Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel (LaBRI, Bordeaux, France)

joint work with
Michael Albert (University of Otago, New Zealand)

CanaDAM, June 10, 2013

CI/
ட

Operators of equivalent sorting power . . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

Theorem (Bouvel, Guibert 2012)

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Operators of equivalent sorting power . . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

Theorem (Bouvel, Guibert 2012)

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Theorem (Albert, Bouvel 2013)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.
as suggested by the computer experiments of O . Guibert.

Our proof uses:

- The characterization of preimages of permutations by \mathbf{S}
[M. Bousquet-Mélou, 2000]
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Our proof uses:

- The characterization of preimages of permutations by \mathbf{S} [M. Bousquet-Mélou, 2000]
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences).
Definition: $\left\{\pi, \pi^{\prime}\right\}$ and $\left\{\tau, \tau^{\prime}\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}\right)$ are enumerated by the same sequence.

. . . and related Wilf-equivalences

Our proof uses:

- The characterization of preimages of permutations by \mathbf{S} [M. Bousquet-Mélou, 2000]
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences).

Definition: $\left\{\pi, \pi^{\prime}\right\}$ and $\left\{\tau, \tau^{\prime}\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}\right)$ are enumerated by the same sequence.

Specializing, our general result gives for instance:

Proposition

The sets of patterns $\{231,31254\}$ and $\{132,42351\}$ are Wilf-equivalent.
Moreover, the common generating function of the classes $\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ is $\frac{t^{3}-t^{2}-2 t+1}{2 t^{3}-3 t+1}$.

Definitions

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.
Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain any occurrence of π or τ or ...

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
32754
$$

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

$$
32754
$$

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

754

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

754

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition. $\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition. $\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

- Permutations sortable by \mathbf{S} : $\operatorname{Av}(231)$, enumeration by Catalan numbers [Knuth 1975]
■ Sortable by $\mathbf{S} \circ \mathbf{S}: \operatorname{Av}(2341,3 \overline{5} 241)[$ West 1993], enumeration by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$ [Zeilberger 1992]
- Sortable by $\mathbf{S} \circ \mathbf{S} \circ \mathbf{S}$: characterization with (generalized) excluded patterns [Claesson, Úlfarsson 2012], no enumeration result

Main result

$$
\text { Reverse operator } \mathbf{R}: \mathbf{R}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)=\sigma_{n} \cdots \sigma_{2} \sigma_{1}
$$

Theorem

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Main ingredients for the proof:
■ the characterization of preimages of permutations by \mathbf{S}; [M. Bousquet-Mélou, 2000]

- the new bijection P between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$.

How does the theorem relate to these ingredients?

Definitions, context and main result

Main result, an equivalent statement

Main result, an equivalent statement

Theorem

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, P is a size-preserving bijection between

- permutations of $\operatorname{Av}(231)$ that belong to the image of \mathbf{A}, and
- permutations of $\operatorname{Av}(132)$ that belong to the image of \mathbf{A}, that preserves the number of preimages under \mathbf{A}.

Proof of the main result
 Some ingredients and some ideas

Canonical trees and preimages under \mathbf{S}

Lemma (Bousquet-Mélou 2000)

For any permutation π in the image of \mathbf{S}, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π.

Example: For $\pi=518236479$,

Canonical tree:
For every edge ${ }_{\text {there exists }}^{\text {, }}$ and y such that

Canonical trees and preimages under \mathbf{S}

Lemma (Bousquet-Mélou 2000)

For any permutation π in the image of \mathbf{S}, there is a unique canonical tree \mathcal{T}_{π} whose post-order reading is π.

Example: For $\pi=518236479$,

Canonical tree:
For every edge and y such that

Theorem (Bousquet-Mélou 2000)

\mathcal{T}_{π} determines $\mathbf{S}^{-1}(\pi)$.
Moreover $\left|\mathbf{S}^{-1}(\pi)\right|$ is determined only by the shape of \mathcal{T}_{π}.

Ingredients and main ideas for the proof

Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$

Representing permutations as diagrams, we have

Example:

153249867
Mathilde Bouvel
Operators of equivalent sorting power and related Wilf-equivalences

Ingredients and main ideas for the proof
Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$
Representing permutations as diagrams, we have

$$
\operatorname{Av}(231)=\varepsilon+\underset{\operatorname{Av}(331)}{\operatorname{Avv}(231)} \text { and } \operatorname{Av}(132)=\varepsilon+\frac{\operatorname{Avv}^{\circ}(322)}{}
$$

Definition

We define $P: \operatorname{Av}(231) \rightarrow \operatorname{Av}(132)$ recursively as follows:

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortables

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.
Theorem
Φ_{A} is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

$$
\begin{aligned}
& 12 \ldots n \mathbf{S}_{\leftarrow}^{\leftarrow}{\underset{\lambda}{\pi}} \circ \pi \\
& =P(\pi)
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

$$
\begin{aligned}
& 12 \ldots n \underset{=}{\underset{=}{\lambda_{\pi}} \circ \pi(\pi)} \underset{\sim}{\leftarrow} \lambda_{\pi} \circ \tau
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

