Operators of equivalent sorting power and related Wilf-equivalences

> Mathilde Bouvel joint work with Michael Albert

> > 29 mars 2013

Previously, on groupe de travail CÉA...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Previously, on groupe de travail CÉA...

We study permutations sortable by sorting operators which are compositions of stack sorting operators \bf{S} and reverse operators \bf{R} .

From our previous work with O. Guibert, we have:

Theorem

There are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{S}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{S}$, and many permutation statistics are equidistributed across these two sets.

Computer experiments then suggest that:

Conjecture (*The* (*id*, **R**) *conjecture*)

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ id \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

In this episode...

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, \mathbf{R}) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by S
- A new bijection (denoted P) between Av(231) and Av(132)

In this episode...

Our primary purpose is to prove the (id, \mathbf{R}) conjecture.

Theorem

The (id, R) conjecture holds.

The proof uses:

- The characterization of preimages of permutations by S
- A new bijection (denoted P) between Av(231) and Av(132)

The bijection P has nice properties, which allow us to derive unexpected enumerative results (Wilf-equivalences). For instance:

Theorem

Av(231, 31254) and Av(132, 42351) have the same enumerative sequence, and their common generating function is

$$F_5(t) = rac{t^3 - t^2 - 2t + 1}{2t^3 - 3t + 1}.$$

Definitions

Definitions ○●○○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context an	d main result		

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Definitions ○●○○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result	
Definitions, context and main result				

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..*k*] yields π . Example: 2134 \preccurlyeq **31**28**5**4**7**96 since 3157 \equiv 2134.

Mathilde Bouvel

Definitions ○●○○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result	
Definitions, context and main result				

Permutations and patterns

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

We view permutations as words, $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ Example: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$.

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π . Notation: $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Avoidance: Av $(\pi, \tau, ...)$ = set of permutations that do not contain any occurrence of π or τ or ...

Mathilde Bouvel

Definitions	Preimages under S	$P : Av(231) \leftrightarrow Av(132)$	Proof of main result
00000			
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions	Preimages under S	$P: Av(231) \leftrightarrow Av(132)$	Proof of main result
00000			
Definitions, context and	main result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions	Preimages under S	$P : Av(231) \leftrightarrow Av(132)$	Proof of main result
00000			
Definitions, context and m	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions	Preimages under S	$P : Av(231) \leftrightarrow Av(132)$	Proof of main result
00000			
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and a	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and m	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P : Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions	Preimages under S	$P: Av(231) \leftrightarrow Av(132)$	Proof of main result
00000	0000	00000	000000
Definitions, context a	nd main result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions	Preimages under S	$P: Av(231) \leftrightarrow Av(132)$	Proof of main result
00000	0000	00000	000000
Definitions, context a	nd main result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P : Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and a	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

Definitions 00●00	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and r	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1\ 2\ 3\ 6\ 4\ 5\ 7$$
 \leftarrow 6 1 3 2 7 5 4 = σ

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

Mathilde Bouvel

Definitions ○○●○○	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Definitions, context and n	nain result		

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7 \leftarrow 6 \ 1 \ 3 \ 2 \ 7 \ 5 \ 4 = \sigma$$

Equivalently, $\mathbf{S}(\varepsilon) = \varepsilon$ and $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $n = \max(LnR)$

- Permutations sortable by S: Av(231), enumeration by Catalan numbers [Knuth 1975]
- Sortable by $\mathbf{S} \circ \mathbf{S}$: Av(2341, 35241)[West 1993], enumeration by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ [Zeilberger 1992]
- Sortable by **S** ∘ **S** ∘ **S**: characterization with (generalized) excluded patterns [Claesson, Úlfarsson 2012], no enumeration result

Mathilde Bouvel

Definitions 000●0	Preimages under S	$\begin{array}{c} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Definitions, context	and main result		

Main result

Reverse operator **R**:
$$\mathbf{R}(\sigma_1 \sigma_2 \cdots \sigma_n) = \sigma_n \cdots \sigma_2 \sigma_1$$

Theorem

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

To prove it, we use:

- the characterization of preimages of permutations by S [Bousquet-Mélou, 2000]
- a new bijection (denoted P) between Av(231) and Av(132)

Mathilde Bouvel

 Definitions
 Preimages under S

 0000●
 0000

 Definitions, context and main result

 $P: Av(231) \leftrightarrow Av(13)$

Proof of main result

Main result, an equivalent statement

Recall that the set of permutations sortable by **S** is Av(231). Hence, the set of permutations sortable by $\mathbf{S} \circ \mathbf{R}$ is Av(132).

