

Between weak and Bruhat: the middle order on permutations

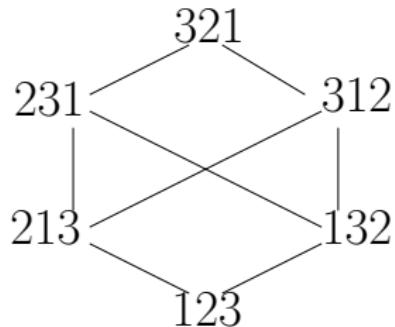
Mathilde Bouvel

Loria, CNRS and Univ. Lorraine (Nancy, France).

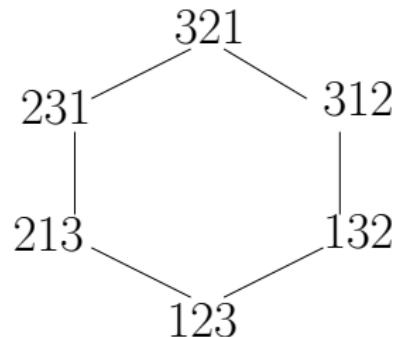
talk based on joint work with
Luca Ferrari and Bridget E. Tenner

Enumerative Combinatorics workshop in Oberwolfach, January 2026.

Familiar pictures

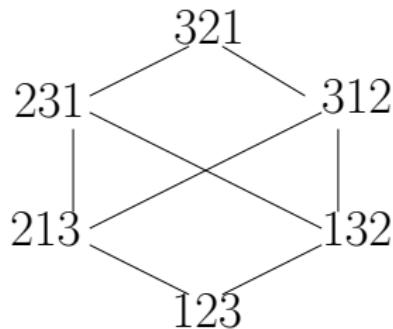


Bruhat order

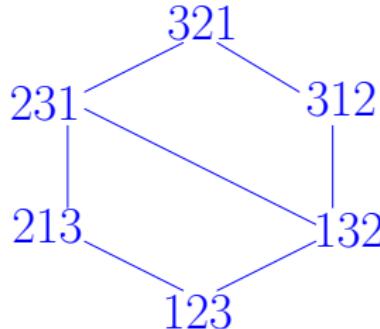


weak order

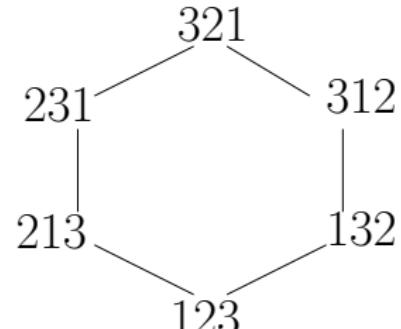
Familiar pictures and a third one



Bruhat order

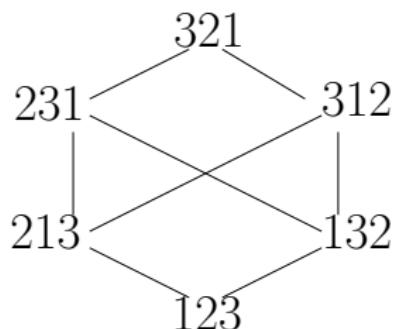


middle order

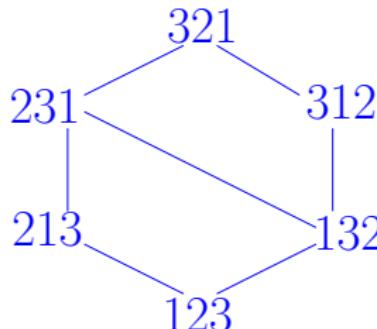


weak order

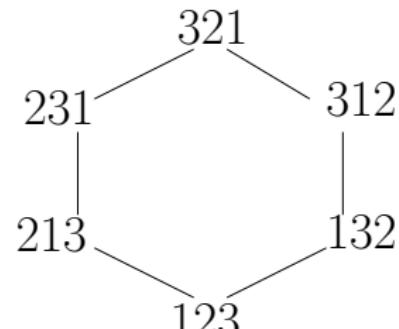
Familiar pictures and a third one



Bruhat order



middle order



weak order

Goals of the talk:

- Define the middle order on S_n
- Give meaning to the property that “it sits between weak and Bruhat”
- Describe some of its properties
- Popularize this new order, hoping you raise new questions about it

