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About this talk

My motivations:

As a preparation for my second talk, on the graphon limit of cographs.
The proof uses analytic combinatorics strongly, but I won’t have time to

enter the details in the coming talk.

If you have never (or rarely) seen it, it is worth some advertisement.
It is a systematic and powerful approach to the study of discrete structures.

It can yield results on moments/laws of statistics on discrete objects.
This is not what I need, but maybe it can be interesting/useful to you.

Contents of the talk:

The (most classical) example of binary trees

Some of the main theorems of analytic combinatorics

One application (which I will use in the second talk)

Bivariate generating functions and applications in probability theory
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Binary trees



Our objects

We consider the family C = ∪nCn of trees which are:

rooted (⇒ there is a notion of parent/child)

plane (the children of any node are ordered)

binary (every node has either 0 or 2 children)

The size, n, of such a tree is the number of
internal nodes (=those with 2 children; the
nodes with 0 children are leaves).

Cn = the set of such trees of size n.

Let cn = |Cn|.
Which information can we find about cn?
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Decomposition and recurrence

A rooted plane binary tree
(of size ≥ 1) consists of

a root

a left subtree

a right subtree

If n is the size of the tree, its left and right subtrees are of sizes k and
n + 1− k, for some 0 ≤ k ≤ n − 1. Therefore

cn =
n−1∑
k=0

ckcn−1−k ,

with initial condition c0 = 1. This recurrence can be solved to yield
cn = 1

n+1

(2n
n

)
, the famous sequence of Catalan numbers.
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How to solve the recurrence: generating functions

Definition: The ordinary generating function of a sequence (an) is the
formal power series

∑
n≥0 anz

n.

Proof of the explicit formula for cn:

For C (z) =
∑

n≥0 cnz
n, the previous recurrence on cn translates into an

equation satisfied by C (z), namely:

C (z) = 1 + z · C (z)2.

Solving this quadratic equation gives C (z) = 1±
√

1−4z
2z .

Because C (0) = c0 = 1, we deduce that C (z) = 1−
√

1−4z
2z .

We can therefore compute the Taylor expansion of C (z) in z = 0, and
identifying coefficients we arrive at cn = 1

n+1

(2n
n

)
.
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Symbolic combinatorics: skipping the recurrence

The decomposition of our objects yields
the combinatorial specification on the
right. From it, we go directly to

C (z) = 1 + z · C (z)2.

This is an instance of
the dictionary
translating operations on
combinatorial objects
into operations on their
generating functions.

Object of size 0 1

Object of size 1 (“atom”) z

Disjoint union sum of GF

Cartesian product product of GF

Sequence of elts of A 1
1−A(z)

Sets of elts of A exp(A(z))(∗)

. . . . . .

(*): True in the labeled context only! I am describing the unlabeled context here,

where the translation of “sets” is a bit more complicated.
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Main ingredients of analytic combinatorics

(First) goal: Find information on the enumerative sequence (an) of a
combinatorial class A

The chosen setting:

Consider the generating function A(z) of (an)

Find a specification for A by combinatorial arguments

Translate it using the dictionary into a (possibly recursive) equation
(or system of equations) satisfied by A(z)

Obtaining information from the equation for A(z):

Consider A(z) as a function of the complex variable z , analytic
around z = 0

Study the behavior of A(z) at its dominant singularity(ies), which is
(are) the z of smallest modulus where A(z) is not analytic

Deduce asymptotic estimates of an (“transfer”)
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Back to our example of rooted binary trees

The specification for the class of rooted
binary trees shown on the right
translates into the equation

C (z) = 1 + z · C (z)2,

whose solution is C (z) = 1−
√

1−4z
2z .

The dominant singularity of C (z) is ρ = 1/4,
and the singular behavior of C (z), as z approaches ρ, is

C (z) = 2− 2
√

1− 4z + o(
√

1− 4z).

The transfer theorem then yields cn ∼
4n√
πn3

.

Remark: We obtain an asymptotic estimate for cn, not the closed formula
cn = 1

n+1

(2n
n

)
.
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Main theorem(s) of analytic combinatorics:
the transfer theorem(s)



The two principles of coefficient asymptotics

Let A(z) =
∑

n anz
n. We aim at showing that an ∼ θ(n) · cn.

First principle: The location of the singularities of A(z) determines the
exponential growth of an (i.e., the constant c).

Second principle: The nature of the singularities of A(z) determines the
subexponential factor in the asymptotics of an (i.e., the function θ).

