Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with *d* Descents.

Mathilde Bouvel Elisa Pergola

GASCom 2008

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion O
Outline	of the talk				

- **1** Pattern involvement and **minimal permutations with** *d* **descents**
- 2 Motivation: the duplication-loss model
- **3** Local characterization of minimal permutations with *d* descents
- **4 Poset representation** of minimal permutations with *d* descents
- **5** Enumeration: partial results for subclasses of fixed size

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
● 000					
Pattern involvement	and minimal permutations	s with d descents			

Patterns in permutations

Definition (Pattern relation \preccurlyeq)

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \preccurlyeq \sigma$.

Equivalently: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example

 $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.

Av(B): the class of permutations avoiding all the patterns in the basis B. Av(231) =Stack sortable ; Av(2413, 3142) = Separable ; ...

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000			00000	
Pattern involvement	t and minimal permutation	ns with <i>d</i> descents			

Classes of permutations Basis of excluded patterns

Definition (Permutation class)

C is a permutation class when it is stable for \preccurlyeq , *i.e.* when $\forall \sigma \in C, \forall \pi \preccurlyeq \sigma, \pi \in C$.

Theorem (Basis of excluded patterns)

Every permutation class C is characterized by a (finite or infinite) basis B of excluded patterns: C = Av(B).

Basis: $B = \{ \sigma : \sigma \notin C \text{ but } \forall \pi \prec \sigma, \pi \in C \}.$ B is the set of minimal patterns not in C.

Minimal is intented in the sense of \preccurlyeq .

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000	00		00000	
Pattern involvemen	t and minimal permutati	ions with <i>d</i> descents			

Descents in permutations Grid representation

Definition (Descents and ascents in a permutation)

There is a descent (resp. ascent) in $\sigma \in S_n$ at position $i \in [1..n-1]$ when $\sigma_i > \sigma_{i+1}$ (resp. $\sigma_i < \sigma_{i+1}$). desc(σ): the number of descents of σ .

The grid representation of the permutation $\sigma = 698413725$

ascents descents

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion					
0000										
Pattern involvement	Pattern involvement and minimal permutations with d descents									

Minimal permutations with d descents

 \mathcal{D}_d = the set of permutations with at most d-1 descents.

Theorem

 \mathcal{D}_d is stable for \preccurlyeq , hence is a permutation class. Basis of \mathcal{D}_d : the minimal (for \preccurlyeq) permutations not in \mathcal{D}_d

 B_d = the set of minimal (for \preccurlyeq) permutations with *d* descents. **Rem.**: In this context, **exactly** *d* descents \Leftrightarrow **at least** *d* descents.

Theorem

The basis of excluded patterns characterizing D_d is B_d . $D_d = Av(B_d)$.

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
	000				
Motivation: the dup	lication-loss model				

The (whole genome) duplication - (random) loss model

Definition (Duplication-loss step)

One duplication-loss step starting from a permutation σ :

- duplication of σ after itself
- loss of one of the two copies of every element

 $1234567 \rightarrow 12345671234567 \rightarrow 2356147$ Cost of any step = 1.

Specialization of the tandem duplication-random loss model¹:

- duplication: only of a fragment of the permutation
- cost of a step: depends on the number of elements duplicated

¹Chaudhuri, Chen, Mihaescu and Rao, *On the tandem duplication-random loss model of genome rearrangement*, SODA06

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
	000				
Motivation: the dup	olication-loss model				

Permutations obtained after *p* steps

Basis of this permutation class

What are the permutations obtainable from 12...n (for any *n*) with a cost at most *p*?

Specialized model \rightsquigarrow Permutations obtained after p steps ? Prop. σ is obtained in at most p steps $\Leftrightarrow \operatorname{desc}(\sigma) \leq 2^p - 1$.

For $d = 2^p$, {Permutations obtained in at most p steps} = \mathcal{D}_d .

Theorem (Permutations obtained after p steps²)

{Permutations obtained after p steps} is a class. Basis = {minimal permutations with 2^p descents } = B_d .