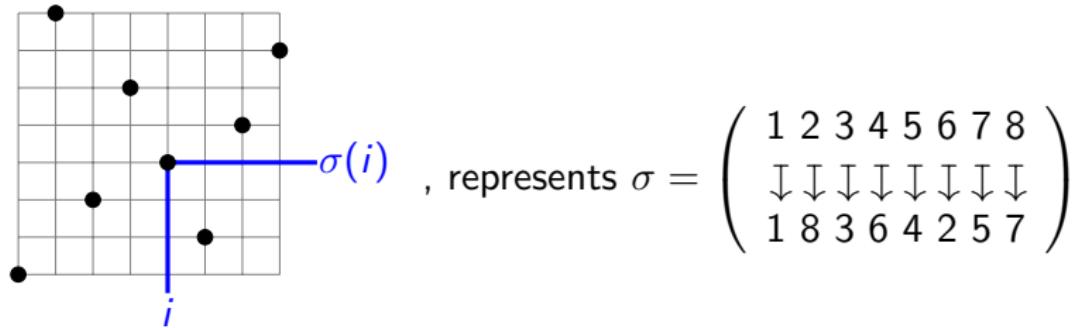
Our 3 orders through “mesh patterns”

Permutation diagrams

Notation:

- S_n = the set of permutations of size n
- $\sigma \in S_n$ is seen as the word $\sigma(1)\sigma(2)\cdots\sigma(n)$
- σ is also seen as its **diagram** i.e. the $n \times n$ grid with points at coordinates $(i, \sigma(i))$

Example: The word 1 8 3 6 4 2 5 7, or equivalently the diagram



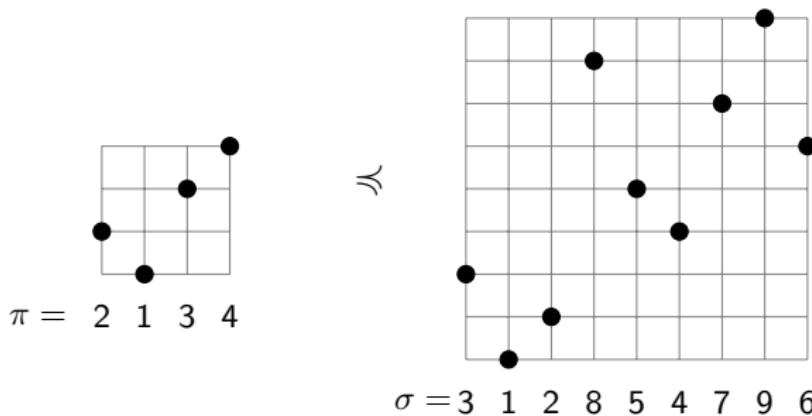
Permutation patterns

A permutation $\pi \in S_k$ is a **pattern** of a permutation $\sigma \in S_n$ (written $\pi \preccurlyeq \sigma$) when there exist indices $1 \leq i_1 < i_2 \cdots < i_k \leq n$ such that $\sigma(i_a) < \sigma(i_b)$ if and only if $\pi(a) < \pi(b)$

The subsequence $\sigma(i_1)\sigma(i_2)\cdots\sigma(i_k)$ is an **occurrence** of π in σ

Example: 2134 is a pattern of 312854796, one occurrence being 3157

This is also seen on diagrams:



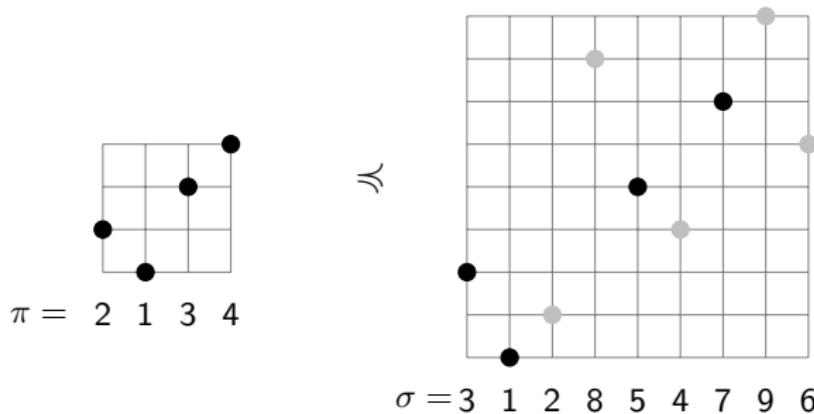
Permutation patterns

A permutation $\pi \in S_k$ is a **pattern** of a permutation $\sigma \in S_n$ (written $\pi \preccurlyeq \sigma$) when there exist indices $1 \leq i_1 < i_2 \cdots < i_k \leq n$ such that $\sigma(i_a) < \sigma(i_b)$ if and only if $\pi(a) < \pi(b)$