A

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

Bijection $\Phi_{\mathbf{A}}$ between $\mathbf{S} \circ \mathbf{A}$ - and $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$-sortable

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$.
Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem

$\Phi_{\mathbf{A}}$ is a size-preserving bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

$$
\begin{aligned}
& \text { A }
\end{aligned}
$$

$$
\begin{aligned}
& 12 \ldots n \longleftarrow \mathbf{S}^{\mathbf{R}} \lambda_{\pi} \circ \pi \stackrel{\mathbf{S}}{\longleftarrow} \lambda_{\pi} \circ \tau \stackrel{\mathbf{S} \text { or } \mathbf{R}}{\longleftarrow} \lambda_{\pi} \circ \gamma \stackrel{\mathbf{S}}{\longleftarrow} \cdots \lambda_{\pi} \circ \rho \stackrel{\mathbf{S}}{\longleftarrow} \lambda_{\pi} \circ \theta \\
& =P(\pi) \quad=\Phi_{\mathbf{A}}(\theta) \\
& \lambda_{\pi}\left(\mathcal{T}_{\pi}\right)=\mathcal{T}_{\lambda_{\pi} \circ \pi} \lambda_{\pi}\left(\mathcal{T}_{\tau}\right)=\mathcal{T}_{\lambda_{\pi} \circ \tau} \quad \lambda_{\pi}\left(\mathcal{T}_{\rho}\right)=\mathcal{T}_{\lambda_{\pi} \circ \rho}
\end{aligned}
$$

More about the bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$
Related Wilf-equivalences

More properties of the bijection between $\mathrm{Av}(231)$ and $\mathrm{Av}(132)$, and related Wilf-equivalences

P and Wilf-equivalences

$$
\begin{aligned}
& \left\{\pi, \pi^{\prime}, \ldots\right\} \text { and }\left\{\tau, \tau^{\prime}, \ldots\right\} \text { are Wilf-equivalent when } \operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right) \\
& \text { and } \operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right) \text { are enumerated by the same sequence. }
\end{aligned}
$$

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

P and Wilf-equivalences

$\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$
\Rightarrow Many Wilf-equivalences (most of them not trivial)

P and Wilf-equivalences

$\left\{\pi, \pi^{\prime}, \ldots\right\}$ and $\left\{\tau, \tau^{\prime}, \ldots\right\}$ are Wilf-equivalent when $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots\right)$ are enumerated by the same sequence.

Theorem

Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$
\Rightarrow Many Wilf-equivalences (most of them not trivial)

Theorem

Computation of the generating function of such classes $\operatorname{Av}(231, \pi)$... and it depends only on $|\pi|$.
\Rightarrow Even more Wilf-equivalences!

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

$\left(\lambda_{n}\right),\left(\rho_{n}\right)$ and patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

From $\lambda_{0}=\rho_{0}=\varepsilon$, define recursively
$\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}$ and $\rho_{n}=\stackrel{\lambda_{n-1}}{\bullet}$. Ex.: $\lambda_{6}=\stackrel{\ddots}{\bullet}, \rho_{6}=\stackrel{\square}{\bullet}$.

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
$\left(\lambda_{n}\right),\left(\rho_{n}\right)$ and patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
From $\lambda_{0}=\rho_{0}=\varepsilon$, define recursively
$\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}$ and $\rho_{n}=\stackrel{\lambda_{n-1}}{\bullet}$. Ex.: $\lambda_{6}=\stackrel{\ddots}{\bullet}, \rho_{6}=\stackrel{\square}{\bullet}$.

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
$\left(\lambda_{n}\right),\left(\rho_{n}\right)$ and patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
From $\lambda_{0}=\rho_{0}=\varepsilon$, define recursively
$\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}$ and $\rho_{n}=\stackrel{\lambda_{n-1}}{\bullet}$. Ex.: $\lambda_{6}=\stackrel{\ddots}{\bullet}, \rho_{6}=\stackrel{\square}{\bullet}$.

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
$\left(\lambda_{n}\right),\left(\rho_{n}\right)$ and patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
From $\lambda_{0}=\rho_{0}=\varepsilon$, define recursively
$\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}$ and $\rho_{n}=\stackrel{\lambda_{n-1}}{\bullet}$. Ex.: $\lambda_{6}=\stackrel{\ddots}{\bullet}, \rho_{6}=\stackrel{\square}{\bullet}$.

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if

\Rightarrow For all such $\pi,\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.
Example: $\{231,31254\}$ and $\{132,42351\}$ are Wilf-equivalent

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Definition: $F_{1}(t)=1$ and $F_{n+1}(t)=\frac{1}{1-t F_{n}(t)}$.

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

More properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Definition: $F_{1}(t)=1$ and $F_{n+1}(t)=\frac{1}{1-t F_{n}(t)}$.

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Theorem

$\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent when $|\pi|=\left|\pi^{\prime}\right|=n$ and π and π^{\prime} are of the form described earlier.
Moreover, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

