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About this talk

My motivations:

@ As a preparation for my second talk, on the graphon limit of cographs.
The proof uses analytic combinatorics strongly, but | won't have time to
enter the details in the coming talk.

o If you have never (or rarely) seen it, it is worth some advertisement.
It is a systematic and powerful approach to the study of discrete structures.

@ It can yield results on moments/laws of statistics on discrete objects.
This is not what | need, but maybe it can be interesting/useful to you.
Contents of the talk:
@ The (most classical) example of binary trees
@ Some of the main theorems of analytic combinatorics
@ One application (which | will use in the second talk)

@ Bivariate generating functions and applications in probability theory

Mathilde Bouvel Analytic Combinatorics 2/33



Binary trees



We consider the family C = U,C,, of trees which are:
@ rooted (= there is a notion of parent/child)
@ plane (the children of any node are ordered)

@ binary (every node has either 0 or 2 children)

The size, n, of such a tree is the number of
internal nodes (=those with 2 children; the
nodes with O children are leaves).

C,, = the set of such trees of size n.

Let ¢, = |Cal.
Which information can we find about ¢,?
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Decomposition and recurrence

A rooted plane binary tree O

(of size > 1) consists of
@ a root A

————

13
@ a Iéft subtree L——
@ a right subtree

If nis the size of the tree, its left and right subtrees are of sizes k and
n+1—k, for some 0 < k < n— 1. Therefore

n—1
Ch = E CkCn—1—k,
k=0

with initial condition cg = 1. This recurrence can be solved to yield

1 (2n
Ch = m(n) the famous sequence of Catalan numbers.
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How to solve the recurrence: generating functions

Definition: The ordinary generating function of a sequence (a,) is the
formal power series > - anz".

Proof of the explicit formula for c,:

For C(z) = )_,~o¢nz", the previous recurrence on c, translates into an
equation satisfied by C(z), namely:

C(z) =1+2z-C(2)%

1+v1-4z

Solving this quadratic equation gives C(z) = =%

Because C(0) = ¢y = 1, we deduce that C(z) = #-

We can therefore compute the Taylor expansion of C(z) in z =0, and

. - .. . 1 (2n
identifying coefficients we arrive at ¢, = 35 ( n).
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Symbolic combinatorics: skipping the recurrence

The decomposition of our objects yields
the combinatorial specification on the

right. From it, we go directly to f = o S

C(z)=1+z-C(2)%

This is an instance of
the dictionary
translating operations on
combinatorial objects
into operations on their
generating functions.

€7 €¢
Object of size 0 1
Object of size 1 (“atom") | z
Disjoint union sum of GF

Cartesian product

product of GF

Sequence of elts of A

I
1-A(2)

Sets of elts of A

exp(A(z))"

(*): True in the labeled context only! | am describing the unlabeled context here,

where the translation of “sets” is a bit more complicated.
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Main ingredients of analytic combinatorics

(First) goal: Find information on the enumerative sequence (a,) of a
combinatorial class A

The chosen setting:
o Consider the generating function A(z) of (an)
e Find a specification for A by combinatorial arguments

e Translate it using the dictionary into a (possibly recursive) equation
(or system of equations) satisfied by A(z)

Obtaining information from the equation for A(z):

o Consider A(z) as a function of the complex variable z, analytic
around z =0

@ Study the behavior of A(z) at its dominant singularity(ies), which is
(are) the z of smallest modulus where A(z) is not analytic

@ Deduce asymptotic estimates of a, (“transfer”)
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Back to our example of rooted binary trees

The specification for the class of rooted

binary trees shown on the right f
translates into the equation = o 5
C(Z)=1+Z~C(z)2, €t cg

whose solution is C(z) = #-

The dominant singularity of C(z) is p = 1/4,
and the singular behavior of C(z), as z approaches p, is

C(z) =2—-2V1—4z+o(\/1—-4z).

. 4"
The transfer theorem then yields ¢, ~ "
™

Remark: We obtain an asymptotic estimate for c,, not the closed formula
_ 1 (2n
Cn = n+1 ( n )
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Main theorem(s) of analytic combinatorics:
the transfer theorem(s)



The two principles of coefficient asymptotics

Let A(z) =), anz". We aim at showing that a, ~ 6(n) - c".

First principle: The location of the singularities of A(z) determines the
exponential growth of a, (i.e., the constant c).

Second principle: The nature of the singularities of A(z) determines the
subexponential factor in the asymptotics of a, (i.e., the function ).

