Wilf-equivalences derived from a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Mathilde Bouvel
joint work with Michael Albert

12 avril 2013

June 2012, at groupe de travail CÉA. . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

June 2012, at groupe de travail CÉA. . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Computer experiments then suggest that:

Conjecture (The (id, R) conjecture)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ$ id $\circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

In 2013: a first talk. . .

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, R) conjecture holds.
The proof uses:

- The characterization of preimages of permutations by \mathbf{S}

■ A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

In 2013: a first talk. . . and a second one

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, \mathbf{R}) conjecture holds.
The proof uses:

- The characterization of preimages of permutations by \mathbf{S}
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences). For instance:

Theorem

$\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ have the same enumerative sequence, and their common generating function is

$$
F_{5}(t)=\frac{t^{3}-t^{2}-2 t+1}{2 t^{3}-3 t+1}
$$

Definitions

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.
Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain any occurrence of π or τ or ...

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

In-order trees of permutations

Recursively defined by $\mathrm{T}_{\text {in }}(\operatorname{LnR})=\angle \mathrm{T}_{\text {in }}(L)>\mathrm{T}_{\text {in }}(R)$ where $n=\max (L n R)$, and $\mathrm{T}_{\text {in }}(\varepsilon)=\emptyset$.

In-order trees of permutations

Recursively defined by $\mathrm{T}_{\text {in }}(L n R)=\angle \mathrm{T}_{\mathrm{in}}(L)>\angle \mathrm{T}_{\text {in }}(R)$ where $n=\max (L n R)$, and $\mathrm{T}_{\mathrm{in}}(\varepsilon)=\emptyset$.

Remark: Many permutation statistics are determined by the shape of in-order trees:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Diagrams of permutations; Sum and skew sum

$$
\text { Diagram of } \sigma=18364257 \text { : }
$$

α a permutation of \mathfrak{S}_{a},
β a permutation of \mathfrak{S}_{b}

- Sum:

$$
\alpha \oplus \beta=\alpha(\beta+a)=\boxed{\beta}
$$

- Skew sum:

$$
\alpha \ominus \beta=(\alpha+b) \beta={ }_{\square}^{\alpha}
$$

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Describing permutations in $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

- Any $\pi \neq \varepsilon \in \operatorname{Av}(231)$ is decomposed as

$$
\pi=\alpha \oplus(1 \ominus \beta)
$$

with $\alpha, \beta \in \operatorname{Av}(231)$.

- Any $\pi \neq \varepsilon \in \operatorname{Av}(132)$ is decomposed as

$$
\pi=(\alpha \oplus 1) \ominus \beta
$$

with $\alpha, \beta \in \operatorname{Av}(132)$.

Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$,

$$
P(\pi)=
$$

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$,

$$
P(\pi)=785469312
$$

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$,

$$
P(\pi)=785469312
$$

Remark: P is the identity map on $\operatorname{Av}(231,132)$.

Definitions and a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Some properties of P

Proposition: P preserves the shape of in-order trees.
Proof: From the recursive definition of P.
Example: For $\pi=153249867$ (and $P(\pi)=785469312$):

Some properties of P

Proposition: P preserves the shape of in-order trees.
Proof: From the recursive definition of P.
Example: For $\pi=153249867$ (and $P(\pi)=785469312$):

Consequence: P preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Proof: These are determined by the shape of in-order trees.

More about the bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$
Related Wilf-equivalences

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

P and Wilf-equivalences

Two classes $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots, \tau^{\prime \prime}\right)$ are Wilf-equivalent when they are enumerated by the same sequence.

Examples: - $\operatorname{Av}(231)$ and $\operatorname{Av}(123)$;

- trivial Wilf-equivalences: $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and
$\operatorname{Av}\left(\mathbf{Z}(\pi), \mathbf{Z}\left(\pi^{\prime}\right), \ldots, \mathbf{Z}\left(\pi^{\prime \prime}\right)\right)$ for every symmetry \mathbf{Z};

P and Wilf-equivalences

Two classes $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots, \tau^{\prime \prime}\right)$ are Wilf-equivalent when they are enumerated by the same sequence.

Examples: - $\operatorname{Av}(231)$ and $\operatorname{Av}(123)$;

- trivial Wilf-equivalences: $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and $\operatorname{Av}\left(\mathbf{Z}(\pi), \mathbf{Z}\left(\pi^{\prime}\right), \ldots, \mathbf{Z}\left(\pi^{\prime \prime}\right)\right)$ for every symmetry \mathbf{Z};

Theorem: Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ \Rightarrow Many Wilf-equivalences (most of them not trivial)

P and Wilf-equivalences

Two classes $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and $\operatorname{Av}\left(\tau, \tau^{\prime}, \ldots, \tau^{\prime \prime}\right)$ are Wilf-equivalent when they are enumerated by the same sequence.