Theorem

For any operator ${\bf A}$ which is a composition of operators ${\bf S}$ and ${\bf R},$ there is a size-preserving bijection between

- permutations of Av(231) that belong to the image of A, and
- permutations of Av(132) that belong to the image of A,

that preserves the number of preimages under A.

We shall see later about the equidistributed statistics.

Preimages under S

from [Bousquet-Mélou, 2000]

Definitions 00000	Preimages under S ○●○○	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Definitions	Preimages under S	$P : Av(231) \leftrightarrow Av(132)$	Proof of main result
	0000		
Preimages under S			

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

Definitions	Preimages under S ○●○○	$\begin{array}{l} P : Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Preimages under S			

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

$$T_{in}(\theta) = 5^{-8} 1^{-9} 6^{-7} 4$$
 and $Post(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9.$

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

$$T_{in}(\theta) = 5^{-8} 1^{-9} 6^{-7} 4 \text{ and } Post(T_{in}(\theta)) = 5 \ 1 \ 8 \ 2 \ 3 \ 6 \ 4 \ 7 \ 9.$$
Proof: Since $S(LnR) = S(L)S(R)n$, $T_{in}(LnR) = I_{T_{in}(L)}^{-1} I_{T_{in}(R)}$

and
$$\mathbf{Post}(\underline{T_{in}(L)},\underline{T_{in}(R)}) = \mathbf{Post}(T_{in}(L)) \mathbf{Post}(T_{in}(R))n.$$

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

The stack sorting of θ is equivalent to the post-order reading of the in-order tree $T_{in}(\theta)$ of θ : $S(\theta) = Post(T_{in}(\theta))$

Example: $\theta = 581962374$, giving $S(\theta) = 518236479$.

$$T_{in}(\theta) = 5 \overset{8}{1} \overset{9}{_{6}3} \overset{7}{_{3}4}$$
 and $Post(T_{in}(\theta)) = 5\ 1\ 8\ 2\ 3\ 6\ 4\ 7\ 9.$

Proof: Since $\mathbf{S}(LnR) = \mathbf{S}(L)\mathbf{S}(R)n$, $T_{in}(LnR) = \underbrace{T_{in}(L)}_{T_i}$

and
$$\mathbf{Post}(\underline{\mathsf{T}_{in}(L)}, \underline{\mathsf{T}_{in}(R)}) = \mathbf{Post}(\mathsf{T}_{in}(L)) \, \mathbf{Post}(\mathsf{T}_{in}(R)) n.$$

Consequence: For $\pi \in Im(S)$, $\theta \in S^{-1}(\pi)$ iff $Post(T_{in}(\theta)) = \pi$.

Mathilde Bouvel

Definitions	Preimages under S	$P : Av(231) \leftrightarrow Av(132)$	Proof of main result
	0000		
Preimages under S			

T_{π} , a canonical representative for $\mathbf{S}^{-1}(\pi)$

A decreasing binary tree T is canonical if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is y < x.

Proposition: For $\pi \in \text{Im}(\mathbf{S})$, there is a unique canonical tree T_{π} such that $\text{Post}(T_{\pi}) = \pi$. In fact $T_{\pi} = T_{\text{in}}(\theta)$ where θ is the permutation having the greatest number of inversions in $\mathbf{S}^{-1}(\pi)$.

Definitions	Preimages under S ○○●○	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

T_{π} , a canonical representative for $\mathbf{S}^{-1}(\pi)$

A decreasing binary tree T is canonical if $\forall x, z$ such that x is the left child of z, z has a right child, and the leftmost node in the right subtree of z is y < x.

Proposition: For $\pi \in \text{Im}(\mathbf{S})$, there is a unique canonical tree T_{π} such that $\text{Post}(T_{\pi}) = \pi$. In fact $T_{\pi} = T_{\text{in}}(\theta)$ where θ is the permutation having the greatest number of inversions in $\mathbf{S}^{-1}(\pi)$.

Proposition: All $\theta \in S^{-1}(\pi)$ may be described from T_{π} by *local re-rootings of subtrees*, or *wind blowing*.

