Operators of equivalent sorting power and related Wilf-equivalences

Mathilde Bouvel
joint work with Michael Albert

29 mars 2013

Previously, on groupe de travail CÉA. . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Previously, on groupe de travail CÉA. . .

We study permutations sortable by sorting operators which are compositions of stack sorting operators \mathbf{S} and reverse operators \mathbf{R}.

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Computer experiments then suggest that:

Conjecture (The (id, R) conjecture)

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ$ id $\circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

In this episode. . .

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, R) conjecture holds.
The proof uses:

- The characterization of preimages of permutations by \mathbf{S}
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

In this episode. .

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, R) conjecture holds.
The proof uses:

- The characterization of preimages of permutations by \mathbf{S}
- A new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences). For instance:

Theorem

$\operatorname{Av}(231,31254)$ and $\operatorname{Av}(132,42351)$ have the same enumerative sequence, and their common generating function is

$$
F_{5}(t)=\frac{t^{3}-t^{2}-2 t+1}{2 t^{3}-3 t+1}
$$

Definitions

Definitions, context and main result

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.
We view permutations as words, $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ Example: $\sigma=18364257$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.
Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.
Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain any occurrence of π or τ or ...

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
32754
$$

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

32754

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

754

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12

754

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123

754

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

$$
754
$$

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

4

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12364

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123645

Definitions, context and main result

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

Definitions, context and main result

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition. $\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition. $\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

- Permutations sortable by S: $\operatorname{Av}(231)$, enumeration by Catalan numbers [Knuth 1975]
■ Sortable by $\mathbf{S} \circ \mathbf{S}: \operatorname{Av}(2341,3 \overline{5} 241)[$ West 1993], enumeration by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$ [Zeilberger 1992]
- Sortable by $\mathbf{S} \circ \mathbf{S} \circ \mathbf{S}$: characterization with (generalized) excluded patterns [Claesson, Úlfarsson 2012], no enumeration result

Main result

$$
\text { Reverse operator } \mathbf{R}: \mathbf{R}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n}\right)=\sigma_{n} \cdots \sigma_{2} \sigma_{1}
$$

Theorem

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

To prove it, we use:

- the characterization of preimages of permutations by \mathbf{S} [Bousquet-Mélou, 2000]
- a new bijection (denoted P) between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

Main result, an equivalent statement

Recall that the set of permutations sortable by \mathbf{S} is $\operatorname{Av}(231)$. Hence, the set of permutations sortable by $\mathbf{S} \circ \mathbf{R}$ is $\operatorname{Av}(132)$.

Theorem

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there is a size-preserving bijection between

- permutations of $\operatorname{Av}(231)$ that belong to the image of \mathbf{A}, and
- permutations of $\operatorname{Av}(132)$ that belong to the image of \mathbf{A}, that preserves the number of preimages under \mathbf{A}.

We shall see later about the equidistributed statistics.

Preimages under S
 from [Bousquet-Mélou, 2000]

Preimages under S

Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Preimages under S

Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=58196237$ 4, giving $\mathbf{S}(\theta)=518236479$.

Preimages under S

Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=58196237$ 4, giving $\mathbf{S}(\theta)=518236479$. $\mathrm{T}_{\text {in }}(\theta)=5_{-8-7}^{\underbrace{6-7}_{2}-3} 4$ and $\operatorname{Post}\left(\mathrm{T}_{\text {in }}(\theta)\right)=518236479$.

Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=58196237$ 4, giving $\mathbf{S}(\theta)=518236479$.

Proof: Since $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, \mathrm{~T}_{\text {in }}(L n R)=\angle \mathrm{T}_{\mathrm{in}}(L)\left\langle\mathrm{T}_{\mathrm{in}}(R)\right.$ and $\left.\operatorname{Post}\left(\tau_{\mathrm{T} \text { in }}(L)>\mathrm{T}_{\text {in }}(R)\right\rangle\right)=\operatorname{Post}\left(\mathrm{T}_{\text {in }}(L)\right) \operatorname{Post}\left(\mathrm{T}_{\text {in }}(R)\right) n$.