On our example of binary trees:

C (z) = 1−
√

1−4z
2z and cn ∼ 4n√

πn3

The dominant singularity of C (z) is 1/4,
determining the exponential growth 4n of cn

It is a squareroot singularity,
determining the subexponential factor of order n−3/2
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Starting slow: rational generating functions

Assume A(z) = P(z)
Q(z) for polynomials P and Q.

Compute the partial fraction decomposition: A(z) =
∑
i≤K

bi
(z − zi )mi

whose expansion is
∑
i≤K

∑
n
pi (n) · z−ni · zn for some polynomials pi .

identifying coefficients gives an =
∑
i≤K

pi (n) · z−ni .

To obtain an asymptotic estimate of an, it is enough to consider only the
pole(s) zi of smallest modulus (i.e., the dominant singularity/ies).

Assuming that there is only one such pole, ρ, we have an ∼ p(n) · ρ−n,
and the error is controlled by looking at poles of larger modulus.

Typical application: enumeration of words (avoiding patterns), the
Fibonacci sequence
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Generalization to meromorphic functions

Definition: A(z) is meromorphic if A(z) = f (z)
g(z) for f and g analytic.

Default of analyticity: the poles of A(z) are the z1, . . . zK s.t. g(zi ) = 0.

Consider CR , a circle of radius R, such that

A is analytic on CR ;

has poles at z1, . . . zm inside this circle.

Then, for some polynomials pi , we have

an =
∑
i≤m

pi (n) · z−ni +O(R−n).

Rk.: Exponentially small error term.
The larger the circle, the more precise the estimates.
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Proof using residues

Setting: A(z) meromorphic, analytic on CR , with poles at z1, . . . zm inside.

Expansion at zi : A(z) =
∑

n≥−Mi
αi ,n(z − zi )

n for some Mi ≥ 1

The coefficient αi ,−1 = Res[A(z), z = zi ] is the residue of A(z) at z = zi .

Cauchy’s residue theorem: 1
2iπ
∮
λ A(z)dz =

∑
i Res[A(z), z = zi ],

where the sum is taken on all i such that zi is enclosed by λ.

⇒ Cauchy’s coefficient formula: an = 1
2iπ
∮
λ

A(z)
zn+1 dz

for λ a simple loop around 0 enclosing no other singularity of A.

Taking λ = CR , we obtain

O(R−n) =
1

2iπ

∮
λ

A(z)

zn+1
dz = an +

∑
i≤m

Res[A(z)z−n−1, z = zi ]

which gives an =
∑

i≤m pi (n) · z−ni +O(R−n).
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Example in the meromorphic case

Typical application: Enumeration of surjections.

For such labeled objects, it is more convenient to use exponential
generating functions, defined by A(z) =

∑
n

an
n! z

n.

EGF of surjections is A(z) = 1
2−exp(z)

Its poles are log(2) + 2ikπ.

Choose R = 6.

Only log(2) is inside CR .

This gives

an
n!

=
1

2 log(2)
log(2)−n +O(6−n)
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Implicit functions; inverse functions

Implicit functions:

Earlier cases: A(z) was explicit

But the combinatorial specification is translated into an equation for
A(z), whose solution may be not explicit.

The equation itself can be enough to estimate an.

Typical application: Trees and tree-like structures

A(z) = z · φ(A(z))

where φ(u) can be exp(u) (Cayley trees), 1 + u2 (binary plane trees), . . .

Inverse functions:
Defining ψ(u) := u

φ(u) , the above equation rewrites z = ψ(A(z)).

Our problem amounts to finding (the behavior of) the inverse of ψ.
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Inversion and analyticity

Inversion lemma: An analytic function ψ admits locally an analytic
inverse if and only if its first derivative is non-zero.

Intuition (rather than a proof):
Let ψ(u) be analytic at u0 with ψ(u0) = z0.

If ψ′(u0) 6= 0, then ψ(u) ≈ ψ(u0) + ψ′(u0)(u − u0),

hence u ≈ u0 + z−z0
ψ′(u0) for z = ψ(u).

If ψ′(u0) = 0 and ψ′′(u0) 6= 0, then ψ(u) ≈ ψ(u0) + ψ′′(u0)
2 (u − u0)2,

and this quadratic equation for u has two solutions,

u = u0 ±
√

2
ψ′′(u0)

√
z − z0.

The definition of the squareroot forbids that u is an analytic function
of z on a neighborhood of z0 (we must consider slit neighborhoods
instead).
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Theorem: Enumeration of trees counted by vertices

Let φ be a function analytic at 0, with φ(u) =
∑

n≥0 fnu
n.