 $^2 {\rm Bouvel}$ and Rossin, A variant of the tandem duplication - random loss model of genome rearrangement

Mathilde Bouvel

Motivation: the duplication-loss model	Definitions	Duplication-Loss ○○●	Characterization	Posets O	Enumeration	Conclusion
	Motivation: the dup	olication-loss model				

Study of B_d

What we know:

- Class \mathcal{D}_d arise from biological motivations (for $d = 2^p$)
- $\square \mathcal{D}_d = Av(B_d)$
 - $\hookrightarrow B_d = \{ \text{minimal permutations with } d \text{ descents } \}$

What we want:

• Properties of the basis $B_d \Rightarrow$ Properties of the class \mathcal{D}_d What we do:

- Characterization of the permutations in B_d
- Size of the permutations in B_d
- Enumeration of the permutations of min. and max. size in B_d

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization ●○	Posets ○	Enumeration	Conclusion O
Local characterizat	tion of minimal permutat	ions with d descents			
A necess	ary conditio	n			

for being minimal with d descents

Prop.: σ minimal with d descents \Rightarrow no consecutive ascents in σ Rem. This condition is **not** sufficient !

Consequence: σ minimal with d descents $\Rightarrow d + 1 \le |\sigma| \le 2d$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization ●○	Posets	Enumeration	Conclusion
Local characterizat	ion of minimal permutat	ions with d descents			
A necess	ary conditio	n			

for being minimal with d descents

Prop.: σ minimal with d descents \Rightarrow no consecutive ascents in σ Rem. This condition is **not** sufficient !

Consequence: σ minimal with d descents $\Rightarrow d + 1 \le |\sigma| \le 2d$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion			
0000 000 0 00000 0								
Local characterization of minimal permutations with d descents								

A necessary and sufficient condition

for being minimal with d descents

Theorem (NSC for being minimal with d descents)

 σ is minimal with d descents \Leftrightarrow desc $(\sigma) = d$ and the 4 elements around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations

The only possible configurations

\Rightarrow Local characterization

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion			
0000 000 0 00000 0								
Local characterization of minimal permutations with d descents								

A necessary and sufficient condition

for being minimal with d descents

Theorem (NSC for being minimal with *d* descents)

 σ is minimal with d descents \Leftrightarrow desc $(\sigma) = d$ and the 4 elements around each ascent of σ are ordered as 2143 or 3142.

Forbidden configurations

The only possible configurations

Diamonds

 \Rightarrow **Local** characterization

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representation	n of minimal permutatio	ons with <i>d</i> descents			

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representation	n of minimal permutations	with <i>d</i> descents			

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representation	n of minimal permutations	with <i>d</i> descents			

Bijection: Permutation \Leftrightarrow Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representatio	n of minimal permutatio	ns with <i>d</i> descents			

Bijection: Permutation ⇔ Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representation	n of minimal permutatio	ons with <i>d</i> descents			

Bijection: Permutation ⇔ Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representatio	n of minimal permutatio	ns with <i>d</i> descents			

Bijection: Permutation ⇔ Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
			•		
Poset representation	n of minimal permutatio	ons with <i>d</i> descents			

Bijection: Permutation ⇔ Authorized labelling of the poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
				00000	
Enumeration: partia	al results for subclasses of f	ixed size			

Summary of the enumeration results obtained

Fact: $d + 1 \le |\sigma| \le 2d$ for each σ minimal with d descents

Theorem (Partial enumeration of minimal permutation with d descents:)

Minimal size: 1 of size d + 1

 \hookrightarrow the reverse identity of size d+1: $(d+1)d(d-1)\ldots 321$

Minimal non-trivial size: $2^{d+2} - (d+1)(d+2) - 2$ of size d+2

 $\, \hookrightarrow \, \mbox{ Computational method } \,$

 \hookrightarrow Bijection with two copies of non-interval subsets of $\{1,2,\ldots,d+1\}$

Maximal size: $C_d = \frac{1}{d+1} \binom{2d}{d}$ of size 2d

 $\, \hookrightarrow \ {\sf Using \ the \ ECO \ method}$

 \hookrightarrow Bijection with Dyck paths

Proof: Using poset representation

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000	00		0000	
Enumeration: partia	I results for subclasses of fi	xed size			

Minimal permutations with d descents of size 2dA unique poset represents all permutations

Facts:

- **2** d elements, d descents $\Rightarrow d 1$ ascents
- Minimal \Rightarrow ascents = diamonds between two descents

Consequence: Poset = ladder poset with d steps

Def.: Ladder poset = sequence of d - 1 diamonds linked by an edge

Example (for d = 5; Sequence dadadadad)

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000			00000	
Enumeration: partia	al results for subclasses of fi	xed size			

ECO construction for authorized labelling of the ladder poset with d steps

Label k = number of children = 2d - i + 1Labels of the children = 2(d + 1) - i' + 1 for $i' \in [(i + 1)..(2d + 1)]$ Succession rule: $\begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \cdots (k)(k + 1) \end{cases}$