Stack sorting on trees

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $\mathbf{T}_{\text {in }}(\theta)$ of $\theta: \mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$

Example: $\theta=581962374$, giving $\mathbf{S}(\theta)=518236479$.

$$
\mathrm{T}_{\text {in }}(\theta)=5^{-8 \overbrace{1}^{6}} \underset{2_{2}^{-7}}{-7} 4 \text { and } \operatorname{Post}\left(\mathrm{T}_{\text {in }}(\theta)\right)=518236479 .
$$

Proof: Since $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, \mathrm{~T}_{\text {in }}(L n R)=\angle \mathrm{T}_{\text {in }}(L) / \mathrm{T}_{\text {in }}(R)$ and $\left.\operatorname{Post}\left(\mathrm{T}_{\mathrm{in}}(L)\right\rangle\left\langle\mathrm{T}_{\text {in }}(R)\right\rangle\right)=\operatorname{Post}\left(\mathrm{T}_{\text {in }}(L)\right) \operatorname{Post}\left(\mathrm{T}_{\text {in }}(R)\right) n$.
Consequence: For $\pi \in \operatorname{Im}(\mathbf{S}), \theta \in \mathbf{S}^{-1}(\pi)$ iff $\operatorname{Post}\left(\mathrm{T}_{\text {in }}(\theta)\right)=\pi$.

T_{π}, a canonical representative for $\mathbf{S}^{-1}(\pi)$

A decreasing binary tree T is canonical if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is $y<x$.

Proposition: For $\pi \in \operatorname{Im}(\mathbf{S})$, there is a unique canonical tree T_{π} such that $\operatorname{Post}\left(T_{\pi}\right)=\pi$. In fact $T_{\pi}=\mathrm{T}_{\text {in }}(\theta)$ where θ is the permutation having the greatest number of inversions in $\mathbf{S}^{-1}(\pi)$.

T_{π}, a canonical representative for $\mathbf{S}^{-1}(\pi)$

A decreasing binary tree T is canonical if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is $y<x$.

Proposition: For $\pi \in \operatorname{Im}(\mathbf{S})$, there is a unique canonical tree T_{π} such that $\operatorname{Post}\left(T_{\pi}\right)=\pi$. In fact $T_{\pi}=\mathrm{T}_{\text {in }}(\theta)$ where θ is the permutation having the greatest number of inversions in $\mathbf{S}^{-1}(\pi)$.

Proposition: All $\theta \in \mathbf{S}^{-1}(\pi)$ may be described from T_{π} by local re-rootings of subtrees, or wind blowing.

Consequence: $\left|\mathbf{S}^{-1}(\pi)\right|$ depends only on the shape of T_{π} (and in particular, not on its labeling).

Preimages under S

Example of canonical tree

$$
\pi=518236479 \in \operatorname{Im}(\mathbf{S})
$$

Preimages under S

Example of canonical tree

$$
\pi=518236479 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: $5^{-8>_{1}}{ }_{6}^{6}<_{3}^{-7} 4$.

Preimages under S

Example of canonical tree

$$
\pi=518236479 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: $5^{-8} 1$
 $\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\mathrm{in}}(\theta)=T_{\pi}$.

Example of canonical tree

$$
\pi=518236479 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: 5_{1}

$\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.
There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

Example of canonical tree

$$
\pi=518236479 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: 5_{1}^{8}

$\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.
There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=418236579 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: 5_{1}^{8}

$\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.
There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is: ${ }^{-8}$

$\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.
There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is:
 $\theta=581963274$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.

There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is:
 $\theta=471963285$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.

There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is:
 $\theta=471963285$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.

There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is:
 $\theta=471963285$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\text {in }}(\theta)=T_{\pi}$.

There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$ is unchanged.

Example of canonical tree

$$
\pi=417236589 \in \operatorname{Im}(\mathbf{S})
$$

The canonical tree T_{π} is:

$\theta=471963285$ is such that $\mathbf{S}(\theta)=\pi$ and $\mathrm{T}_{\mathrm{in}}(\theta)=T_{\pi}$.
There are 4 other permutations in $\mathbf{S}^{-1}(\pi)$: those whose in-order trees are:

In particular, $\left|\mathbf{S}^{-1}(\pi)\right|=5$ is unchanged.
Conclusion: $\left|\mathbf{S}^{-1}(\pi)\right|$ is determined by the shape of T_{π}.

Bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$

Diagrams of permutations; Sum and skew sum

$$
\text { Diagram of } \sigma=18364257 \text { : }
$$

α a permutation of \mathfrak{S}_{a},
β a permutation of \mathfrak{S}_{b}

- Sum:

$$
\alpha \oplus \beta=\alpha(\beta+a)=\boxed{\beta}
$$

- Skew sum:

$$
\alpha \ominus \beta=(\alpha+b) \beta=\stackrel{\boxed{\alpha}}{\beta}
$$

Describing permutations in $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$

- Any $\pi \neq \varepsilon \in \operatorname{Av}(231)$ is decomposed as

$$
\pi=\alpha \oplus(1 \ominus \beta)
$$

with $\alpha, \beta \in \operatorname{Av}(231)$.

- Any $\pi \neq \varepsilon \in \operatorname{Av}(132)$ is decomposed as

$$
\pi=(\alpha \oplus 1) \ominus \beta
$$

with $\alpha, \beta \in \operatorname{Av}(132)$.

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$,

$$
P(\pi)=
$$

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$, $P(\pi)=785469312$.

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$

P is recursively defined as:
■ If $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in \operatorname{Av}(231)$.
Example: For $\pi=153249867 \in \operatorname{Av}(231)$,

$$
P(\pi)=785469312
$$

Remark: P is the identity map on $\operatorname{Av}(231,132)$.

Some properties of P

Proposition: P preserves the shape of in-order trees.
Proof: From the recursive definition of P.
Example: For $\pi=153249867$ (and $P(\pi)=785469312$):

Some properties of P

Proposition: P preserves the shape of in-order trees.
Proof: From the recursive definition of P.
Example: For $\pi=153249867$ (and $P(\pi)=785469312$):

Consequence: P preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Proof: These are determined by the shape of in-order trees.

Proof of the main result: Some key ideas

Proof of the main result: Some key ideas

> Theorem
> For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there are as many permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_{n} sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Idea of the proof of the main result

Definition of Φ_{A}

For $\pi \in \operatorname{Av}(231)$, we may see $P(\pi) \in \operatorname{Av}(132)$ as obtained from π by some relabeling of $\{1,2, \ldots, n\}$, denoted λ_{π}, i.e. $P(\pi)=\lambda_{\pi} \circ \pi$.

Definition of Φ_{A}

For $\pi \in \operatorname{Av}(231)$, we may see $P(\pi) \in \operatorname{Av}(132)$ as obtained from π by some relabeling of $\{1,2, \ldots, n\}$, denoted λ_{π}, i.e. $P(\pi)=\lambda_{\pi} \circ \pi$.

Definition:

- Take θ a permutation sortable by $\mathbf{S} \circ \mathbf{A}$.

■ Set $\pi=\mathbf{A}(\theta)$. $\pi \in \operatorname{Av}(231)$.

- Consider λ_{π} such that $P(\pi)=\lambda_{\pi} \circ \pi$.

■ Define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Definition of Φ_{A}

For $\pi \in \operatorname{Av}(231)$, we may see $P(\pi) \in \operatorname{Av}(132)$ as obtained from π by some relabeling of $\{1,2, \ldots, n\}$, denoted λ_{π}, i.e. $P(\pi)=\lambda_{\pi} \circ \pi$.

Definition:

- Take θ a permutation sortable by $\mathbf{S} \circ \mathbf{A}$.

■ Set $\pi=\mathbf{A}(\theta)$. $\pi \in \operatorname{Av}(231)$.
■ Consider λ_{π} such that $P(\pi)=\lambda_{\pi} \circ \pi$.

- Define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.

Theorem: $\Phi_{\mathbf{A}}$ is a bijection between the set of permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and the set of those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Proving that Φ_{A} is a bijection

Definition: A respects P if, for all $\pi \in \operatorname{Av}(231) \cap \operatorname{Im}(\mathbf{A})$:
■ For each θ such that $\mathbf{A}(\theta)=\pi$, we have $\mathbf{A}\left(\Phi_{\mathbf{A}}(\theta)\right)=P(\pi)=\lambda_{\pi} \circ \pi$
■ some condition (??) on canonical trees...