Assume that f0 6= 0; ∀n, fn ≥ 0; and ∃n ≥ 2, fn 6= 0 .
Let Rφ be its radius of convergence.

If limu→R−φ

uφ′(u)
φ(u) > 1, τφ′(τ)

φ(τ) = 1 has a unique solution τ ∈ (0,Rφ).

Then, T (z) = z · φ(T (z)) has a unique solution T (z),
which is analytic at 0, and has radius of convergence ρ = τ

φ(τ) = 1
φ′(τ) .

The singular expansion of T (z) near ρ (in an appropriate ∆-domain) is

T (z) = τ −

√
2φ(τ)

φ′′(τ)

(
1− z

ρ

)1/2

+O
(

1− z

ρ

)
.

Moreover, under aperiodicity conditions,

[zn]T (z) ∼

√
2φ(τ)

φ′′(τ)
· ρ
−n

n3/2
.

Notation: [zn]T (z) is the
coefficient tn of zn in the
expansion T (z) =

∑
n tnz

n
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Variant: enumeration of trees counted by leaves

Let Λ be a function analytic at 0, with Λ(u) =
∑

n≥2 λnu
n and λn ≥ 0.

Let RΛ be its radius of convergence.

If limu→R−Λ
Λ′(u) > 1, Λ′(τ) = 1 has a unique solution τ ∈ (0,RΛ).

Then, T (z) = z + Λ(T (z)) has a unique solution T (z),
which is analytic at 0, and has radius of convergence ρ = τ − Λ(τ).

The singular expansion of T (z) near ρ (in an appropriate ∆-domain) is

T (z) = τ −

√
2ρ

Λ′′(τ)

(
1− z

ρ

)1/2

+O
(

1− z

ρ

)
.

Moreover, under aperiodicity conditions,

[zn]T (z) ∼
√

ρ

2πΛ′′(τ)
· ρ
−n

n3/2
.
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Examples of application

Objects φ(u) Asymptotic behavior

Plane binary trees 1 + u2 4n√
πn3

Unary-binary trees 1 + u + u2 3n+1/2

2
√
πn3

General plane trees (1− u)−1 4n−1

√
πn3

Cayley trees exp(u)
en√
2πn3

Canonical cotrees (*)
(2 log(2)− 1)−n+1/2

√
πn3

(*): The studied family of trees satisfies
T (z) = z + Λ(T (z)) for Λ(u) = exp(u)− 1− u
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Generalization: Drmota-Lalley-Woods

Setting: A(z) := A0(z) is solution of a system of equations, say

Ai (z) = Pi (z ,A0(z), . . . ,AN(z)) for 1 ≤ i ≤ N,

where the Pi are polynomials.

The nice case: The dependency graph of the system is strongly
connected, meaning that the equation defining each series Ai “uses”
(possibly unraveling the definitions) each Aj .

In this case, we observe the same squareroot-type singular behavior, with
asymptotics of coefficients in c · ρ−nn−3/2.

Beyond: Other exponents can occur.
Namely, the coefficients behave asymptotically in c · ρ−nnβ
for β = −1− 2−k for k ≥ 1 or β = −1 + m2−k for m ≥ 1 and k ≥ 0.
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One application: canonical cotrees
(preparation for next talk)



Canonical cotrees

Definition: A labeled canonical
cotree of size n is

a rooted tree

which is non-plane,

having n leaves,

labeled from 1 to n,

where internal nodes have at
least two children

and carry decorations 0 or 1,

in such a way that
decorations along each path
from the root to a leaf
alternate.

Remark:
Canonical cotrees bijectively
encode cographs, which we will
study next week.
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A simpler class: forget the decorations

Let L be the family of non-plane rooted trees, labeled on their leaves,
where internal nodes have at least two children.

Let L(z) =
∑

n
`n
n!z

n be the exponential generating function of L.

A specification for L is

Applying the dictionary (for labeled objects to EGF) gives

L(z) = z + Λ(L(z)) for Λ(u) = exp(u)− 1− u.
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Singular behavior of L(z)

Since Λ(u) = exp(u)− 1− u =
∑

n≥2
un

n! is analytic at 0, with radius of
convergence +∞, we can apply the theorem for enumeration of trees.

Λ′(τ) = 1 defines τ = log(2).

The equation L(z) = z + Λ(L(z)) has a unique solution L(z) which is
analytic at 0, with radius of convergence ρ = τ − Λ(τ) = 2 log(2)− 1.

