Wilf-equivalences derived from a bijection between Av(231) and Av(132)

Mathilde Bouvel joint work with Michael Albert

12 avril 2013

June 2012, at groupe de travail CÉA...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

June 2012, at groupe de travail CÉA...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Computer experiments then suggest that:

Conjecture (*The* (*id*, **R**) *conjecture*)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ id \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

In 2013: a first talk...

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, \mathbf{R}) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by S
- A new bijection (denoted P) between Av(231) and Av(132)

In 2013: a first talk...and a second one

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, \mathbf{R}) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by S
- A new bijection (denoted P) between Av(231) and Av(132)

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences). For instance:

Theorem

Av(231, 31254) and Av(132, 42351) have the same enumerative sequence, and their common generating function is

$$F_5(t) = rac{t^3 - t^2 - 2t + 1}{2t^3 - 3t + 1}.$$

Definitions

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \bullet \circ \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132)

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$. Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \bullet \circ \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132)

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π . Example: 2134 \preccurlyeq **31**28**5**4**7**96 since 3157 \equiv 2134.

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \bullet \circ \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132)

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Avoidance: Av $(\pi, \tau, ...)$ = set of permutations that do not contain any occurrence of π or τ or ...

Mathilde Bouvel

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \bullet \bullet \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132) *P* and Wilf-equivalences

In-order trees of permutations

Recursively defined by
$$T_{in}(LnR) = \underbrace{T_{in}(L)}_{T_{in}(R)}$$
 where $n = \max(LnR)$, and $T_{in}(\varepsilon) = \emptyset$.

Example: For
$$\pi = 5\ 8\ 1\ 9\ 6\ 2\ 3\ 7\ 4$$
, $T_{in}(\pi) = 5^{-8}1^{9}6^{-7}4$

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \bullet \bullet \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132)

In-order trees of permutations

Recursively defined by
$$T_{in}(LnR) = \underbrace{T_{in}(L)}_{T_{in}(R)}^{n}$$
 where $n = \max(LnR)$, and $T_{in}(\varepsilon) = \emptyset$.

Example: For
$$\pi = 5\ 8\ 1\ 9\ 6\ 2\ 3\ 7\ 4$$
, $\mathsf{T}_{\mathsf{in}}(\pi) = 5^{-8}1^{9}6^{-7}4^{-4}$

Remark: Many permutation statistics are determined by the shape of in-order trees:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Mathilde Bouvel

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ \circ \circ \circ \circ \circ \circ \circ$ Definitions and a bijection between Av(231) and Av(132) P and Wilf-equivalences

Diagrams of permutations; Sum and skew sum

Diagram of $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$:

 α a permutation of \mathfrak{S}_{a} , β a permutation of \mathfrak{S}_{b}

Sum:

$$\alpha \oplus \beta = \alpha \left(\beta + \mathbf{a} \right) = \alpha$$

Skew sum:

$$\alpha \ominus \beta = (\alpha + b) \beta = \frac{\alpha}{\beta}$$

Mathilde Bouvel

Definitions and a bijection between Av(231) and Av(132)

Describing permutations in Av(231) and Av(132)

- Any $\pi \neq \varepsilon \in Av(231)$ is decomposed as
 - $\pi = \alpha \oplus (1 \ominus \beta)$
 - with $\alpha, \beta \in Av(231)$.
- Any $\pi \neq \varepsilon \in Av(132)$ is decomposed as
 - $\pi = (\alpha \oplus 1) \ominus \beta$

with $\alpha, \beta \in Av(132)$.

Mathilde Bouvel

Bijection $Av(231) \stackrel{P}{\longleftrightarrow} Av(132)$

Definitions and a bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with
$$\alpha, \beta \in Av(231)$$
.
Example: For $\pi = 153249867 \in Av(231)$,
 $P(\pi) =$

Mathilde Bouvel

Definitions and a bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in Av(231)$. Example: For $\pi = 153249867 \in Av(231)$, $P(\pi) = 785469312$.

Mathilde Bouvel

Definitions and a bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in Av(231)$.

Example: For
$$\pi = 153249867 \in Av(231)$$
,
 $P(\pi) = 785469312$.