The subsequence $\sigma(i_1)\sigma(i_2)\cdots\sigma(i_k)$ is an **occurrence** of π in σ

Example: 2134 is a pattern of 312854796, one occurrence being 3157

This is also seen on diagrams:

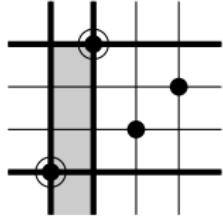
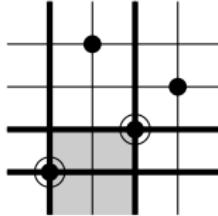
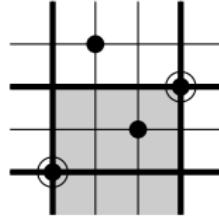
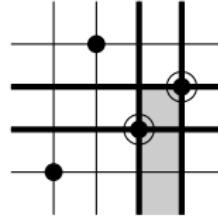


Mesh patterns

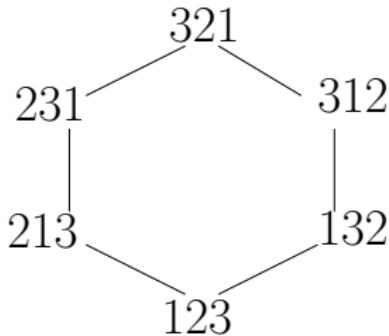
A **mesh pattern** (π, M) is the data of a pattern π (say, of size k) drawn in the central $k \times k$ square of the grid $[0, k + 1]^2$, together with a set M of shaded unit cells in this grid. (M is called the **mesh**.)

An occurrence of (π, M) in σ is an occurrence of π in σ such that the regions of $[0, n + 1]^2$ corresponding to the **mesh** M contain **no points** of σ .

Example: Consider the mesh pattern $\mu = \begin{array}{|c|c|c|} \hline & \bullet & \\ \hline & \bullet & \bullet \\ \hline \end{array}$. The permutation 1423 contains four occurrences of 12, but only three of μ .



Weak order, seen through mesh patterns



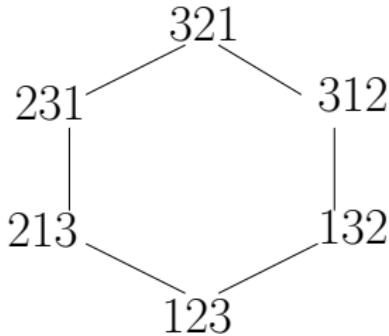
Covering relations are described by

$$\cdots i j \cdots \rightsquigarrow \cdots j i \cdots$$

i.e., transforming an **ascent^(a)** into a **descent^(d)** using the same two values.

- (a) occurrence of 12 at consecutive positions
- (d) occurrence of 21 at consecutive positions

Weak order, seen through mesh patterns



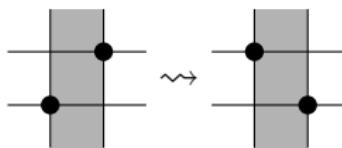
Covering relations are described by

$$\cdots i j \cdots \rightsquigarrow \cdots j i \cdots$$

i.e., transforming an **ascent^(a)** into a **descent^(d)** using the same two values.