Near ρ, we have

L(z) = log(2)−√ρ
√

1− z/ρ+O(1− z/ρ).

Consequently,

[zn]L(z) =
`n
n!

∼
n→+∞

1

2

√
ρ

π
· ρ
−n

n3/2
.
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Back to canonical cotrees

Reminder:
Canonical cotrees are trees of L with additional decorations 0 and 1 on
internal nodes, which alternate on each path from the root to a leaf.

Fact:
Because of alternation, all decorations are determined by that of the root.

Consequences:
The exponential generating series M(z) of canonical cotrees satisfies
M(z) = 2(L(z)− z) + z = 2L(z)− z . Therefore,

M(z) is analytic at 0 with radius of convergence ρ = 2 log(2)− 1.

Near ρ, we have M(z) = 1− 2
√
ρ
√

1− z/ρ+O(1− z/ρ).

And [zn]M(z) ∼
n→+∞

√
ρ

π
· ρ
−n

n3/2
.

Application:
Used in the proof of the graphon convergence of cographs, next week.
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Bivariate generating series
and distribution of statistics
in random discrete objects



Statistics on objects and bivariate GF

Reminder: The (ordinary) generating function of a combinatorial class A
is A(z) =

∑
n≥0 anz

n.

Definition: Consider a statistic χ on the objects of A.
The bivariate (ordinary) generating function of A for the statistic χ is

A(z , u) =
∑
n≥0

∑
k

an,ku
kzn

where an,k is the number of objects α of size n in A such that χ(α) = k.

Fact: A(z , 1) = A(z), or equivalently an =
∑

k an,k for all n.

Example: For A = {words on {a, b}} and χ = number of a’s, we have

A(z , u) =
∑
n≥0

n∑
k=0

(
n

k

)
ukzn =

1

1− z(u + 1)
.
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Extension of the dictionary

In many cases, the statistics can be tracked in the translation of the
dictionary “operation on objects” → “operation on GF”.

Examples:

Number of components in a sequence: 1
1−uA(z)

. . . or in a set: exp(uA(z))

. . . or in any operation

Number of leaves in general plane trees: G (z , u) = zu + zG(z,u)
1−G(z,u)

Pathlength in trees: A(z , u) = zφ(A(zu, u))

and many more

The pathlength is the sum of all the distances
from a node to the root in a tree.
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Moments from bivariate generating functions

Setting: Class A, parameter χ, with bivariate GF
∑

n≥0

∑
k an,ku

kzn.

Consider the uniform distribution over An = {objects of size n in A}.

Expectation: Let Xn be the r.v. which records the value the parameter χ.

E[Xn] =
∑
k

k · P(χ = k) =
∑
k

k ·
an,k
an

=
[zn]∂A(z,u)

∂u |u=1

[zn]A(z , 1)

Higher moments: Classical moments are obtained from factorial
moments, and

E[Xn(Xn − 1) . . . (Xn − d + 1)] =
[zn]∂

dA(z,u)
∂ud

|u=1

[zn]A(z , 1)

To remember: Derivative in u = 1 gives access to moments of χ.
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Letting n→∞

Goal: Describe the limiting behavior of Xn as n→∞.

The easy cases: If A(z , u) is explicit, and the moments of Xn can be
explicitly computed, then we may be able to

prove concentration of χ,

find the distributional limit of Xn provided it is determined by its
moments.

Going further:

Apply analytic combinatorics to A(z , u) (for the variable z , as usual,
u being seen as a parameter).

Study the dependency in u, close to u = 1, of the singular behavior so
obtained to derive the limit law of χ.

We may also obtain information on the speed of convergence and tail
estimates.
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Example of limit laws encountered

The parameter . . . in . . . has limit law . . .

Number of initial a’s binary words geometric

Number of initial a’s Dyck words Negative binomial distribution

Cycles of length 1 (or m) permutations Poisson

Root degree general trees shifted Poisson

Number of a’s binary words Gaussian

Number of cycles permutations Gaussian

Image cardinality Surjections Gaussian

Perimeter Parallelogram Gaussian
polyominoes

Number of leaves general trees Gaussian

Position of first max. random walk arcsin law

Path length general trees Airy distribution

Area under the path Dyck path Airy distribution

Contacts with x-axis bridges Rayleigh law
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If you want to know more: the purple book

The reference on the topic.

over 800 pages

many examples

“black-box” theorems, but also
guidelines to study examples
which do not satisfy the
hypothesis of these “black-box”
theorems

Merci, et à la semaine prochaine
pour parler de cographes !
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