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Pattern involvement and minimal permutations with d descents

Patterns in permutations

Definition (Pattern relation 4)

π ∈ Sk is a pattern of σ ∈ Sn when ∃ 1 ≤ i1 < . . . < ik ≤ n such
that σi1 . . . σik is order-isomorphic to π. We write π 4 σ.

Equivalently: Normalizing σi1 . . . σik on [1..k] yields π.

Example

1 2 3 4 4 312 85 47 9 6 since 1 2 5 7 ≡ 1 2 3 4.

Av(B): the class of permutations avoiding all the patterns in the
basis B .
Av(231) = Stack sortable ; Av(2413, 3142) = Separable ; . . .
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Pattern involvement and minimal permutations with d descents

Classes of permutations
Basis of excluded patterns

Definition (Permutation class)

C is a permutation class when it is stable for 4, i.e. when
∀σ ∈ C,∀π 4 σ, π ∈ C.

Theorem (Basis of excluded patterns)

Every permutation class C is characterized by a (finite or infinite)

basis B of excluded patterns: C = Av(B).

Basis: B = {σ : σ /∈ C but ∀π ≺ σ, π ∈ C}.
B is the set of minimal patterns not in C.

Minimal is intented in the sense of 4.
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Pattern involvement and minimal permutations with d descents

Descents in permutations
Grid representation

Definition (Descents and ascents in a permutation)

There is a descent (resp. ascent) in σ ∈ Sn at position
i ∈ [1..n − 1] when σi > σi+1 (resp. σi < σi+1).
desc(σ): the number of descents of σ.
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ascents
descents

Mathilde Bouvel

Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.



Definitions Duplication-Loss Characterization Posets Enumeration Conclusion

Pattern involvement and minimal permutations with d descents

Minimal permutations with d descents

Dd = the set of permutations with at most d − 1 descents.

Theorem

Dd is stable for 4, hence is a permutation class.
Basis of Dd : the minimal (for 4) permutations not in Dd

Bd = the set of minimal (for 4) permutations with d descents.
Rem.: In this context, exactly d descents ⇔ at least d descents.

Theorem

The basis of excluded patterns characterizing Dd is Bd .
Dd = Av(Bd).
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Motivation: the duplication-loss model

The (whole genome) duplication - (random) loss model

Definition (Duplication-loss step)

One duplication-loss step starting from a permutation σ:

duplication of σ after itself

loss of one of the two copies of every element

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7  1X2 3 4X5 6 7X1 2X3X4 5X6X7 2 3 5 6 1 4 7

Cost of any step = 1.

Specialization of the tandem duplication-random loss model1:

duplication: only of a fragment of the permutation

cost of a step: depends on the number of elements duplicated
1
Chaudhuri, Chen, Mihaescu and Rao, On the tandem duplication-random loss

model of genome rearrangement, SODA06
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Motivation: the duplication-loss model

Permutations obtained after p steps
Basis of this permutation class

What are the permutations obtainable from
1 2 . . . n (for any n) with a cost at most p ?

Specialized model  Permutations obtained after p steps ?
Prop. σ is obtained in at most p steps ⇔ desc(σ) ≤ 2p − 1.

For d = 2p, {Permutations obtained in at most p steps} = Dd .

Theorem (Permutations obtained after p steps2)

{Permutations obtained after p steps} is a class.
Basis = {minimal permutations with 2p descents } = Bd .

2
Bouvel and Rossin, A variant of the tandem duplication - random loss model of

genome rearrangement

Mathilde Bouvel

Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.



Definitions Duplication-Loss Characterization Posets Enumeration Conclusion

Motivation: the duplication-loss model

Study of Bd

What we know:

Class Dd arise from biological motivations (for d = 2p)

Dd = Av(Bd)

→֒ Bd = {minimal permutations with d descents }

What we want:

Properties of the basis Bd ⇒ Properties of the class Dd

What we do:

Characterization of the permutations in Bd

Size of the permutations in Bd

Enumeration of the permutations of min. and max. size in Bd
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Local characterization of minimal permutations with d descents

A necessary condition
for being minimal with d descents

Prop.: σ minimal with d descents ⇒ no consecutive ascents in σ
Rem. This condition is not sufficient !

