Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel (LaBRI, Bordeaux, France)

joint work with Michael Albert (University of Otago, New Zealand)

CanaDAM, June 10, 2013

Operators of equivalent sorting power ...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

Theorem (Bouvel, Guibert 2012)

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Operators of equivalent sorting power ...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

Theorem (Bouvel, Guibert 2012)

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Theorem (Albert, Bouvel 2013)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

as suggested by the computer experiments of O. Guibert.

... and related Wilf-equivalences

Our proof uses:

• The characterization of preimages of permutations by **S**

[M. Bousquet-Mélou, 2000]

A new bijection (denoted P) between Av(231) and Av(132)

... and related Wilf-equivalences

Our proof uses:

The characterization of preimages of permutations by **S**

[M. Bousquet-Mélou, 2000]

A new bijection (denoted P) between Av(231) and Av(132)

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences).

Definition: $\{\pi, \pi'\}$ and $\{\tau, \tau'\}$ are Wilf-equivalent when Av (π, π') and Av (τ, τ') are enumerated by the same sequence.

... and related Wilf-equivalences

Our proof uses:

The characterization of preimages of permutations by **S**

```
[M. Bousquet-Mélou, 2000]
```

A new bijection (denoted P) between Av(231) and Av(132)

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences).

Definition: $\{\pi, \pi'\}$ and $\{\tau, \tau'\}$ are Wilf-equivalent when Av (π, π') and Av (τ, τ') are enumerated by the same sequence.

Specializing, our general result gives for instance:

Proposition

The sets of patterns $\{231, 31254\}$ and $\{132, 42351\}$ are Wilf-equivalent.

Moreover, the common generating function of the classes Av(231, 31254) and Av(132, 42351) is $\frac{t^3-t^2-2t+1}{2t^3-3t+1}$.

Definitions

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	0000			
Definitions, context and main result				

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and	l main result		

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..*k*] yields π . Example: 2134 \preccurlyeq **31**28**5**4**7**96 since 3157 \equiv 2134.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and	l main result		

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Avoidance: Av $(\pi, \tau, ...)$ = set of permutations that do not contain any occurrence of π or τ or ...

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	00000			
Definitions, context and main result				

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	00000			
Definitions, context and main result				

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	00000			
Definitions, context and main result				

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitio	iis anu main result	Sketch of proof	P and Wilf-equivalences
00000			
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	00000			
Definitions, context and main result				
The stack	sorting operator S	5		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

ins and main result	Sketch of proof	P and Wilf-equivalences	
Definitions, context and main result			
	sult	oooo	

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences	
	00000			
Definitions, context and main result				
		_		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1\ 2\ 3\ 6\ 4\ 5\ 7$$
 \leftarrow 6 1 3 2 7 5 4 = σ

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4 = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

- Permutations sortable by S: Av(231), enumeration by Catalan numbers [Knuth 1975]
- Sortable by $\mathbf{S} \circ \mathbf{S}$: Av(2341, 35241)[West 1993], enumeration by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ [Zeilberger 1992]
- Sortable by **S** ∘ **S** ∘ **S**: characterization with (generalized) excluded patterns [Claesson, Úlfarsson 2012], no enumeration result

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Main result

Reverse operator **R**:
$$\mathbf{R}(\sigma_1\sigma_2\cdots\sigma_n) = \sigma_n\cdots\sigma_2\sigma_1$$

Theorem

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Main ingredients for the proof:

the characterization of preimages of permutations by S;

[M. Bousquet-Mélou, 2000]

• the new bijection P between Av(231) and Av(132).

How does the theorem relate to these ingredients?

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and main result			

Main result, an equivalent statement

Mathilde Bouvel Operators of equivalent sorting power and related Wilf-equivalences

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
	00000		
Definitions, context and	main result		

Main result, an equivalent statement

Theorem

For any operator **A** which is a composition of operators **S** and **R**, P is a size-preserving bijection between

- permutations of Av(231) that belong to the image of **A**, and
- permutations of Av(132) that belong to the image of A,

that preserves the number of preimages under A.

Mathilde Bouvel

Proof of the main result Some ingredients and some ideas

 Outline
 Definitions and main result

 00
 00000

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

Canonical trees and preimages under S

Lemma (Bousquet-Mélou 2000)

For any permutation π in the image of **S**, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π .