Remark: P is the identity map on Av(231, 132).

Mathilde Bouvel

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ\circ\circ\circ\circ\circ\bullet$ **Definitions and a bijection between** Av(231) and Av(132)

Some properties of P

Proposition: *P* preserves the shape of in-order trees.

Proof: From the recursive definition of *P*.

Example: For $\pi = 153249867$ (and $P(\pi) = 785469312$):

Mathilde Bouvel

Definitions and bijection $P : Av(231) \leftrightarrow Av(132)$ $\circ\circ\circ\circ\circ\circ\bullet$ **Definitions and a bijection between** Av(231) and Av(132)

Some properties of P

Proposition: *P* preserves the shape of in-order trees.

Proof: From the recursive definition of *P*.

Example: For $\pi = 153249867$ (and $P(\pi) = 785469312$):

Consequence: *P* preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Proof: These are determined by the shape of in-order trees.

Mathilde Bouvel

More about the bijection $Av(231) \stackrel{P}{\longleftrightarrow} Av(132)$ Related Wilf-equivalences

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

Two classes Av(π, π', \ldots, π'') and Av($\tau, \tau', \ldots, \tau''$) are Wilf-equivalent when they are enumerated by the same sequence. Examples: • Av(231) and Av(123); • trivial Wilf-equivalences: Av(π, π', \ldots, π'') and Av($\mathbf{Z}(\pi), \mathbf{Z}(\pi'), \ldots, \mathbf{Z}(\pi'')$) for every symmetry **Z**;

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

Two classes Av(π, π', \ldots, π'') and Av($\tau, \tau', \ldots, \tau''$) are Wilf-equivalent when they are enumerated by the same sequence. Examples: • Av(231) and Av(123); • trivial Wilf-equivalences: Av(π, π', \ldots, π'') and Av($\mathbf{Z}(\pi), \mathbf{Z}(\pi'), \ldots, \mathbf{Z}(\pi'')$) for every symmetry **Z**;

Theorem: Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi)) \Rightarrow$ Many Wilf-equivalences (most of them not trivial)

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

Two classes Av(π, π', \ldots, π'') and Av($\tau, \tau', \ldots, \tau''$) are Wilf-equivalent when they are enumerated by the same sequence. Examples: • Av(231) and Av(123); • trivial Wilf-equivalences: Av(π, π', \ldots, π'') and Av($\mathbf{Z}(\pi), \mathbf{Z}(\pi'), \ldots, \mathbf{Z}(\pi'')$) for every symmetry **Z**;

Theorem: Description of the patterns $\pi \in Av(231)$ such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi)) \Rightarrow$ Many Wilf-equivalences (most of them not trivial)

Theorem: Computation of the generating function of such classes $Av(231, \pi) \dots and$ it depends only on $|\pi|$. \Rightarrow Even more Wilf-equivalences!

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

The families of patterns (λ_n) and (ρ_n)

•
$$\lambda_0 = \rho_0 = \varepsilon$$
 (or $\lambda_1 = \rho_1 = 1$)

$$\lambda_n = 1 \ominus \rho_{n-1}$$

$$\bullet \rho_n = \lambda_{n-1} \oplus 1$$

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

The families of patterns (λ_n) and (ρ_n)

•
$$\lambda_0 = \rho_0 = \varepsilon$$
 (or $\lambda_1 = \rho_1 = 1$)

$$\lambda_n = 1 \ominus \rho_{n-1}$$

$$\bullet \rho_n = \lambda_{n-1} \oplus 1$$

Remarks: for all n,

- λ_n starts with its maximum, and ρ_n ends with its maximum;
- λ_n is \oplus -indecomposable and ρ_n is \oplus -indecomposable;
- λ_n and ρ_n are in Av(231, 132), hence are fixed by P.

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns
$$\pi$$
 such that $\mathsf{Av}(231,\pi) \xleftarrow{P} \mathsf{Av}(132,P(\pi))$

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

Remark: Av(231, π) \xleftarrow{P} Av(132, $P(\pi)$) is equivalent to $\forall \sigma \in Av(231), \pi \preccurlyeq \sigma$ iff $P(\pi) \preccurlyeq P(\sigma)$.

