Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.

Mathilde Bouvel Elisa Pergola

GASCom 2008

Outline of the talk

1 Pattern involvement and minimal permutations with descents

2 Motivation: the duplication-loss model

3 Local characterization of minimal permutations with d descents

4 Poset representation of minimal permutations with d descents

5 Enumeration: partial results for subclasses of fixed size

6 Open problems and perspectives

Patterns in permutations

Definition (Pattern relation \preccurlyeq)

$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ when $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. We write $\pi \preccurlyeq \sigma$.

Equivalently: Normalizing $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example

$1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.
$\operatorname{Av}(B)$: the class of permutations avoiding all the patterns in the basis B.
$\operatorname{Av}(231)=$ Stack sortable ; $\operatorname{Av}(2413,3142)=$ Separable ; \ldots

Classes of permutations

Basis of excluded patterns

Definition (Permutation class)

\mathcal{C} is a permutation class when it is stable for \preccurlyeq, i.e. when $\forall \sigma \in \mathcal{C}, \forall \pi \preccurlyeq \sigma, \pi \in \mathcal{C}$.

Theorem (Basis of excluded patterns)

Every permutation class \mathcal{C} is characterized by a (finite or infinite) basis B of excluded patterns: $\mathcal{C}=\operatorname{Av}(B)$.

Basis: $B=\{\sigma: \sigma \notin \mathcal{C}$ but $\forall \pi \prec \sigma, \pi \in \mathcal{C}\}$.
B is the set of minimal patterns not in \mathcal{C}.
Minimal is intented in the sense of \preccurlyeq.

Descents in permutations

Grid representation

Definition (Descents and ascents in a permutation)

There is a descent (resp. ascent) in $\sigma \in S_{n}$ at position $i \in[1 . . n-1]$ when $\sigma_{i}>\sigma_{i+1}$ (resp. $\sigma_{i}<\sigma_{i+1}$). $\operatorname{desc}(\sigma)$: the number of descents of σ.

The grid representation of the permutation $\sigma=698413725$
ascents
descents

Minimal permutations with d descents

$\mathcal{D}_{d}=$ the set of permutations with at most $d-1$ descents.

Theorem

\mathcal{D}_{d} is stable for \preccurlyeq, hence is a permutation class.
Basis of \mathcal{D}_{d} : the minimal (for \preccurlyeq) permutations not in \mathcal{D}_{d}
$B_{d}=$ the set of minimal (for \preccurlyeq) permutations with d descents. Rem.: In this context, exactly d descents \Leftrightarrow at least d descents.

Theorem

The basis of excluded patterns characterizing \mathcal{D}_{d} is B_{d}. $\mathcal{D}_{d}=\operatorname{Av}\left(B_{d}\right)$.

The (whole genome) duplication - (random) loss model

Definition (Duplication-loss step)

One duplication-loss step starting from a permutation σ :

- duplication of σ after itself

■ loss of one of the two copies of every element

Cost of any step $=1$.
Specialization of the tandem duplication-random loss model ${ }^{1}$:
■ duplication: only of a fragment of the permutation

- cost of a step: depends on the number of elements duplicated

[^0]
Permutations obtained after p steps

Basis of this permutation class

What are the permutations obtainable from $12 \ldots n$ (for any n) with a cost at most p ?

Specialized model \rightsquigarrow Permutations obtained after p steps ?
Prop. σ is obtained in at most p steps $\Leftrightarrow \operatorname{desc}(\sigma) \leq 2^{p}-1$.
For $d=2^{p},\{$ Permutations obtained in at most p steps $\}=\mathcal{D}_{d}$.
Theorem (Permutations obtained after p steps 2)
\{Permutations obtained after p steps $\}$ is a class.
Basis $=\left\{\right.$ minimal permutations with 2^{p} descents $\}=B_{d}$.

[^1]Mathilde Bouvel
Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.

Study of B_{d}

What we know:
■ Class \mathcal{D}_{d} arise from biological motivations (for $d=2^{p}$)

- $\mathcal{D}_{d}=\operatorname{Av}\left(B_{d}\right)$
$\hookrightarrow B_{d}=\{$ minimal permutations with d descents $\}$
What we want:
■ Properties of the basis $B_{d} \Rightarrow$ Properties of the class \mathcal{D}_{d}
What we do:
■ Characterization of the permutations in B_{d}
■ Size of the permutations in B_{d}
■ Enumeration of the permutations of min. and max. size in B_{d}

Local characterization of minimal permutations with d descents

A necessary condition

for being minimal with d descents

Prop.: σ minimal with d descents \Rightarrow no consecutive ascents in σ

A necessary condition

for being minimal with d descents

Prop.: σ minimal with d descents \Rightarrow no consecutive ascents in σ Rem. This condition is not sufficient!