Example: For $\pi = 518236479$,

 $\mathcal{T}_{\pi} = 5^{6}$

Mathilde Bouvel

 Outline
 Definitions and main result

 00
 00000

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

Canonical trees and preimages under S

Lemma (Bousquet-Mélou 2000)

For any permutation π in the image of **S**, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π .

Example: For
$$\pi = 518236479$$
,

Theorem (Bousquet-Mélou 2000)

$$\mathcal{T}_{\pi}$$
 determines $\mathbf{S}^{-1}(\pi)$.
Moreover $|\mathbf{S}^{-1}(\pi)|$ is determined only by the shape of \mathcal{T}_{π} .

Mathilde Bouvel

Outline

Definitions and main result

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

$$\mathsf{Bijection} \ \mathsf{Av}(231) \stackrel{P}{\longleftrightarrow} \mathsf{Av}(132)$$

Representing permutations as diagrams, we have

$$\mathsf{Av}(231) = \varepsilon + \underbrace{\mathsf{Av}(231)}_{\mathsf{Av}(231)} \text{ and } \mathsf{Av}(132) = \varepsilon + \underbrace{\mathsf{Av}(132)}_{\mathsf{Av}(132)}^{\bullet}$$

Mathilde Bouvel

Outline Defin

Definitions and main result

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

$$\mathsf{Bijection} \ \mathsf{Av}(231) \stackrel{P}{\longleftrightarrow} \mathsf{Av}(132)$$

Representing permutations as diagrams, we have

$$\mathsf{Av}(231) = \varepsilon + \underbrace{\mathsf{Av}(231)}_{\mathsf{Av}(231)} \text{ and } \mathsf{Av}(132) = \varepsilon + \underbrace{\mathsf{Av}(132)}_{\mathsf{Av}(132)}^{\bullet}$$

Definition

We define $P : \operatorname{Av}(231) \to \operatorname{Av}(132)$ recursively as follows: $\begin{array}{c} & & & \\ & & \\ & & \\ & & \end{array} \xrightarrow{P(\alpha)} & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$, with $\alpha, \beta \in \operatorname{Av}(231)$ Example: For $\pi = \left[\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Mathilde Bouvel

Outline	Definitions and main result

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For $\pi \in Av(231)$, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

Mathilde Bouvel Operators of equivalent sorting power and related Wilf-equivalences

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
		0000	
Ingredients and main ideas for the proof			

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For $\pi \in Av(231)$, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$. For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivale
		0000	
locate and orall ideas for the one of			

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Outline	Definitions and main result

Sketch of proof ○○○● P and Wilf-equivalences

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Dutline	Definitions and main result

Sketch of proof

P and Wilf-equivalences

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Outline	Definitions and main result

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Outline	Definitions and main result

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

Mathilde Bouvel

Outline	Definitions and main result	

Ingredients and main ideas for the proof

Bijection Φ_A between $S \circ A$ - and $S \circ R \circ A$ -sortables

For
$$\pi \in Av(231)$$
, write $P(\pi) \in Av(132)$ as $P(\pi) = \lambda_{\pi} \circ \pi$.

For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi = \mathbf{A}(\theta)$. Because $\pi \in Av(231)$, we may define $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$.

Theorem

 Φ_A is a size-preserving bijection between permutation sortable by $S \circ A$ and those sortable by $S \circ R \circ A$.

$$12...n \underbrace{\overset{\mathbf{S}}{\longleftarrow} \overset{\mathbf{S}}{\pi} \underbrace{\overset{\mathbf{S}}{\leftarrow} \overset{\mathbf{T}}{\underbrace{\mathbf{S} \text{ or } \mathbf{R}}}_{= P(\pi)} \gamma \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underbrace{\mathbf{S} \text{ or } \mathbf{R}}}_{= \mathcal{T} \lambda_{\pi} \circ \gamma \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underbrace{\mathbf{S} \text{ or } \mathbf{R}}}_{= \mathcal{T} \lambda_{\pi} \circ \gamma \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underbrace{\mathbf{S} \text{ or } \mathbf{R}}}_{= \mathcal{T} \lambda_{\pi} \circ \gamma \underbrace{\overset{\mathbf{S} \text{ or } \mathbf{R}}{\underbrace{\mathbf{S} \text{ or } \mathbf{R}}}_{= \Phi_{\mathbf{A}}(\theta)}_{= \Phi_{\mathbf{A}}(\theta)}$$