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that $Av(231, \pi) \xleftarrow{P} Av(132, P(\pi))$

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

$$\leftarrow \mathsf{If} \ \pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1}) \ \mathsf{then} \ \mathsf{Av}(231,\pi) \xleftarrow{P} \mathsf{Av}(132,P(\pi))$$

- Proof by induction on *n*.
- Examine how $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$ can occur in $\sigma \in Av(231)$.
- Examine how $P(\lambda_k \oplus (1 \ominus \rho_{n-k-1}))$ can occur in $P(\sigma) \in Av(132)$.

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that $Av(231, \pi) \xleftarrow{P} Av(132, P(\pi))$

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

$$\leftarrow \text{ If } \pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1}) \text{ then } \mathsf{Av}(231, \pi) \xleftarrow{P} \mathsf{Av}(132, P(\pi))$$

$$\Rightarrow \text{ If } \mathsf{Av}(231, \pi) \xleftarrow{P} \mathsf{Av}(132, P(\pi)) \text{ then } \pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$$

- Such a π may be written $\pi = \alpha \oplus (1 \ominus \beta)$.
- Claim 1: α and β are also such that $Av(231, \gamma) \stackrel{P}{\longleftrightarrow} Av(132, P(\gamma))$.
- **Claim 2:** α starts with its maximum, and β ends with its maximum.
- By induction, every γ such that $Av(231, \gamma) \stackrel{P}{\longleftrightarrow} Av(132, P(\gamma))$ starting (resp. ending) with its maximum is equal to λ_{ℓ} (resp. ρ_{ℓ}) for some ℓ .

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Patterns π such that $Av(231, \pi) \xleftarrow{P} Av(132, P(\pi))$

Theorem

A pattern $\pi \in Av(231)$ is such that P provides a bijection between $Av(231, \pi)$ and $Av(132, P(\pi))$ if and only if $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.

$$\leftarrow \text{ If } \pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1}) \text{ then } \mathsf{Av}(231, \pi) \xleftarrow{P} \mathsf{Av}(132, P(\pi)) \\ \Rightarrow \text{ If } \mathsf{Av}(231, \pi) \xleftarrow{P} \mathsf{Av}(132, P(\pi)) \text{ then } \pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$$

Consequence: For all $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$, Av(231, π) and Av(132, $P(\pi)$) are Wilf-equivalent.

Example:

•
$$\lambda_3 \oplus (1 \ominus \rho_1) = 31254 \in Av(231) \text{ and } P(31254) = 42351.$$

 \Rightarrow *P* is a bijection between Av(231, 31254) and Av(132, 42351)

 \Rightarrow Av(231, 31254) and Av(132, 42351) are Wilf-equivalent

Mathilde Bouvel

P and Wilf-equivalences

Some properties of the bijection between $\mathsf{Av}(231)$ and $\mathsf{Av}(132),$ and related Wilf-equivalences

Known Wilf-equivalences that we recover (or not)

We recover

- for $\pi = 312$, Av(231, 312) \sim_{Wilf} Av(132, 312),
- for $\pi = 3124$, Av(231, 3124) \sim_{Wilf} Av(132, 3124),
- for $\pi = 1423$, Av(231, 1423) \sim_{Wilf} Av(132, 3412),

which are (up to symmetry) referenced in Wikipedia.

P and Wilf-equivalences

Some properties of the bijection between $\mathsf{Av}(231)$ and $\mathsf{Av}(132),$ and related Wilf-equivalences

Known Wilf-equivalences that we recover (or not)

We recover

• for $\pi = 312$, Av(231, 312) \sim_{Wilf} Av(132, 312),

• for $\pi = 3124$, Av(231, 3124) \sim_{Wilf} Av(132, 3124),

• for $\pi = 1423$, Av(231, 1423) \sim_{Wilf} Av(132, 3412),

which are (up to symmetry) referenced in Wikipedia.

With $|\pi| = 3$ or 4, there are five more non-trivial Wilf-equivalence of the form Av(231, π) \sim_{Wilf} Av(132, π') (up to symmetry). \odot We do not recover them.