Consequence: σ minimal with d descents $\Rightarrow d+1 \leq|\sigma| \leq 2 d$

A necessary and sufficient condition

for being minimal with d descents

Theorem (NSC for being minimal with d descents)

σ is minimal with d descents $\Leftrightarrow \operatorname{desc}(\sigma)=d$ and the 4 elements around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations

IThe only possible configurations

\Rightarrow Local characterization

A necessary and sufficient condition

for being minimal with d descents

Theorem (NSC for being minimal with d descents)

σ is minimal with d descents $\Leftrightarrow \operatorname{desc}(\sigma)=d$ and the 4 elements around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations

IThe only possible configurations

Diamonds
\Rightarrow Local characterization

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

Same d, same size, and same positions of ascents and descents

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

Same d, same size, and same positions of ascents and descents

\square

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

 Same d, same size, and same positions of ascents and descents
\square

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

Same d, same size, and same positions of ascents and descents

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

 Same d, same size, and same positions of ascents and descents

$$
d=16, \text { size }=21
$$

dddadddadadddddddadd

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

 Same d, same size, and same positions of ascents and descents

$$
d=16, \text { size }=21
$$

dddadddadadddddddadd

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Poset representation of minimal permutations with d descents

A poset for a set of minimal permutations with d descents

 Same d, same size, and same positions of ascents and descents

$$
d=16, \text { size }=21
$$

dddadddadadddddddadd

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Summary of the enumeration results obtained

Fact: $d+1 \leq|\sigma| \leq 2 d$ for each σ minimal with d descents
Theorem (Partial enumeration of minimal permutation with d descents:)
Minimal size: 1 of size $d+1$
\hookrightarrow the reverse identity of size $d+1:(d+1) d(d-1) \ldots 321$
Minimal non-trivial size: $2^{d+2}-(d+1)(d+2)-2$ of size $d+2$
\hookrightarrow Computational method
\hookrightarrow Bijection with two copies of non-interval subsets of $\{1,2, \ldots, d+1\}$
Maximal size: $C_{d}=\frac{1}{d+1}\binom{2 d}{d}$ of size $2 d$
\hookrightarrow Using the ECO method
\hookrightarrow Bijection with Dyck paths

Proof: Using poset representation

Minimal permutations with d descents of size $2 d$

A unique poset represents all permutations

Facts:

■ $2 d$ elements, d descents $\Rightarrow d-1$ ascents
■ Minimal \Rightarrow ascents $=$ diamonds between two descents
Consequence: Poset $=$ ladder poset with d steps
Def.: Ladder poset $=$ sequence of $d-1$ diamonds linked by an edge

Example (for $d=5$; Sequence dadadadad)

Mathilde Bouvel
Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.

Size $2 d$: proof by enumeration

ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with d descents \equiv authorized labelling of the ladder poset with d steps

Size 2d: proof by enumeration

ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with d descents \equiv authorized labelling of the ladder poset with d steps

Size $2 d$: proof by enumeration

ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with d descents \equiv authorized labelling of the ladder poset with d steps

\square
Mathilde Bouvel
Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents.

Size 2d: proof by enumeration

ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with d descents \equiv authorized labelling of the ladder poset with d steps

Label $k=$ number of children $=2 d-i+1$
Labels of the children $=2(d+1)-i^{\prime}+1$ for $i^{\prime} \in[(i+1) . .(2 d+1)]$
\square Enumerating sequence $=$ Catalan numbers $C_{d}=\frac{1}{d-1}(2 d)$

Size 2d: proof by enumeration

ECO construction for authorized labelling of the ladder poset with d steps

Minimal permutation with d descents \equiv authorized labelling of the ladder poset with d steps

Label $k=$ number of children $=2 d-i+1$
Labels of the children $=2(d+1)-i^{\prime}+1$ for $i^{\prime} \in[(i+1) . .(2 d+1)]$
Succession rule: $\left\{\begin{array}{l}(2) \\ (k) \rightsquigarrow(2)(3) \cdots(k)(k+1)\end{array}\right.$
Enumerating sequence $=$ Catalan numbers $C_{d}=\frac{1}{d+1}\binom{2 d}{d}$

Enumeration: partial results for subclasses of fixed size

Size 2d: proof by bijection

Bijection between Dyck paths and authorized labellings of the ladder poset

Labellings of the ladder poset <

Dyck paths at least i up steps
before the i-th down step

Bijection:
■ lower line \equiv up step
■ upper line \equiv down step

Size $d+2$: computational and bijective approaches

Theorem

There are $s_{d}=2^{d+2}-(d+1)(d+2)-2$ minimal permutations with d descents and of size $d+2$.

Computational proof
Fact: Only one diamond
■ Choose the pattern of the diamond: 2143 or 3142
■ Choose the elements labelling the diamond
■ Choose (or remark) where the other labels are placed
\Rightarrow Summation that simplifies into s_{d}

Size $d+2$: computational and bijective approaches

Theorem

There are $s_{d}=2^{d+2}-(d+1)(d+2)-2$ minimal permutations with d descents and of size $d+2$.

Bijective proof
Fact: $r_{d}=\frac{s_{d}}{2}=$ number of non-interval subsets of $\{1,2, \ldots,(d+1)\}$
■ Partition the set of permutations into $S_{1} \uplus S_{2}$
$■$ Simple bijection between S_{1} and non-interval subsets
$■$ More tricky bijection between S_{2} and non-interval subsets
\hookrightarrow Classification of permutations in S_{2} into 5 types of permutations

Permutations with at most $d-1$ descents:

- Motivations in bio-informatics

■ Define a permutation class by a property
Minimal permutations with d descents:

- Basis of the above
- Local characterization

Enumeration:
■ Done for $n \in\{d+1, d+2,2 d\}$
■ Open for $n \in[(d+3) . .(2 d-1)]$: computational method, with automated examination of (numerous) cases ?
Classes \mathcal{C} defined by a property:
■ Literature (stack sortable, separable, ...): simple basis

- Properties of the basis $B \Rightarrow$ Properties of \mathcal{C}

[^0]: ${ }^{1}$ Chaudhuri, Chen, Mihaescu and Rao, On the tandem duplication-random loss model of genome rearrangement, SODA06

[^1]: ${ }^{2}$ Bouvel and Rossin, A variant of the tandem duplication - random loss model of genome rearrangement