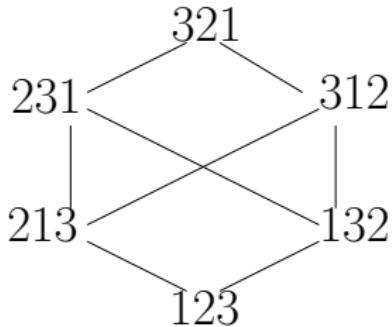
- (a) occurrence of 12 at consecutive positions
- (d) occurrence of 21 at consecutive positions

Equivalently, covering relations are described by



Bruhat order, seen through mesh patterns

Relations are described by the swaps



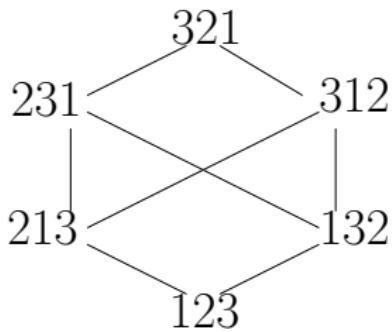
$$\cdots i \cdots j \cdots \rightsquigarrow \cdots j \cdots i \cdots$$

i.e., transforming a **non-inversion** (=occurrence of 12) into an **inversion** (=occurrence of 21) using the same two values.

Covering relations are the relations that do not create additional inversions.

Bruhat order, seen through mesh patterns

Relations are described by the swaps

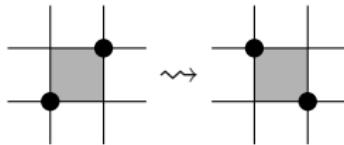


$$\cdots i \cdots j \cdots \rightsquigarrow \cdots j \cdots i \cdots$$

i.e., transforming a **non-inversion** (=occurrence of 12) into an **inversion** (=occurrence of 21) using the same two values.

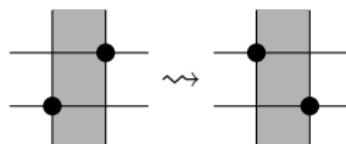
Covering relations are the relations that do not create additional inversions.

Equivalently, covering relations are described by

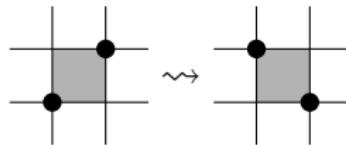


Middle order, defined through mesh patterns

- For the weak order, the covering relations are described by

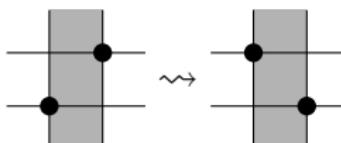


- For the Bruhat order, the covering relations are described by

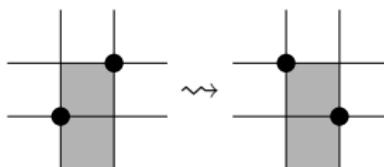


Middle order, defined through mesh patterns

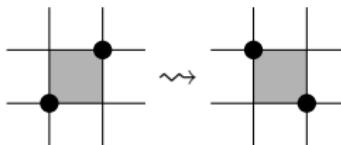
- For the weak order, the covering relations are described by



- For the middle order, the covering relations are described by

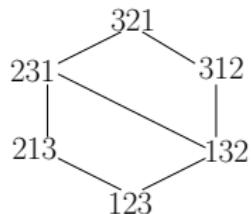


- For the Bruhat order, the covering relations are described by

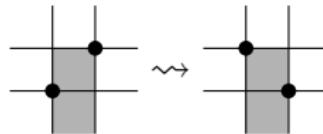


Summary so far, and what's ahead

- The middle order in size 3:



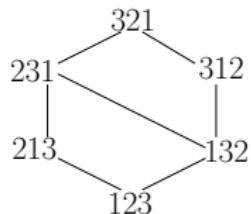
- Covering relations described by



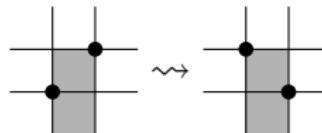
- This interpolates between the weak order and the Bruhat order

Summary so far, and what's ahead

- The middle order in size 3:



- Covering relations described by



- This interpolates between the weak order and the Bruhat order

What comes next:

- Another combinatorial interpretation of the middle order
- Some of its properties as a poset (in particular: distributive lattice)
- Enumeration of its intervals, and of its boolean intervals
- Implication on its Möbius function
- Combinatorial description of its Euler characteristic
- Restriction to the subset of involutions