Proving that Φ_{A} is a bijection

Definition: A respects P if, for all $\pi \in \operatorname{Av}(231) \cap \operatorname{Im}(\mathbf{A})$:

- For each θ such that $\mathbf{A}(\theta)=\pi$, we have $\mathbf{A}\left(\Phi_{\mathbf{A}}(\theta)\right)=P(\pi)=\lambda_{\pi} \circ \pi$ and $\mathrm{T}_{\text {in }}\left(\Phi_{\mathbf{A}}(\theta)\right)=\lambda_{\pi}\left(\mathrm{T}_{\text {in }}(\theta)\right)$,
■ the correspondence $\Phi_{\mathbf{A}}: \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Proving that Φ_{A} is a bijection

Definition: A respects P if, for all $\pi \in \operatorname{Av}(231) \cap \operatorname{Im}(\mathbf{A})$:

- For each θ such that $\mathbf{A}(\theta)=\pi$, we have $\mathbf{A}\left(\Phi_{\mathbf{A}}(\theta)\right)=P(\pi)=\lambda_{\pi} \circ \pi$ and $\mathrm{T}_{\text {in }}\left(\Phi_{\mathbf{A}}(\theta)\right)=\lambda_{\pi}\left(\mathrm{T}_{\text {in }}(\theta)\right)$,
■ the correspondence $\Phi_{\mathbf{A}}: \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Proposition: The identity operator respects P.
Proposition: If \mathbf{A} respects P then so does $\mathbf{A} \circ \mathbf{R}$.
Proposition: If \mathbf{A} respects P then so does $\mathbf{A} \circ \mathbf{S}$.

Proving that Φ_{A} is a bijection

Definition: A respects P if, for all $\pi \in \operatorname{Av}(231) \cap \operatorname{Im}(\mathbf{A})$:

- For each θ such that $\mathbf{A}(\theta)=\pi$, we have

$$
\mathbf{A}\left(\Phi_{\mathbf{A}}(\theta)\right)=P(\pi)=\lambda_{\pi} \circ \pi \text { and } \mathrm{T}_{\text {in }}\left(\Phi_{\mathbf{A}}(\theta)\right)=\lambda_{\pi}\left(\mathrm{T}_{\text {in }}(\theta)\right),
$$

■ the correspondence $\Phi_{\mathbf{A}}: \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Proposition: The identity operator respects P.
Proposition: If \mathbf{A} respects P then so does $\mathbf{A} \circ \mathbf{R}$.
Proposition: If \mathbf{A} respects P then so does $\mathbf{A} \circ \mathbf{S}$.
Theorem: Every operator \mathbf{A} respects P.
Consequence: $\Phi_{\mathbf{A}}$ is a bijection between the set of permutations sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Statistics preserved by Φ_{A}

Theorem: $\Phi_{\mathbf{A}}$ preserves the shape of in-order trees.
Consequence: Φ_{A} preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Other statistics preserved:

- Zeilberger's statistics when $\mathbf{A}=\mathbf{A}_{0} \circ \mathbf{S}$:
$\operatorname{zeil}(\theta)=\max \{k \mid n(n-1) \ldots(n-k+1)$ is a subword of $\theta\}$
- the reversed Zeilberger's statistics when $\mathbf{A}=\mathbf{A}_{0} \circ \mathbf{S}$ and \mathbf{A}_{0} contains at least a composition $\mathbf{S} \circ \mathbf{R}$:
$\operatorname{Rzeil}(\theta)=\max \{k \mid(n-k+1) \ldots(n-1) n$ is a subword of $\theta\}$

Who is Φ_{S} ?

- Φ_{S} provides a bijection between the set of permutations sortable by $\mathbf{S} \circ \mathbf{S}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$.
- With O. Guibert, we gave a common generating tree for those two sets, providing a bijection between them.

Problem

Are these two bijections the same one?

It is not as easy as it seems...

More about the bijection $\operatorname{Av}(231) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132)$
 Related Wilf-equivalences

.. . Next talk!