Examples: - $\operatorname{Av}(231)$ and $\operatorname{Av}(123)$;

- trivial Wilf-equivalences: $\operatorname{Av}\left(\pi, \pi^{\prime}, \ldots, \pi^{\prime \prime}\right)$ and $\operatorname{Av}\left(\mathbf{Z}(\pi), \mathbf{Z}\left(\pi^{\prime}\right), \ldots, \mathbf{Z}\left(\pi^{\prime \prime}\right)\right)$ for every symmetry \mathbf{Z};

Theorem: Description of the patterns $\pi \in \operatorname{Av}(231)$ such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ \Rightarrow Many Wilf-equivalences (most of them not trivial)

Theorem: Computation of the generating function of such classes $\operatorname{Av}(231, \pi) \ldots$ and it depends only on $|\pi|$.
\Rightarrow Even more Wilf-equivalences!

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

The families of patterns $\left(\lambda_{n}\right)$ and $\left(\rho_{n}\right)$

$$
\begin{aligned}
& \text { ■ } \lambda_{0}=\rho_{0}=\varepsilon \quad\left(\text { or } \lambda_{1}=\rho_{1}=1\right) \\
& -\lambda_{n}=1 \ominus \rho_{n-1} \\
& \rho_{n}=\lambda_{n-1} \oplus 1
\end{aligned}
$$

$$
\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}, \rho_{n}={\lambda_{n-1}}_{\bullet}^{\bullet} ; \quad \lambda_{6}=\begin{array}{|}
\bullet \bullet
\end{array}, \rho_{6}=\stackrel{\bullet}{\bullet} \cdot
$$

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

The families of patterns $\left(\lambda_{n}\right)$ and $\left(\rho_{n}\right)$

$$
\begin{aligned}
& \square \lambda_{0}=\rho_{0}=\varepsilon \quad\left(\text { or } \lambda_{1}=\rho_{1}=1\right) \\
& ■ \lambda_{n}=1 \ominus \rho_{n-1} \\
& \square \rho_{n}=\lambda_{n-1} \oplus 1
\end{aligned}
$$

$$
\lambda_{n}=\stackrel{\bullet}{\rho_{n-1}}, \rho_{n}={\lambda_{n-1}}^{\bullet} ; \quad \lambda_{6}=\begin{array}{|}
\bullet \bullet
\end{array}, \rho_{6}=\begin{array}{|}
\bullet & \bullet \\
\bullet
\end{array}
$$

Remarks: for all n,
■ λ_{n} starts with its maximum, and ρ_{n} ends with its maximum;
■ λ_{n} is \oplus-indecomposable and ρ_{n} is \ominus-indecomposable;

- λ_{n} and ρ_{n} are in $\operatorname{Av}(231,132)$, hence are fixed by P.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.

Remark: $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ is equivalent to $\forall \sigma \in \operatorname{Av}(231), \pi \preccurlyeq \sigma$ iff $P(\pi) \preccurlyeq P(\sigma)$.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.
\Leftarrow If $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$ then $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

- Proof by induction on n.
- Examine how $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$ can occur in $\sigma \in \operatorname{Av}(231)$.
- Examine how $P\left(\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)\right)$ can occur in $P(\sigma) \in \operatorname{Av}(132)$.

Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.
\Leftarrow If $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$ then $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
\Rightarrow If $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ then $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$

- Such a π may be written $\pi=\alpha \oplus(1 \ominus \beta)$.
- Claim 1: α and β are also such that $\operatorname{Av}(231, \gamma) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\gamma))$.
- Claim 2: α starts with its maximum, and β ends with its maximum.
- By induction, every γ such that $\operatorname{Av}(231, \gamma) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\gamma))$ starting (resp. ending) with its maximum is equal to λ_{ℓ} (resp. ρ_{ℓ}) for some ℓ.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences
Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$

Theorem

A pattern $\pi \in \operatorname{Av}(231)$ is such that P provides a bijection between $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.
\Leftarrow If $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$ then $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
\Rightarrow If $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ then $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$
Consequence: For all $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$,
$\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are Wilf-equivalent.

Example:

- $\lambda_{3} \oplus\left(1 \ominus \rho_{1}\right)=31254 \in \operatorname{Av}(231)$ and $P(31254)=42351$.
$\Rightarrow P$ is a bijection between $\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$
$\Rightarrow \operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ are Wilf-equivalent

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Known Wilf-equivalences that we recover (or not)

© We recover
■ for $\pi=312, \operatorname{Av}(231,312) \sim$ Wilf $\operatorname{Av}(132,312)$,
■ for $\pi=3124, \operatorname{Av}(231,3124) \sim$ Wilf $^{\prime} \operatorname{Av}(132,3124)$,
■ for $\pi=1423, \operatorname{Av}(231,1423) \sim W_{\text {ilf }} \operatorname{Av}(132,3412)$, which are (up to symmetry) referenced in Wikipedia.