The middle order and inversion sequences

Inversion sequences, and bijection with permutations

- Reminder: Inversions are occurrences $\cdots j \cdots i \cdots$ of the pattern 21.
- j is called inversion top.
- Given $\sigma \in S_n$, let x_j = number of inversions of σ such that j is the inversion top. Observe that $0 \leq x_j < j$.
- Let $\varphi(\sigma) = (x_1, x_2, \dots, x_n)$ be the inversion sequence of σ .
- Sometimes called Lehmer code. Several (symmetric) variants exist.
- Example:** For $\sigma = 415623$, we have $\varphi(\sigma) = (0, 0, 0, 3, 2, 2)$
- Remark:** $x_j = j - 1$ if and only if j is a LtoR-minimum.
- This is a bijection between S_n and the set I_n of inversion sequences of size n :

$$I_n = [0, 0] \times [0, 1] \times [0, 2] \times \cdots \times [0, n-1]$$

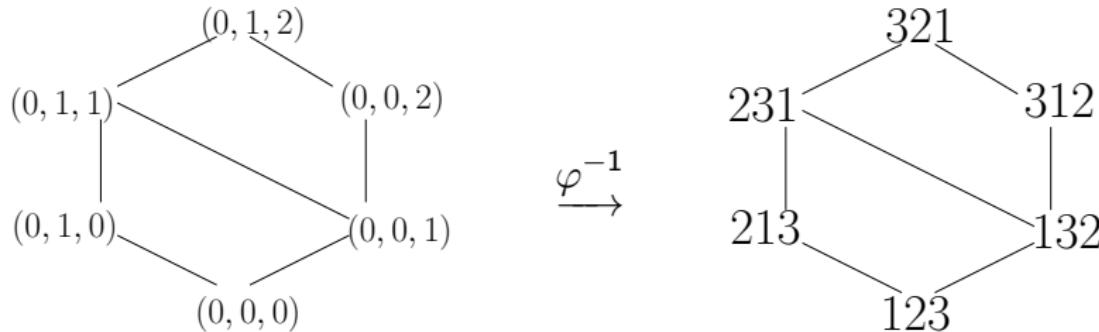
Middle order through inversion sequences

For inversion sequences $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$, define the **partial order**

$$\mathbf{x} \leq \mathbf{y} \text{ when } x_i \leq y_i \text{ for all } i$$

In particular, covering relations correspond to **adding 1 to one component** (provided we stay among inversion sequences).

Theorem: The middle order is the image of the above by the bijection φ^{-1} .



Proving this characterization of the middle order

Let $\varphi(\sigma) = (x_1, \dots, x_n)$ and $\varphi(\tau) = (x_1, \dots, x_{j-1}, x_j + 1, x_{j+1}, \dots, x_n)$.

- In particular, $x_j < j - 1$.
- So j is not a LtoR-minimum.
- So, we can define i as the rightmost entry to the left of j in σ such that $i < j$, and (i, j) is an occurrence of .
- We check that τ is the permutation obtained swapping i and j , so that τ covers σ in the middle order.

Proving this characterization of the middle order

Let $\varphi(\sigma) = (x_1, \dots, x_n)$ and $\varphi(\tau) = (x_1, \dots, x_{j-1}, x_j + 1, x_{j+1}, \dots, x_n)$.

- In particular, $x_j < j - 1$.
- So j is not a LtoR-minimum.
- So, we can define i as the rightmost entry to the left of j in σ such that $i < j$, and (i, j) is an occurrence of .
- We check that τ is the permutation obtained swapping i and j , so that τ covers σ in the middle order.

Let τ be obtained from σ by transforming one into .

- Let j be the largest of the two elements involved in
- $\varphi(\sigma)$ and $\varphi(\tau)$ differ only at their j -th coordinate
- and the difference is $+1$
- meaning that $\varphi(\tau)$ covers $\varphi(\sigma)$ in the defined order on inversion sequences

Some properties of the middle order

A product of chains

We have seen that the middle order \mathcal{P}_n is isomorphic (with explicit bijection φ) to the product of chains

$$[0, 0] \times [0, 1] \times [0, 2] \times \cdots \times [0, n-1]$$

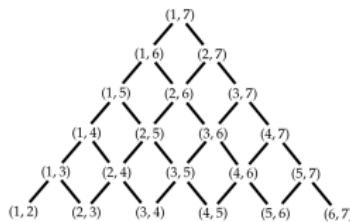
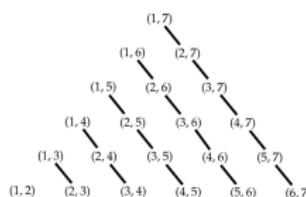
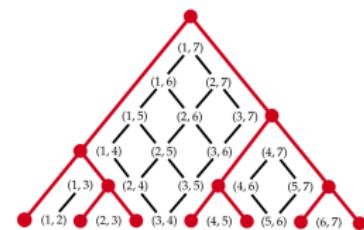
Consequences:

- \mathcal{P}_n is a lattice: any σ and τ have a least upper bound $\sigma \vee \tau$ (called join) and a greatest lower bound, denoted $\sigma \wedge \tau$ (called meet).
The join (resp. meet) is obtained taking component-wise maximum (resp. minimum) on corresponding inversion sequences.
- In addition, \mathcal{P}_n is a distributive lattice.
(meaning that \vee is distributive over \wedge and vice-versa).
- \mathcal{P}_n is graded, i.e. has a rank function r , meaning that, for any σ , we can define $r(\sigma)$ as the length of any maximal chain from $12\cdots n$ to σ .
In \mathcal{P}_n , we have $r(\sigma) = \text{number of inversions of } \sigma$.

A step aside: more middle orders, by Ludovic Schwob

Call **a (generalized) middle order** any distributive lattice that is between weak and Bruhat.

- These are completely characterized (through posets of irreducible elements).



- There are Catalan-many of them.
- Some of this work generalizes to other Coxeter groups.

“J’espère finir de rédiger le préprint d’ici février” – L. Schwob, 15/01/2026

Back to: A product of chains

We have seen that the middle order \mathcal{P}_n is **isomorphic** (with explicit bijection φ) **to the product of chains**

$$[0, 0] \times [0, 1] \times [0, 2] \times \cdots \times [0, n-1]$$

Consequences:

- \mathcal{P}_n is a **lattice**: any σ and τ have a least upper bound $\sigma \vee \tau$ (called **join**) and a greatest lower bound, denoted $\sigma \wedge \tau$ (called **meet**).
The join (resp. meet) is obtained taking **component-wise maximum** (resp. **minimum**) on corresponding inversion sequences.
- In addition, \mathcal{P}_n is a **distributive lattice**.
(meaning that \vee is distributive over \wedge and vice-versa).
- \mathcal{P}_n is **graded**, i.e. has a **rank function** r , meaning that, for any σ , we can define $r(\sigma)$ as the length of any maximal chain from $12\cdots n$ to σ .
In \mathcal{P}_n , we have $r(\sigma) = \text{number of inversions of } \sigma$.

Characterizing and counting all intervals in \mathcal{P}_n

Intervals of the j -element chain $[0, j - 1]$:

- Such intervals are
 - of the form $\{a\}$ for $0 \leq a \leq j - 1$,
 - or of the form $[a, b]$ for $0 \leq a < b \leq j - 1$.
- Therefore, there are $j + \binom{j}{2} = \binom{j+1}{2}$ such intervals.

Intervals of \mathcal{P}_n (up to isomorphism φ):

- Such intervals correspond to intervals $[(x_1, \dots, x_n), (y_1, \dots, y_n)]$ where each $[x_j, y_j]$ is an interval of $[0, j - 1]$.
- Therefore, there are $\prod_{j=1}^n \binom{j+1}{2} = \frac{n!(n+1)!}{2^n}$ intervals in \mathcal{P}_n .

Refined counting of intervals by rank, with a recursive formula for the number $f(n, k)$ of intervals of rank k in \mathcal{P}_n :

$$f(n, k) = \sum_{h=0}^{n-1} (n - h) \cdot f(n - 1, k - h)$$

Table of $f(n, k)$, which is A139769 on the OEIS

$n \backslash k$	0	1	2	3	4	5	6	7	8	9	10
1	1										
2	2	1									
3	6	7	4	1							
4	24	46	49	36	18	6	1				
5	120	326	501	562	497	354	204	94	33	8	1

- $k = 0$: $f(n, 0) = n!$ since it counts elements in \mathcal{P}_n
- $k = 1$: $f(n, 1)$ counts the covering relations in \mathcal{P}_n . From the previous theorem, we have $f(n, 1) = n!(n - H_n)$, where $H_n = \sum_{i=1}^n \frac{1}{i}$. This is sequence A067318 in the OEIS.

Another interpretation of this sequence is as the sum of reflection lengths of all elements of S_n . Not hard to explain expressing reflection length of σ as (size – number of cycles of σ).

