infty$ for any class $\mathcal{C} \neq \mathfrak{S}$.
That is to say, permutation classes grow at most exponentially.

Growth rates of permutation classes

- Upper growth rate: $\overline{\operatorname{Gr}}(\mathcal{C})=\lim \sup _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$
- Lower growth rate: $\underline{\operatorname{Gr}(\mathcal{C})}=\lim \inf _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
$\overline{\operatorname{Gr}}(\mathcal{C})<\infty$ for any class $\mathcal{C} \neq \mathfrak{S}$.
That is to say, permutation classes grow at most exponentially.
Conjecture: For any class $\mathcal{C}, \overline{\operatorname{Gr}}(\mathcal{C})=\underline{\operatorname{Gr}}(\mathcal{C})$. Growth rate, denoted $\operatorname{Gr}(\mathcal{C})$.
This holds for all principal classes, i.e., $\mathcal{C}=\operatorname{Av}(\pi)$, and more generally for all sum-closed or skew-closed classes.

Growth rates of permutation classes

- Upper growth rate: $\overline{\operatorname{Gr}}(\mathcal{C})=\lim \sup _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
$\overline{\operatorname{Gr}}(\mathcal{C})<\infty$ for any class $\mathcal{C} \neq \mathfrak{S}$.
That is to say, permutation classes grow at most exponentially.
Conjecture: For any class $\mathcal{C}, \overline{\operatorname{Gr}}(\mathcal{C})=\underline{\operatorname{Gr}}(\mathcal{C})$. Growth rate, denoted $\operatorname{Gr}(\mathcal{C})$.
Arratia's (false) conjecture:
$\operatorname{Gr}(A v(\pi)) \leq(k-1)^{2}=\operatorname{Gr}(A v(k \ldots 21))$ for $|\pi|=k$
- $\operatorname{Gr}(\operatorname{Av}(1324))>9.47$ [Albert, Elder, Rechnitzer, Westcott, Zabrocki 06]
- Remark: $\operatorname{Gr}(\operatorname{Av}(1324))$ is >9.81 [Bevan 15], <13.74 [Bóna 15] and conjectured to be ≈ 11.60 [Conway, Guttmann 15]
- $\operatorname{Gr}(\operatorname{Av}(\pi))$ is typically exponential in $|\pi|$ [Fox, 2017+]

Growth rates of permutation classes

- Upper growth rate: $\overline{\operatorname{Gr}}(\mathcal{C})=\lim \sup _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$
- Lower growth rate: $\underline{\operatorname{Gr}(\mathcal{C})}=\lim \inf _{n} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$

Marcus-Tardos theorem (2004, former Stanley-Wilf conjecture):
$\overline{\operatorname{Gr}}(\mathcal{C})<\infty$ for any class $\mathcal{C} \neq \mathfrak{S}$.
That is to say, permutation classes grow at most exponentially.
Conjecture: For any class $\mathcal{C}, \overline{\operatorname{Gr}}(\mathcal{C})=\underline{\operatorname{Gr}}(\mathcal{C})$. Growth rate, denoted $\operatorname{Gr}(\mathcal{C})$.
Arratia's (false) conjecture:

$$
\operatorname{Gr}(\operatorname{Av}(\pi)) \leq(k-1)^{2}=\operatorname{Gr}(\operatorname{Av}(k \ldots 21)) \text { for }|\pi|=k
$$

Classification of growth rates:
Exactly which numbers can occur as (upper) growth rates is known, except between $\xi \approx 2.305$ and $\lambda<2.36$ [Vatter and collaborators].

- Before ξ : countably many growth rates, all characterized
- After λ : all real numbers

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For $A v(231)$ and $A v(321)$: Catalan numbers, algebraic GF. But:
- All proper subclasses of $A v(231)$ are rational [Albert, Atkinson 05].
- $A v(321)$ contains non D-finite subclasses.
- However, every proper subclass of $\operatorname{Av}(321)$ which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For $\operatorname{Av}(231)$ and $A v(321)$: Catalan numbers, algebraic GF. But:
- All proper subclasses of $A v(231)$ are rational [Albert, Atkinson 05].
- $A v(321)$ contains non D-finite subclasses.
- However, every proper subclass of $\operatorname{Av}(321)$ which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].
- (Tight?) connection between wqo and nice GF:
- A class is wqo (well quasi-ordered) if it contains no infinite antichains.
- If a class \mathcal{C} and all its subclasses are algebraic, then \mathcal{C} is wqo.
- Vatter conjectures that the converse holds.