Known Wilf-equivalences that we recover (or not)

© We recover
■ for $\pi=312, \operatorname{Av}(231,312) \sim$ Wilf $\operatorname{Av}(132,312)$,
■ for $\pi=3124, \operatorname{Av}(231,3124) \sim$ Wilf $^{\prime} \operatorname{Av}(132,3124)$,
■ for $\pi=1423, \operatorname{Av}(231,1423) \sim W_{\text {ilf }} \operatorname{Av}(132,3412)$, which are (up to symmetry) referenced in Wikipedia.

With $|\pi|=3$ or 4 , there are five more non-trivial Wilf-equivalence of the form $\operatorname{Av}(231, \pi) \sim W_{\text {ilf }} \operatorname{Av}\left(132, \pi^{\prime}\right)$ (up to symmetry).
© We do not recover them.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that $\operatorname{Av}(231, \pi) \sim$ Wilf $^{\operatorname{Av}}(132, P(\pi))$ and $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$:

π	$P(\pi)$			
42135	42135			
21534	43512			
53124	53124			
31254	42351			
15324	45213	\quad	216435	546213
:---	:---			
531246	531246			
312645	534612			
642135	642135			
421365	532461			
164235	563124			

π	$P(\pi)$
6421357	6421357
3127546	6457213
7531246	7531246
4213756	6435712
1753246	6742135
5312476	6423571
2175346	6573124

π	$P(\pi)$
31286457	75683124
75312468	75312468
64213587	75324681
53124867	75346812
86421357	86421357
21864357	76842135
42138657	75468213
18642357	78531246

Except two they are non-trivial.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

More Wilf-equivalences that we obtain

Patterns π such that $\operatorname{Av}(231, \pi) \sim W_{\text {Wiff }} \operatorname{Av}(132, P(\pi))$ and $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$:

π	$P(\pi)$	π	$P(\pi)$
42135	42135	216435	546213
21534	43512	531246	531246
53124	53124	312645	534612
31254	42351	642135	642135
15324	45213	421365	532461
		164235	563124

π	$P(\pi)$
6421357	6421357
3127546	6457213
7531246	7531246
4213756	6435712
1753246	6742135
5312476	6423571
2175346	6573124

π	$P(\pi)$
31286457	75683124
75312468	75312468
64213587	75324681
53124867	75346812
86421357	86421357
21864357	76842135
42138657	75468213
18642357	78531246

Except two they are non-trivial.
But because of symmetries, there are some redundancies.

Mathilde Bouvel
Wilf-equivalences derived from a bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Conjectural Wilf-equivalences that we miss

Patterns π such that conjecturally $\operatorname{Av}(231, \pi) \sim$ Wilf $\operatorname{Av}(132, P(\pi))$

π	$P(\pi)$
2137465	5467231
1327645	5647312

π	$P(\pi)$
63125478	64235178
87153246	87452136
65312478	65312478
87421356	87421356

For all of those, $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$ does not hold.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longrightarrow} \operatorname{Av}(132, P(\pi))$

$$
\text { Definition: } F_{1}(t)=1 \text { and } F_{n+1}(t)=\frac{1}{1-t F_{n}(t)} .
$$

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Some properties of the bijection between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, and related Wilf-equivalences

Common generating function when $\operatorname{Av}(231, \pi) \stackrel{P}{\longrightarrow} \operatorname{Av}(132, P(\pi))$

$$
\text { Definition: } F_{1}(t)=1 \text { and } F_{n+1}(t)=\frac{1}{1-t F_{n}(t)} .
$$

Theorem

For $\pi \in \operatorname{Av}(231)$ such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the generating function of $\operatorname{Av}(231, \pi)$ is F_{n}.

Proof:

- Recall that $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.
- For $\pi=\lambda_{n}$ or ρ_{n}, proof by induction.

■ For the general case, use a nice property of $\left(F_{n}\right)$: setting $g(x, y)=\frac{1-t x y}{1-t x-t y}$, we have $F_{n}=g\left(F_{j}, F_{k}\right)$ for any j, k, n such that $j+k=n-1$.

Some properties of the bijection between $\operatorname{Av}(231)$ and $A v(132)$, and related Wilf-equivalences

Many Wilf-equivalent classes

Theorem

The classes $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are all Wilf-equivalent when $|\pi|=n$ and π is of the form $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$. Moreover, their generating function is F_{n}.

Remark: For other patterns π of size $n=7$ or 8 such that $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are conjecturally Wilf-equivalent, the generating function of class $\operatorname{Av}(231, \pi)$ is not F_{n}.

Many Wilf-equivalent classes . . . and even more?

> Theorem
> The classes $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are all Wilf-equivalent when $|\pi|=n$ and π is of the form $\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$. Moreover, their generating function is F_{n}.

Remark: For other patterns π of size $n=7$ or 8 such that $\operatorname{Av}(231, \pi)$ and $\operatorname{Av}(132, P(\pi))$ are conjecturally Wilf-equivalent, the generating function of class $\operatorname{Av}(231, \pi)$ is not F_{n}.

In future?: For classes recursively described (like $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$, define recursive bijections (like P), to find or explain more Wilf-equivalences.