Proof:
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Consequence: σ minimal with d descents ⇒ d + 1 ≤ |σ| ≤ 2d
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Local characterization of minimal permutations with d descents
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Local characterization of minimal permutations with d descents

A necessary and sufficient condition
for being minimal with d descents

Theorem (NSC for being minimal with d descents)

σ is minimal with d descents ⇔ desc(σ) = d and the 4 elements
around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations The only possible configurations

⇒ Local characterization
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Local characterization of minimal permutations with d descents

A necessary and sufficient condition
for being minimal with d descents

Theorem (NSC for being minimal with d descents)

σ is minimal with d descents ⇔ desc(σ) = d and the 4 elements
around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations The only possible configurations

Diamonds

⇒ Local characterization
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Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents
Same d , same size, and same positions of ascents and descents

d = 16, size = 21
dddadddadadddddddadd

Bijection: Permutation ⇔ Authorized labelling of the poset
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Poset representation of minimal permutations with d descents
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Same d , same size, and same positions of ascents and descents
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Enumeration: partial results for subclasses of fixed size

Summary of the enumeration results obtained

Fact: d + 1 ≤ |σ| ≤ 2d for each σ minimal with d descents

Theorem (Partial enumeration of minimal permutation with d descents:)

Minimal size: 1 of size d + 1

→֒ the reverse identity of size d + 1: (d + 1)d(d − 1) . . . 321

Minimal non-trivial size: 2d+2 − (d + 1)(d + 2) − 2 of size d + 2

→֒ Computational method

→֒ Bijection with two copies of non-interval subsets of {1, 2, . . . , d + 1}

Maximal size: Cd = 1
d+1

(
2d
d

)
of size 2d

→֒ Using the ECO method

→֒ Bijection with Dyck paths

Proof: Using poset representation
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Enumeration: partial results for subclasses of fixed size

Minimal permutations with d descents of size 2d
A unique poset represents all permutations

Facts:

2d elements, d descents ⇒ d − 1 ascents

Minimal ⇒ ascents = diamonds between two descents

Consequence: Poset = ladder poset with d steps
Def.: Ladder poset = sequence of d − 1 diamonds linked by an edge

Example (for d = 5 ; Sequence dadadadad)
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Enumeration: partial results for subclasses of fixed size

Size 2d : proof by enumeration
ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with

d descents ≡ authorized
labelling of the ladder
poset with d
steps

Label k = number of children = 2d − i + 1
Labels of the children = 2(d + 1) − i

′ + 1 for i
′ ∈ [(i + 1)..(2d + 1)]

Succession rule:

{
(2)
(k) (2)(3) · · · (k)(k + 1)

Enumerating sequence = Catalan numbers Cd = 1
d+1

(
2d
d

)
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Enumeration: partial results for subclasses of fixed size

Size 2d : proof by bijection
Bijection between Dyck paths and authorized labellings of the ladder poset

Labellings of the ladder poset

x

< x
︸

︷︷

︸

Dyck paths at least i up steps
before the i -th down step

Bijection:

lower line ≡ up step

upper line ≡ down step
1 2 3 4 5 6 7 8 9 10
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Enumeration: partial results for subclasses of fixed size

Size d + 2: computational and bijective approaches

Theorem

There are sd = 2d+2 − (d + 1)(d + 2) − 2 minimal permutations
with d descents and of size d + 2.

Computational proof
Fact: Only one diamond

Choose the pattern of the diamond: 2143 or 3142

Choose the elements labelling the diamond

Choose (or remark) where the other labels are placed

⇒ Summation that simplifies into sd
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Enumeration: partial results for subclasses of fixed size

Size d + 2: computational and bijective approaches

Theorem

There are sd = 2d+2 − (d + 1)(d + 2) − 2 minimal permutations
with d descents and of size d + 2.

Bijective proof
Fact: rd = sd

2
= number of non-interval subsets of {1, 2, . . . , (d + 1)}

Partition the set of permutations into S1 ⊎ S2

Simple bijection between S1 and non-interval subsets

More tricky bijection between S2 and non-interval subsets

→֒ Classification of permutations in S2 into 5 types of permutations
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Open problems and perspectives

Permutations with at most d − 1 descents:

Motivations in bio-informatics

Define a permutation class by a property

Minimal permutations with d descents:

Basis of the above

Local characterization

Enumeration:

Done for n ∈ {d + 1, d + 2, 2d}

Open for n ∈ [(d + 3)..(2d − 1)]: computational method, with
automated examination of (numerous) cases ?

Classes C defined by a property:

Literature (stack sortable, separable, . . . ): simple basis

Properties of the basis B ⇒ Properties of C
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