Nature of the generating functions of permutation classes

A variety of behaviors can occur: rational, algebraic, D-finite, non D-finite.

- For $A v(231)$ and $A v(321)$: Catalan numbers, algebraic GF. But:
- All proper subclasses of $\operatorname{Av}(231)$ are rational [Albert, Atkinson 05].
- Av(321) contains non D-finite subclasses.
- However, every proper subclass of $\operatorname{Av}(321)$ which has finite basis or is wqo is rational [Albert, Brignall, Ruškuc, Vatter 2017+].
- (Tight?) connection between wqo and nice GF:
- A class is wqo (well quasi-ordered) if it contains no infinite antichains.
- If a class \mathcal{C} and all its subclasses are algebraic, then \mathcal{C} is wqo.
- Vatter conjectures that the converse holds.
- Sufficient algebricity condition [Albert, Atkinson 05]:

When a class contains finitely many simple permutations.

A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

- One excluded pattern of size 3 :

Av(231)

Av(321)

[Miner, Pak 14]

[Hoffman, Rizzolo, Slivken 16]

A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

- One excluded pattern of size 3 :
- Precise local description of the asymptotic shape [Miner, Pak 14] [Madras and collaborators].
- Scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].
- For any pattern π, the following quantity converges in distribution to a strictly positive random variable [Janson 16]:

$$
\frac{\text { number of occurrences of } \pi \text { in uniform } \sigma \in A v_{n}(132)}{n^{(|\pi|+\text { number of descents of } \pi+1)) / 2}} .
$$

A probabilistic look at permutation classes

Typical diagrams of large permutations in classes: what do they look like?

- One excluded pattern of size 3:
- Precise local description of the asymptotic shape [Miner, Pak 14] [Madras and collaborators].
- Scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal) [Hoffman, Rizzolo, Slivken 16].
- For any pattern π, the following quantity converges in distribution to a strictly positive random variable [Janson 16]:

$$
\frac{\text { number of occurrences of } \pi \text { in uniform } \sigma \in A v_{n}(132)}{n(|\pi|+\text { number of descents of } \pi+1)) / 2} .
$$

- Other known cases:
- Connected monotone grid classes (deterministic limit) [Bevan 15]
- Separable permutations (non-deterministic limit) [Bassino, B., Féray, Gerin, Pierrot 2017+]

Some general methods

To prove general results on families of permutation classes (e.g. growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

Some general methods

To prove general results on families of permutation classes (e.g. growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

- Generating trees
- Substitution decomposition
- Merging and splitting
- (Geometric) grid classes
- Encodings by words over a finite alphabet
- ...

Some general methods

To prove general results on families of permutation classes (e.g. growth rates, nature of GF), some general methods are often used, which each capture a notion of nice structure of permutations in these classes:

- Generating trees
- Substitution decomposition
- Merging and splitting
- (Geometric) grid classes
- Encodings by words over a finite alphabet
- ...

These methods are also sometimes used to prove results about (or enumerate) specific classes.

Substitution decomposition

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for substitution (or inflation): $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ with $k=$ size of π.

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for substitution (or inflation): $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ with $k=$ size of π.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.

Substitution for permutations

Substitution is an operation building a permutation from smaller ones. Notation for substitution (or inflation): $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ with $k=$ size of π.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.
In general, many substitutions give σ, but we will see a canonical one.

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

Not simple:

Simple:

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

The smallest simple permutations: $12,21, \quad 2413,3142, \quad 6$ of size $5, \ldots$

But: For us, it is convenient to consider that 12 and 21 are not simple permutations.