Consequence: $|\mathbf{S}^{-1}(\pi)|$ depends only on the shape of T_{π} (and in particular, not on its labeling).

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 518236479 \in Im(S)$

Mathilde Bouvel Operators of equivalent sorting power and related Wilf-equivalences

Definitions 00000	Preimages under S ○○○●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 518236479 \in Im(S)$

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 518236479 \in Im(S)$

The canonical tree T_{π} is: 5^{-8} 1^{9} 6^{-7} 4^{-4} . $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $T_{in}(\theta) = T_{\pi}$.

Mathilde Bouvel Operators of equivalent sorting power and related Wilf-equivalences

Definitions	Preimages under S ○○○●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 518236479 \in Im(S)$

The canonical tree T_{π} is: 5⁻⁸1 6⁻⁷4.

 $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = T_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 518236479 \in Im(S)$

The canonical tree T_{π} is: 5^{-8} 1 6^{-7}

 $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 418236579 \in Im(S)$

The canonical tree T_{π} is: 5^{-8} 1 6^{7} 4.

 $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$.

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 5^{-8} 1 6^{-7} 4.

 $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$.

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 4^{-7}

 $\theta = 581963274$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$.

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 4^{7} $1 = 6^{8}$ 5.

 $\theta = 471963285$ is such that $\mathbf{S}(\theta) = \pi^2$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$.

Mathilde Bouvel

Definitions	Preimages under S 000●	$\begin{array}{l} P: \operatorname{Av}(231) \leftrightarrow \operatorname{Av}(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 4^{-7} 1 6^{-8} 5

 $\theta = 471963285$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$.

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{l} P:Av(231)\leftrightarrowAv(132)\\ \texttt{ooooo}\end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 4^{7} 1 6^{8} 5.

 $\theta = 471963285$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = \mathsf{T}_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$ is **unchanged**.

Mathilde Bouvel

Definitions	Preimages under S ○○○●	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{00000} \end{array}$	Proof of main result
Preimages under S			

 $\pi = 417236589 \in Im(S)$

The canonical tree T_{π} is: 4^{-7} 1 6^{-8} 5.

 $\theta = 471963285$ is such that $\mathbf{S}(\theta) = \pi$ and $\mathsf{T}_{in}(\theta) = T_{\pi}$.

There are 4 other permutations in $S^{-1}(\pi)$: those whose in-order trees are:

In particular, $|\mathbf{S}^{-1}(\pi)| = 5$ is **unchanged**.

Conclusion: $|\mathbf{S}^{-1}(\pi)|$ is determined by the shape of T_{π} .

Mathilde Bouvel

Bijection $Av(231) \stackrel{P}{\longleftrightarrow} Av(132)$

DefinitionsPreimages under S000000000

 $\overline{P: \operatorname{Av}(231)} \leftrightarrow \operatorname{Av}(132)$

Proof of main result

A new bijection between Av(231) and Av(132)

Diagrams of permutations; Sum and skew sum

Diagram of $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$:

 α a permutation of $\mathfrak{S}_{\textit{a}}\text{,}$ β a permutation of $\mathfrak{S}_{\textit{b}}$

Sum:

$$\alpha \oplus \beta = \alpha \left(\beta + \mathbf{a} \right) = \boxed{\alpha}$$

Skew sum:

$$\alpha \ominus \beta = (\alpha + b) \beta = \frac{\alpha}{\beta}$$

Mathilde Bouvel

 $\begin{array}{ccc} \text{Definitions} & \text{Preimages under S} & P: Av(231) \leftrightarrow Av(132) \\ 00000 & 0000 & 00000 \end{array}$

Proof of main result

A new bijection between Av(231) and Av(132)

Describing permutations in Av(231) and Av(132)

• Any $\pi \neq \varepsilon \in Av(231)$ is decomposed as

 $\pi = \alpha \oplus (1 \ominus \beta)$

- with $\alpha, \beta \in Av(231)$.
- Any $\pi \neq \varepsilon \in Av(132)$ is decomposed as
 - $\pi = (\alpha \oplus 1) \ominus \beta$

with
$$\alpha, \beta \in Av(132)$$
.