Characterizing and counting boolean intervals in \mathcal{P}_n

Dfn: An interval is **boolean** if it is isomorphic to a boolean algebra.

Characterization and enumeration:

- Boolean intervals of \mathcal{P}_n correspond to pairs $(x_1, \dots, x_n), (y_1, \dots, y_n)$ of inversion sequences with $y_j \in \{x_j, x_j + 1\}$ for all j .
- The number of boolean intervals in \mathcal{P}_n is $(2n - 1)!!$.
 - Indeed, each pair (x_j, y_j) has j possibilities if $y_j = x_j$, and $j - 1$ possibilities if $y_j = x_j + 1$, hence $2j - 1$ possibilities.

The **number of boolean intervals** of rank k (nec., $k < n$) in \mathcal{P}_n is

$$b(n, k) = \sum_{i=0}^n \binom{i}{k} c(n, n - i)$$

where $c(n, j)$ are the signless Stirling numbers of the first kind.

Möbius function

Dfn: The Möbius function μ on any poset \mathcal{P} is defined recursively by

$$\mu(s, u) = \begin{cases} 0 & \text{if } s \not\leq u, \\ 1 & \text{if } s = u, \text{ and} \\ -\sum_{s \leq t < u} \mu(s, t) & \text{for all } s < u. \end{cases}$$

It is typically hard to compute on an ordinary (even combinatorial) poset.
But...

Prop: In finite distributive lattices, for any v, w , it holds that

- $\mu(v, w)$ is equal to 0 if the interval $[v, w]$ is not boolean
- and otherwise $\mu(v, w) = (-1)^t$, where t is the rank of $[v, w]$.

Euler characteristic

Let \mathcal{P} be a finite distributive lattice. (Recall that \mathcal{P}_n has this property.)

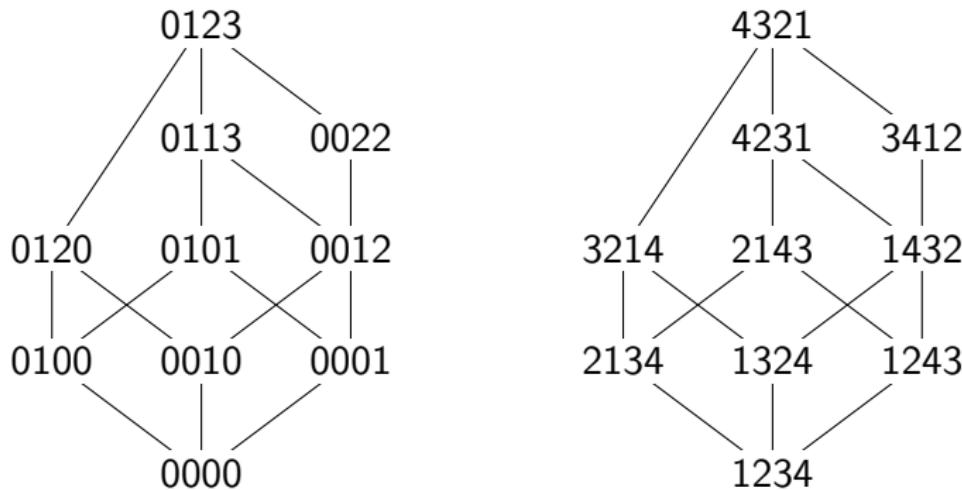
- **Dfn:** A valuation on \mathcal{P} is a function ν that satisfies $\nu(\min(\mathcal{P})) = 0$ and for all x, y , $\nu(x) + \nu(y) = \nu(x \wedge y) + \nu(x \vee y)$.
- **Prop.:** A valuation is determined by its values on the join-irreducibles.
- **Dfn:** An element of \mathcal{P} is join-irreducible if it covers exactly one element of \mathcal{P} .
- **Dfn:** The Euler characteristic is the unique valuation χ such that $\chi(a) = 1$ for every join-irreducible a .

We can characterize the join-irreducible elements of \mathcal{P}_n , and subsequently prove that the Euler characteristic χ on \mathcal{P}_n is given by

$$\chi(\sigma) = \text{ number of RtoL-non-minima of } \sigma.$$

Finding something not-so-nice in something too-beautiful

\mathcal{P}_n is extremely well behaved. What about its restriction to **involution**?