Enumerating sequence = Catalan numbers $C_d = \frac{1}{d+1} \begin{pmatrix} 2a \\ d \end{pmatrix}$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000			00000	
Enumeration: partia	al results for subclasses of fi	xed size			

ECO construction for authorized labelling of the ladder poset with d steps

Label k = number of children = 2d - i + 1Labels of the children = 2(d + 1) - i' + 1 for $i' \in [(i + 1)..(2d + 1)]$ Succession rule: $\begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \cdots (k)(k + 1) \end{cases}$

Enumerating sequence = Catalan numbers $C_d = \frac{1}{d+1} \begin{pmatrix} 20 \\ d \end{pmatrix}$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion
0000	000			00000	
Enumeration: partia	al results for subclasses of fi	xed size			

ECO construction for authorized labelling of the ladder poset with d steps

Label k = number of children = 2d - i + 1Labels of the children = 2(d + 1) - i' + 1 for $i' \in [(i + 1)..(2d + 1)]$ Succession rule: $\begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \cdots (k)(k + 1) \end{cases}$

Enumerating sequence = Catalan numbers $C_d = \frac{1}{d+1} \begin{pmatrix} 2a \\ d \end{pmatrix}$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion		
				00000			
Enumeration: partial results for subclasses of fixed size							

ECO construction for authorized labelling of the ladder poset with d steps

Label k = number of children = 2d - i + 1Labels of the children = 2(d + 1) - i' + 1 for $i' \in [(i + 1)..(2d + 1)]$ Succession rule: $\begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \cdots (k)(k + 1) \end{cases}$

Enumerating sequence = Catalan numbers $C_d = \frac{1}{d+1} \begin{pmatrix} 2a \\ d \end{pmatrix}$

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion	
0000	000	00		00000		
Enumeration: partial results for subclasses of fixed size						

ECO construction for authorized labelling of the ladder poset with d steps

Label k = number of children = 2d - i + 1Labels of the children = 2(d + 1) - i' + 1 for $i' \in [(i + 1)..(2d + 1)]$ Succession rule: $\begin{cases} (2) \\ (k) \rightsquigarrow (2)(3) \cdots (k)(k + 1) \end{cases}$

Enumerating sequence = Catalan numbers $C_d = \frac{1}{d+1} {\binom{2d}{d}}$

Mathilde Bouvel

Size 2*d*: proof by bijection

Bijection between Dyck paths and authorized labellings of the ladder poset

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion		
				00000			
Enumeration: partial results for subclasses of fixed size							

Size d + 2: computational and bijective approaches

Theorem

There are $s_d = 2^{d+2} - (d+1)(d+2) - 2$ minimal permutations with d descents and of size d + 2.

Computational proof

Fact: Only one diamond

- Choose the pattern of the diamond: 2143 or 3142
- Choose the elements labelling the diamond
- Choose (or remark) where the other labels are placed
- \Rightarrow Summation that simplifies into s_d

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets	Enumeration	Conclusion	
				00000		
Enumeration: partial results for subclasses of fixed size						

Size d + 2: computational and bijective approaches

Theorem

There are $s_d = 2^{d+2} - (d+1)(d+2) - 2$ minimal permutations with d descents and of size d + 2.

Bijective proof

Fact: $r_d = \frac{s_d}{2}$ = number of non-interval subsets of $\{1, 2, \dots, (d+1)\}$

- Partition the set of permutations into $S_1 \uplus S_2$
- Simple bijection between S_1 and non-interval subsets
- More tricky bijection between S_2 and non-interval subsets
 - \hookrightarrow Classification of permutations in S_2 into 5 types of permutations

Mathilde Bouvel

Definitions	Duplication-Loss	Characterization	Posets ○	Enumeration	Conclusion ●	
Open problems and perspectives						

Permutations with at most d - 1 descents:

- Motivations in bio-informatics
- Define a permutation class by a property

Minimal permutations with d descents:

- Basis of the above
- Local characterization

Enumeration:

- Done for $n \in \{d + 1, d + 2, 2d\}$
- Open for $n \in [(d+3)..(2d-1)]$: computational method, with automated examination of (numerous) cases ?

Classes $\ensuremath{\mathcal{C}}$ defined by a property:

- Literature (stack sortable, separable, ...): simple basis
- Properties of the basis $B \Rightarrow$ Properties of C

Mathilde Bouvel