Mathilde Bouvel

Definitions

Preimages under S

 $P : Av(231) \leftrightarrow Av(132)$ 00000

Proof of main result

A new bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in Av(231)$. Example: For $\pi = 153249867 \in Av(231)$, $P(\pi) =$

Mathilde Bouvel

Definitions Preimages under S

 $P : Av(231) \leftrightarrow Av(132)$ 00000

Proof of main result

A new bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in Av(231)$. Example: For $\pi = 153249867 \in Av(231)$, $P(\pi) = 785469312.$

Mathilde Bouvel

DefinitionsPreimages under S000000000

 $\begin{array}{c} P : \operatorname{Av}(231) \\ \circ \circ \circ \circ \circ \end{array} \leftrightarrow \operatorname{Av}(132) \\ \end{array}$

Proof of main result

A new bijection between Av(231) and Av(132)

Bijection P from Av(231) to Av(132)

P is recursively defined as:

• If $\pi = \alpha \oplus (1 \ominus \beta)$ then $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$.

with $\alpha, \beta \in Av(231)$.

Example: For
$$\pi = 153249867 \in Av(231)$$
,
 $P(\pi) = 785469312$.

Remark: P is the identity map on Av(231, 132).

Mathilde Bouvel

Definitions 00000	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \bullet \end{array}$	Proof of main result
A new bijection between	Av(231) and Av(132)		

Some properties of P

Proposition: *P* preserves the shape of in-order trees.

Proof: From the recursive definition of *P*.

Example: For $\pi = 153249867$ (and $P(\pi) = 785469312$):

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{c} P : Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \bullet \end{array}$	Proof of main result
A new bijection between	Av(231) and Av(132)		

Some properties of P

Proposition: *P* preserves the shape of in-order trees.

Proof: From the recursive definition of *P*.

Example: For $\pi = 153249867$ (and $P(\pi) = 785469312$):

Consequence: *P* preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Proof: These are determined by the shape of in-order trees.

Mathilde Bouvel

Proof of the main result: Some key ideas

Proof of the main result: Some key ideas

Theorem

For any operator **A** which is a composition of operators **S** and **R**, there are as many permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{A}$ as permutations of \mathfrak{S}_n sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$. Moreover, many permutation statistics are equidistributed across these two sets.

Definitions	Preimages under S	$\begin{array}{c} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result ○●○○○○
Idea of the proof of t	he main result		
Definition	of Φ _A		

For $\pi \in Av(231)$, we may see $P(\pi) \in Av(132)$ as obtained from π by some relabeling of $\{1, 2, ..., n\}$, denoted λ_{π} , *i.e.* $P(\pi) = \lambda_{\pi} \circ \pi$.

Definitions	Preimages under S	$\begin{array}{c} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result
Idea of the proof of the main result			
Definitior	i of Φ ^		
	· · · · A		

For $\pi \in Av(231)$, we may see $P(\pi) \in Av(132)$ as obtained from π by some relabeling of $\{1, 2, ..., n\}$, denoted λ_{π} , *i.e.* $P(\pi) = \lambda_{\pi} \circ \pi$.

Definition:

Take θ a permutation sortable by **S** \circ **A**.

• Set
$$\pi = \mathbf{A}(\theta)$$
. $\pi \in Av(231)$.

• Consider λ_{π} such that $P(\pi) = \lambda_{\pi} \circ \pi$.

• Define
$$\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$$
.

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{c} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result ○●○○○○
Idea of the proof of the main result			
Definition	م د م		
Definitior	$101 \Psi_{A}$		

For $\pi \in Av(231)$, we may see $P(\pi) \in Av(132)$ as obtained from π by some relabeling of $\{1, 2, ..., n\}$, denoted λ_{π} , *i.e.* $P(\pi) = \lambda_{\pi} \circ \pi$.

Definition:

Take θ a permutation sortable by **S** \circ **A**.

• Set
$$\pi = \mathbf{A}(\theta)$$
. $\pi \in Av(231)$.

• Consider λ_{π} such that $P(\pi) = \lambda_{\pi} \circ \pi$.

• Define
$$\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$$
.

Theorem: Φ_A is a bijection between the set of permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and the set of those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result ○○●○○○
Idea of the proof of the m	nain result		

Definition: A respects P if, for all $\pi \in Av(231) \cap Im(A)$:

- For each θ such that $\mathbf{A}(\theta) = \pi$, we have $\mathbf{A}(\Phi_{\mathbf{A}}(\theta)) = P(\pi) = \lambda_{\pi} \circ \pi$
- some condition (??) on canonical trees...