The subsequent poset \mathcal{I}_n is not a **lattice**, not **graded**, and not an **interval-closed** subposet of \mathcal{P}_n .

But . . . we can still compute the **Möbius function** in \mathcal{I}_n .

Möbius function on \mathcal{I}_n

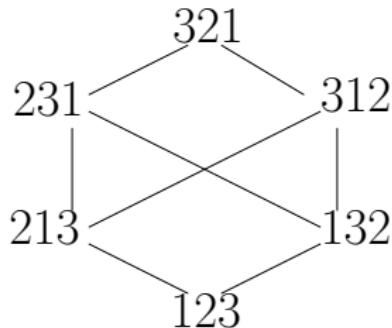
We can characterize inversion sequences of involutions, using the classical decomposition that proves the relation $i(n) = i(n-1) + (n-1) \cdot i(n-2)$ for $n \geq 2$.

- We say that (x_1, \dots, x_n) is **slow-climbing** when it does not contain **large ascents**, defined as factors (x_i, x_{i+1}) with $x_{i+1} > x_i + 1$.
- **Lemma:** The inversion sequence of an involution is slow-climbing if and only if it is the concatenation of factors $(0, 1, \dots, h)$ for some (possibly different) $h \geq 0$.

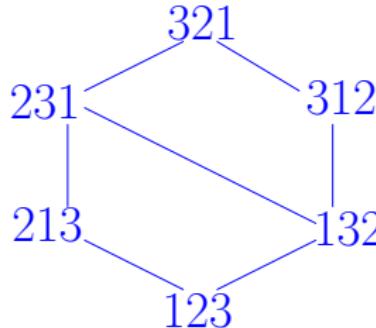
Theorem: For any involution $\sigma \in \mathcal{I}_n$, let α be the number of non-zero entries in $\varphi(\sigma)$. The Möbius function in \mathcal{I}_n is given by

$$\mu(12\dots n, \sigma) = \begin{cases} (-1)^\alpha & \text{if } \varphi(\sigma) \text{ is slow-climbing, and} \\ 0 & \text{otherwise.} \end{cases}$$

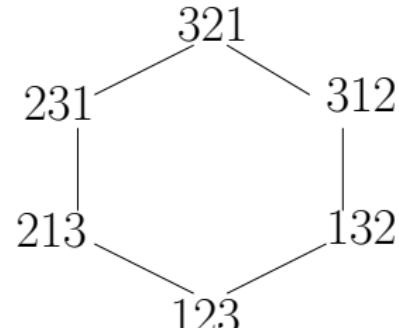
Recap



Bruhat order



middle order

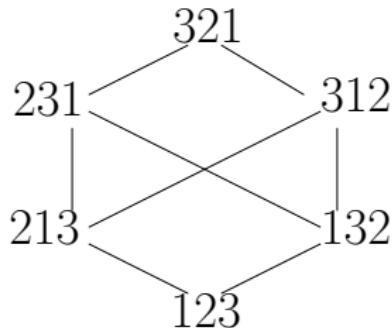


weak order

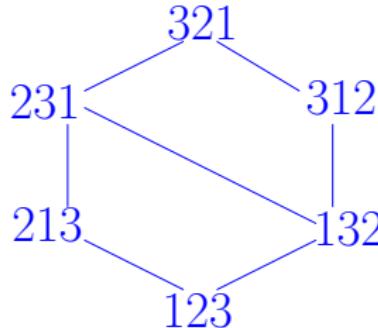
My goals were:

- Define the middle order on S_n
- Give meaning to the property that “it sits between weak and Bruhat”
- Describe some of its properties
- Popularize this new order, hoping you raise new questions about it

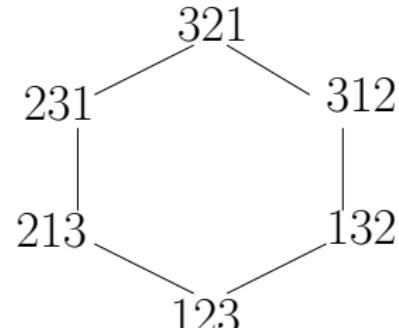
Recap



Bruhat order



middle order



weak order

My goals were:

- Define the middle order on S_n
- Give meaning to the property that “it sits between weak and Bruhat”
- Describe some of its properties
- Popularize this new order, hoping you raise new questions about it

Thank you!