Not simple:

Simple:

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

Not simple:

Simple:

Remark: Enumeration of simple permutations:

- Generating function is not D-finite
- Asymptotically $\frac{n!}{e^{2}}$ of size n [Albert, Atkinson, Klazar 03]

Substitution decomposition theorem for permutations

Notation:

- \oplus represents any permutation $12 \ldots k$ for $k \geq 2$
- \ominus represents any permutation $k \ldots 21$ for $k \geq 2$
- \oplus-indecomposable: that cannot be written as $\oplus\left[\beta^{(1)}, \beta^{(2)}\right]$
- \ominus-indecomposable: that cannot be written as $\ominus\left[\beta^{(1)}, \beta^{(2)}\right]$

Substitution decomposition theorem for permutations

Notation:

- \oplus represents any permutation $12 \ldots k$ for $k \geq 2$
- \ominus represents any permutation $k \ldots 21$ for $k \geq 2$
- \oplus-indecomposable: that cannot be written as $\oplus\left[\beta^{(1)}, \beta^{(2)}\right]$
- \ominus-indecomposable: that cannot be written as $\ominus\left[\beta^{(1)}, \beta^{(2)}\right]$

Theorem: [Albert, Atkinson, Klazar 03]
Every $\sigma(\neq 1)$ is uniquely decomposed as

- $\oplus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
- $\ominus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Proof idea: The $\alpha^{(i)}$ represent the maximal proper intervals of σ.

Substitution decomposition theorem for permutations

Notation:

- \oplus represents any permutation $12 \ldots k$ for $k \geq 2$
- \ominus represents any permutation $k \ldots 21$ for $k \geq 2$
- \oplus-indecomposable: that cannot be written as $\oplus\left[\beta^{(1)}, \beta^{(2)}\right]$
- \ominus-indecomposable: that cannot be written as $\ominus\left[\beta^{(1)}, \beta^{(2)}\right]$

Theorem: [Albert, Atkinson, Klazar 03]
Every $\sigma(\neq 1)$ is uniquely decomposed as

- $\oplus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
- $\ominus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Proof idea: The $\alpha^{(i)}$ represent the maximal proper intervals of σ.
Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

Decomposition tree

Example: Decomposition tree of

$$
\sigma=101312111411819202117161548329567
$$

Notation and properties:

- Nodes labeled by \oplus, \ominus or π simple of size ≥ 4.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

$$
\sigma=3142[\oplus[1, \ominus[1,1,1], 1], 1, \ominus[\oplus[1,1,1,1], 1,1,1], 24153[1,1, \ominus[1,1], 1, \oplus[1,1,1]]]
$$

Decomposition tree

Example: Decomposition tree of

$$
\sigma=101312111411819202117161548329567
$$

Notation and properties:

- Nodes labeled by \oplus, \ominus or π simple of size ≥ 4.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

The substitution decomposition theorem provides a bijection between permutations of size n and decomposition trees with n leaves.

Decomposition tree

Example: Decomposition tree of $\sigma=101312111411819202117161548329567$

Notation and properties:

- Nodes labeled by \oplus, \ominus or π simple of size ≥ 4.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Rooted ordered trees.
- These conditions characterize decomposition trees.

The substitution decomposition theorem provides a bijection between permutations of size n and decomposition trees with n leaves.

Very convenient, since "trees are the prototypical recursive structure" [Flajolet, Sedgewick 09]

A tree grammar for permutations

With \mathcal{S} the set of simple permutations, the substitution decomposition theorem says:

A tree grammar for permutations

With \mathcal{S} the set of simple permutations, the substitution decomposition theorem says:

Can we specialize this tree grammar to subsets of \mathfrak{S}, and in particular to permutation classes $\mathcal{C}=\operatorname{Av}(B)$?

Can we do it automatically? even algorithmically?
What kind of results can be obtained from such a tree grammar describing a permutation class \mathcal{C} ?

Some (general) results obtained using substitution decomposition

How it all started

- Theorem [Albert, Atkinson 05]: For any permutation class \mathcal{C}, if \mathcal{C} contains finitely many simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function $C(z)$.

How it all started

- Theorem [Albert, Atkinson 05]: For any permutation class \mathcal{C}, if \mathcal{C} contains finitely many simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function $C(z)$.
- Constructive proof (of the GF part of the theorem):
- Propagate avoidance constraints in
- Obtain a (possibly ambiguous) context-free tree grammar for \mathcal{C}.
- Inclusion-exclusion gives a polynomial system for $C(z)$.