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Idea of the proof of the n	nain result		

Definition: A respects *P* if, for all $\pi \in Av(231) \cap Im(A)$:

- For each θ such that $\mathbf{A}(\theta) = \pi$, we have $\mathbf{A}(\Phi_{\mathbf{A}}(\theta)) = P(\pi) = \lambda_{\pi} \circ \pi$ and $\mathsf{T}_{\mathsf{in}}(\Phi_{\mathbf{A}}(\theta)) = \lambda_{\pi}(\mathsf{T}_{\mathsf{in}}(\theta))$,
- the correspondence $\Phi_{\mathbf{A}} : \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Idea of the proof of the n	nain result		

Definition: A respects *P* if, for all $\pi \in Av(231) \cap Im(A)$:

- For each θ such that $\mathbf{A}(\theta) = \pi$, we have $\mathbf{A}(\Phi_{\mathbf{A}}(\theta)) = P(\pi) = \lambda_{\pi} \circ \pi$ and $\mathsf{T}_{in}(\Phi_{\mathbf{A}}(\theta)) = \lambda_{\pi}(\mathsf{T}_{in}(\theta))$,
- the correspondence $\Phi_{\mathbf{A}} : \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Proposition: The identity operator respects P. Proposition: If **A** respects P then so does $\mathbf{A} \circ \mathbf{R}$. Proposition: If **A** respects P then so does $\mathbf{A} \circ \mathbf{S}$.

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result ○○●○○○
Idea of the proof of the n	nain result		

Definition: A respects *P* if, for all $\pi \in Av(231) \cap Im(A)$:

- For each θ such that $\mathbf{A}(\theta) = \pi$, we have $\mathbf{A}(\Phi_{\mathbf{A}}(\theta)) = P(\pi) = \lambda_{\pi} \circ \pi$ and $\mathsf{T}_{in}(\Phi_{\mathbf{A}}(\theta)) = \lambda_{\pi}(\mathsf{T}_{in}(\theta))$,
- the correspondence $\Phi_{\mathbf{A}} : \theta \mapsto \Phi_{\mathbf{A}}(\theta)$ is a bijection between $\mathbf{A}^{-1}(\pi)$ and $\mathbf{A}^{-1}(P(\pi))$.

Proposition: The identity operator respects *P*.

Proposition: If **A** respects *P* then so does $\mathbf{A} \circ \mathbf{R}$.

Proposition: If **A** respects *P* then so does $\mathbf{A} \circ \mathbf{S}$.

Theorem: Every operator **A** respects *P*.

Consequence: Φ_A is a bijection between the set of permutations sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{l} P: Av(231) \leftrightarrow Av(132) \\ \texttt{ooooo} \end{array}$	Proof of main result
Idea of the proof of the main result			

Statistics preserved by $\Phi_{\textbf{A}}$

Theorem: Φ_A preserves the shape of in-order trees.

Consequence: Φ_A preserves the following statistics:

- number and positions of the right-to-left maxima,
- number and positions of the left-to-right maxima,
- up-down word.

Other statistics preserved:

Zeilberger's statistics when A = A₀ ∘ S: zeil(θ) = max{k | n(n-1)...(n-k+1) is a subword of θ}
the reversed Zeilberger's statistics when A = A₀ ∘ S and A₀ contains at least a composition S ∘ R: Rzeil(θ) = max{k | (n-k+1)...(n-1)n is a subword of θ}

Mathilde Bouvel

Definitions	Preimages under S	$\begin{array}{c} P: Av(231) \leftrightarrow Av(132) \\ \circ \circ \circ \circ \circ \end{array}$	Proof of main result ○○○○●○
Idea of the proof of	the main result		
Who is ¢	2		
	3.		

- Φ_S provides a bijection between the set of permutations sortable by $S \circ S$ and those sortable by $S \circ R \circ S$.
- With O. Guibert, we gave a common generating tree for those two sets, providing a bijection between them.

Problem

Are these two bijections the same one?

It is not as easy as it seems...

Mathilde Bouvel

More about the bijection $Av(231) \stackrel{P}{\longleftrightarrow} Av(132)$ Related Wilf-equivalences

... Next talk!