Mathilde Bouvel

More about the bijection $Av(231) \stackrel{P}{\longleftrightarrow} Av(132)$ Related Wilf-equivalences

Outline	Definitions and main result	Sketch of proof	<i>P</i> and Wilf-equivalences ○●○○
More properties of the	bijection between Av(231) and Av(132), and	related Wilf-equivalences	

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$

 \Rightarrow Many Wilf-equivalences (most of them not trivial)

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the	bijection between $\Lambda_{V}(231)$ and $\Lambda_{V}(132)$ and	related Wilf equivalences	

 $\{\pi, \pi', \ldots\}$ and $\{\tau, \tau', \ldots\}$ are Wilf-equivalent when Av (π, π', \ldots) and Av (τ, τ', \ldots) are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$

 \Rightarrow Many Wilf-equivalences (most of them not trivial)

Theorem

Computation of the generating function of such classes Av(231, π) ... and it depends only on $|\pi|$.

 \Rightarrow Even more Wilf-equivalences!

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

 (λ_n) , (ρ_n) and patterns π such that $Av(231, \pi) \xleftarrow{P} Av(132, P(\pi))$

From
$$\lambda_0 = \rho_0 = \varepsilon$$
, define recursively
 $\lambda_n = \boxed{\rho_{n-1}}$ and $\rho_n = \boxed{\lambda_{n-1}}$. Ex.: $\lambda_6 = \boxed{\bullet}$, $\rho_6 = \boxed{\bullet}$.

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the l	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

(λ_n) , (ρ_n) and patterns π such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

From
$$\lambda_0 = \rho_0 = \varepsilon$$
, define recursively
 $\lambda_n = \boxed{\rho_{n-1}}$ and $\rho_n = \boxed{\lambda_{n-1}}$. Ex.: $\lambda_6 = \boxed{\bullet}$, $\rho_6 = \boxed{\bullet}$.

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if

$$= \boxed{\begin{array}{c} \bullet \\ \rho_{n-k} \\ \lambda_{k-1} \end{array}}$$

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the l	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

(λ_n) , (ρ_n) and patterns π such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

From
$$\lambda_0 = \rho_0 = \varepsilon$$
, define recursively
 $\lambda_n = \boxed{\rho_{n-1}}$ and $\rho_n = \boxed{\lambda_{n-1}}$. Ex.: $\lambda_6 = \boxed{\bullet}$, $\rho_6 = \boxed{\bullet}$.

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if

$$\pi = \begin{bmatrix} \rho_{n-k} \\ \lambda_{k-1} \end{bmatrix} \text{ thus } P(\pi) = \begin{bmatrix} \rho_{n-k} \\ \rho_{n-k} \end{bmatrix}$$

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	P and Wilf-equivalences
			0000
More properties of the	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

 (λ_n) , (ρ_n) and patterns π such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

From
$$\lambda_0 = \rho_0 = \varepsilon$$
, define recursively
 $\lambda_n = \boxed{\rho_{n-1}}$ and $\rho_n = \boxed{\lambda_{n-1}}$. Ex.: $\lambda_6 = \boxed{\bullet}$, $\rho_6 = \boxed{\bullet}$.

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if

⇒ For all such π , {231, π } and {132, $P(\pi)$ } are Wilf-equivalent. Example: {231, 31254} and {132, 42351} are Wilf-equivalent

Mathilde Bouvel

Outline	Definitions and main result	Sketch of proof	<i>P</i> and Wilf-equivalences
			0000
More properties of the	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Outline	Definitions and main result	Sketch of proof	<i>P</i> and Wilf-equivalences
			0000
More properties of the	bijection between $\Delta y(231)$ and $\Delta y(132)$ and	related Wilf-equivalences	

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Theorem

 $\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent when $|\pi| = |\pi'| = n$ and π and π' are of the form described earlier. Moreover, the generating function of Av(231, π) is F_n .

Mathilde Bouvel