How it all started

- Theorem [Albert, Atkinson 05]: For any permutation class \mathcal{C}, if \mathcal{C} contains finitely many simple permutations, then \mathcal{C} has a finite basis and an algebraic generating function $C(z)$.
- Constructive proof (of the GF part of the theorem):
- Propagate avoidance constraints in
- Obtain a (possibly ambiguous) context-free tree grammar for \mathcal{C}.
- Inclusion-exclusion gives a polynomial system for $C(z)$.
- Next steps: Automatic computation of a tree grammar for \mathcal{C}, possibly unambiguous (=combinatorial specification).

Algorithmization

- Input: a finite basis B defining $\mathcal{C}=\operatorname{Av}(B)$

Algorithmization

- Input: a finite basis B defining $\mathcal{C}=A v(B)$
- Decide whether \mathcal{C} contains finitely many simples:
- Naive semi-decision procedure [Schmerl, Trotter 93]
- Decision procedure [Brignall, Ruškuc, Vatter 08]
- "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]

Algorithmization

- Input: a finite basis B defining $\mathcal{C}=A v(B)$
- Decide whether \mathcal{C} contains finitely many simples:
- Naive semi-decision procedure [Schmerl, Trotter 93]
- Decision procedure [Brignall, Ruškuc, Vatter 08]
- "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]
- Compute the set of simples in \mathcal{C} :
- In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
- Using the structure of the poset of simples [Pierrot, Rossin 2017+]

Algorithmization

- Input: a finite basis B defining $\mathcal{C}=A v(B)$
- Decide whether \mathcal{C} contains finitely many simples:
- Naive semi-decision procedure [Schmerl, Trotter 93]
- Decision procedure [Brignall, Ruškuc, Vatter 08]
- "Much more practical" algorithm [Bassino, B., Pierrot, Rossin 15]
- Compute the set of simples in \mathcal{C} :
- In a naive way [Albert, Atkinson 05] using [Schmerl, Trotter 93]
- Using the structure of the poset of simples [Pierrot, Rossin 2017+]
- Compute an unambiguous tree grammar for \mathcal{C} :
- With query-complete sets (not effective) [Brignall, Huczynska, Vatter 08]
- Algorithm propagating pattern avoidance and containment constraints in the tree grammar [Bassino, B., Pierrot, Pivoteau, Rossin 2017+]

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for \mathcal{C}. From it, we automatically derive a Boltzmann sampler of permutations in \mathcal{C} [Flajolet, Fusy, Pivoteau 07].

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for \mathcal{C}.
From it, we automatically derive a Boltzmann sampler of permutations in \mathcal{C} [Flajolet, Fusy, Pivoteau 07].

Example: $\mathcal{C}=\operatorname{Av}(2413,3142)$ the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size:

Experimenting with the results of this algorithm

The algorithm produces a combinatorial specification for \mathcal{C}.
From it, we automatically derive a Boltzmann sampler of permutations in \mathcal{C} [Flajolet, Fusy, Pivoteau 07].

Example: $\mathcal{C}=\operatorname{Av}(2413,3142)$ the class of separable permutations:
Two separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size:

Goal: Explain these diagrams, by describing the "limit shape" of random separable permutations of size $n \rightarrow+\infty$.

Proportion of patterns in separable permutations

- Notation:
- $\widetilde{\text { occ }}(\pi, \sigma)=\frac{\text { number of occurrences of } \pi \text { in } \sigma}{\binom{n}{k}} \quad$ for $n=|\sigma|$ and $k=|\pi|$
- $\sigma_{n}=$ a uniform random separable permutation of size n
- Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:

There exist random variables $\left(\Lambda_{\pi}\right), \pi$ ranging over all permutations, such that for all $\pi, 0 \leq \Lambda_{\pi} \leq 1$ and when $n \rightarrow+\infty$, $\widetilde{\mathrm{OCC}}\left(\pi, \sigma_{n}\right)$ converges in distribution to Λ_{π}.
Substitution decomposition is essential to the proof.