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

P and Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that Av(231, π) \sim_{Wilf} Av(132, $P(\pi)$) and Av(231, π) $\stackrel{P}{\longleftrightarrow}$ Av(132, $P(\pi)$):

π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213	6421357	6421357	31286457	75683124
21534	43512	531246	531246	3127546	6457213	75312468	75312468
53124	53124	312645	534612	7531246	7531246	64213587	75324681
31254	42351	642135	642135	4213756	6435712	53124867	75346812
15324	45213	421365	532461	1753246	6742135	86421357	86421357
		164235	563124	5312476	6423571	21864357	76842135
				2175346	6573124	42138657	75468213
						18642357	78531246

Except two they are non-trivial.

Mathilde Bouvel

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that Av(231, π) \sim_{Wilf} Av(132, $P(\pi)$) and Av(231, π) $\stackrel{P}{\longleftrightarrow}$ Av(132, $P(\pi)$):

π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213	6421357	6421357	31286457	75683124
21534	43512	531246	531246	3127546	6457213	75312468	75312468
53124	53124	312645	534612	7531246	7531246	64213587	75324681
31254	42351	642135	642135	4213756	6435712	53124867	75346812
15324	45213	421365	532461	1753246	6742135	86421357	86421357
		164235	563124	5312476	6423571	21864357	76842135
				2175346	6573124	42138657	75468213
						18642357	78531246

Except two they are non-trivial.

But because of symmetries, there are some redundancies.

Mathilde Bouvel

P and Wilf-equivalences 000000●00

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Conjectural Wilf-equivalences that we miss

Patterns π such that conjecturally Av(231, π) ~_{Wilf} Av(132, P(π))

π	$P(\pi)$
2137465	5467231
1327645	5647312

π	$P(\pi)$
63125478	64235178
87153246	87452136
65312478	65312478
87421356	87421356

For all of those, $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$ does not hold.

Mathilde Bouvel

P and Wilf-equivalences 0000000●0

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

P and Wilf-equivalences 0000000●0

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Common generating function when $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$

Definition:
$$F_1(t) = 1$$
 and $F_{n+1}(t) = \frac{1}{1 - tF_n(t)}$.

Theorem

For $\pi \in Av(231)$ such that $Av(231, \pi) \stackrel{P}{\longleftrightarrow} Av(132, P(\pi))$, denoting $n = |\pi|$, the generating function of $Av(231, \pi)$ is F_n .

Proof:

- Recall that $\pi = \lambda_k \oplus (1 \ominus \rho_{n-k-1})$.
- For $\pi = \lambda_n$ or ρ_n , proof by induction.
- For the general case, use a nice property of (F_n) : setting $g(x, y) = \frac{1-txy}{1-tx-ty}$, we have $F_n = g(F_j, F_k)$ for any j, k, n such that j + k = n - 1.

Mathilde Bouvel

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Many Wilf-equivalent classes

Theorem

The classes Av(231, π) and Av(132, $P(\pi)$) are all Wilf-equivalent when $|\pi| = n$ and π is of the form $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$. Moreover, their generating function is F_n .

Remark: For other patterns π of size n = 7 or 8 such that $Av(231, \pi)$ and $Av(132, P(\pi))$ are conjecturally Wilf-equivalent, the generating function of class $Av(231, \pi)$ is not F_n .

Some properties of the bijection between Av(231) and Av(132), and related Wilf-equivalences

Many Wilf-equivalent classes ... and even more?

Theorem

The classes Av(231, π) and Av(132, $P(\pi)$) are all Wilf-equivalent when $|\pi| = n$ and π is of the form $\lambda_k \oplus (1 \ominus \rho_{n-k-1})$. Moreover, their generating function is F_n .

Remark: For other patterns π of size n = 7 or 8 such that $Av(231, \pi)$ and $Av(132, P(\pi))$ are conjecturally Wilf-equivalent, the generating function of class $Av(231, \pi)$ is not F_n .

In future?: For classes recursively described (like Av(231) and Av(132), define recursive bijections (like P), to find or explain more Wilf-equivalences.

Mathilde Bouvel