Proportion of patterns in separable permutations

- Notation:
- $\widetilde{\operatorname{Occ}}(\pi, \sigma)=\frac{\text { number of occurrences of } \pi \text { in } \sigma}{\binom{n}{k}}$ for $n=|\sigma|$ and $k=|\pi|$
- $\sigma_{n}=$ a uniform random separable permutation of size n
- Theorem [Bassino, B., Féray, Gerin, Pierrot 2017+]:

There exist random variables $\left(\Lambda_{\pi}\right), \pi$ ranging over all permutations, such that for all $\pi, 0 \leq \Lambda_{\pi} \leq 1$ and when $n \rightarrow+\infty$, $\widetilde{\mathrm{OCC}}\left(\pi, \sigma_{n}\right)$ converges in distribution to Λ_{π}.
Substitution decomposition is essential to the proof.
Moreover,

- We describe a construction of Λ_{π}.
- This holds jointly for patterns π_{1}, \ldots, π_{r}.
- If π is separable of size at least $2, \Lambda_{\pi}$ is non-deterministic.
- Combinatorial formula for all moments of Λ_{π}.

What does this say about limit shapes of diagrams?

- Permutons and permuton convergence:
- Permuton $=$ measure on $[0,1]^{2}$ with uniform marginals \approx diagram of a finite or infinite permutation.
- The convergence of $\widetilde{\circ c c}(\pi, \sigma)$ for all π characterizes the convergence of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought to a probabilistic setting].
- Hence, denoting μ_{σ} the permuton associated with σ, there exists a random permuton μ such that $\mu_{\sigma_{n}}$ tends to μ in distribution (in the weak convergence topology).

What does this say about limit shapes of diagrams?

- Permutons and permuton convergence:
- Permuton $=$ measure on $[0,1]^{2}$ with uniform marginals \approx diagram of a finite or infinite permutation.
- The convergence of $\widetilde{\circ c c}(\pi, \sigma)$ for all π characterizes the convergence of permutons [Hoppen, Kohayakawa, Moreira, Rath, Sampaio 13; brought to a probabilistic setting].
- Hence, denoting μ_{σ} the permuton associated with σ, there exists a random permuton μ such that $\mu_{\sigma_{n}}$ tends to μ in distribution (in the weak convergence topology).
- Properties of μ :
- μ is not deterministic [Bassino, B., Féray, Gerin, Pierrot 2017+].
- Construction of μ directly in the continuum [Maazoun 2017+].
- μ has Hausdorff dimension 1 [Maazoun 2017+].

Extension to substitution-closed classes

A permutation class \mathcal{C} is substitution-closed when:

- $\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ belongs to \mathcal{C} as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in \mathcal{C} are all decomposition trees built using simple permutations in \mathcal{C}.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Extension to substitution-closed classes

A permutation class \mathcal{C} is substitution-closed when:

- $\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ belongs to \mathcal{C} as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in \mathcal{C} are all decomposition trees built using simple permutations in \mathcal{C}.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:
Let \mathcal{C} be a substitution-closed class, whose set S of simple permutations satisfies (mild?) enumeration conditions.
(e.g. S finite, or $\left|S_{n}\right|$ uniformly bounded, or GF of S rational or of radius of convergence $>\sqrt{2}-1, \ldots$ are sufficient conditions)
There exists a random permuton $\mu^{\mathcal{C}}$ (a one-parameter deformation of μ) which is the limit of permutons of uniform random permutations in \mathcal{C}.

Extension to substitution-closed classes

A permutation class \mathcal{C} is substitution-closed when:

- $\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$ belongs to \mathcal{C} as soon as π and all $\alpha^{(i)}$ do;
- equivalently, the decomposition trees of permutations in \mathcal{C} are all decomposition trees built using simple permutations in \mathcal{C}.

Remark: The class of separable permutations is the smallest (non-trivial) substitution-closed class (it contains no simples).

Theorem [Bassino, B., Féray, Gerin, Maazoun, Pierrot 2017+]:
Let \mathcal{C} be a substitution-closed class, whose set S of simple permutations satisfies (mild?) enumeration conditions.
(e.g. S finite, or $\left|S_{n}\right|$ uniformly bounded, or GF of S rational or of radius of convergence $>\sqrt{2}-1, \ldots$ are sufficient conditions)
There exists a random permuton $\mu^{\mathcal{C}}$ (a one-parameter deformation of μ) which is the limit of permutons of uniform random permutations in \mathcal{C}.

Thank you for listening!