On our example of binary trees:
o C(z) =114 31_42 and ¢, ~

4n

V/an

@ The dominant singularity of C(z) is 1/4,
determining the exponential growth 4" of ¢,

@ It is a squareroot singularity,

determining the subexponential factor of order n>/?
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Starting slow: rational generating functions

Assume A(z) = QE % for polynomials P and Q.

. . . b;
Compute the partial fraction decomposition: A(z) = g ﬁ
. zZ — zZj)"
i<K

. z" for some polynomials p;.

whose expansion is Y > pi(n) -z
i<K n

identifying coefficients gives a, = Y pi(n) -z ".

i<K
To obtain an asymptotic estimate of a,, it is enough to consider only the
pole(s) z; of smallest modulus (i.e., the dominant singularity/ies).

Assuming that there is only one such pole, p, we have a, ~ p(n) - p~"
and the error is controlled by looking at poles of larger modulus.

Typical application: enumeration of words (avoiding patterns), the
Fibonacci sequence
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Generalization to meromorphic functions

Definition: A(z) is meromorphic if A(z) = % for f and g analytic.

Default of analyticity: the poles of A(z) are the z1,...zk s.t. g(z;) =0.

Consider Cg, a circle of radius R, such that
. . o Logl)y (im
@ A is analytic on Cg; .
o log(2)a 2itr
@ has poles at zj, ...z, inside this circle. A\ \a
Then, for some polynomials p;, we have \_j?:)
° 3(134231'
ap = Z pi(n)-z "+ O(R™"). o logl)— 4
i<m

Rk.: Exponentially small error term.
The larger the circle, the more precise the estimates.
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Proof using residues

Setting: A(z) meromorphic, analytic on Cg, with poles at z1,. .. z, inside.
Expansion at z;: A(z) =}_,5 . @in(z — z)" for some M; > 1
The coefficient o; 1 = Res[A(z) z = zj] is the residue of A(z) at z = z.

Cauchy’s residue theorem: 2 = § A(z)dz = Y Res[A(z),z = z],
where the sum is taken on all / such that zj is enclosed by A.

= Cauchy’s coefficient formula: a, = 217r \ fn(fl dz

for A a simple loop around 0 enclosing no other singularity of A.
Taking A = Cg, we obtain

1 A(z)
2i71' A Zn+1

OR ") = dz—a,,+ZRes[A 2)z7 "z = z]

i<m
which gives a, = >, pi(n) -z "+ O(R™").
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Example in the meromorphic case

Typical application: Enumeration of surjections.

For such labeled objects, it is more convenient to use exponential

generating functions, defined by A(z) =, 22"

e EGF of surjections is A(z) = ﬁp(z) o Cogle 4T
@ lIts poles are log(2) + 2ik.

@ Choose R = 6.

- —
@ Only log(2) is inside Cg. kj?: 23 ar
] al =&l

° &3(2)4 2

This gives o logld)- i

n 1
%:2Iog(2)|g() "6
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Implicit functions; inverse functions

Implicit functions:
o Earlier cases: A(z) was explicit

@ But the combinatorial specification is translated into an equation for
A(z), whose solution may be not explicit.

@ The equation itself can be enough to estimate aj,.
Typical application: Trees and tree-like structures
A(z) = z- ¢(A(2))

where ¢(u) can be exp(u) (Cayley trees), 1+ u? (binary plane trees), ...

Inverse functions:
Defining ¢ (u) := (s the above equation rewrites z = P(A(2)).
Our problem amounts to finding (the behavior of) the inverse of .
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Inversion and analyticity

Inversion lemma: An analytic function ¢ admits locally an analytic
inverse if and only if its first derivative is non-zero.

Intuition (rather than a proof):
Let ¢)(u) be analytic at up with ¥(up) = zo.
o If ¢/(up) # 0, then 9 (u) ~ ¥ (uo) + ' (uo)(u — wo),
hence u ~ ug + ﬁ for z = (u).

o If //(up) = 0 and " (up) # 0, then ¥(u) ~ (up) + M(u — ug)?,
and this quadratic equation for u has two solutions,

U:UOIl: m Z — 2.

The definition of the squareroot forbids that v is an analytic function
of z on a neighborhood of zy (we must consider slit neighborhoods
instead).
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Theorem: Enumeration of trees counted by vertices

Let ¢ be a function analytic at 0, with ¢(u) = >, oo fru".
Assume that fy # 0; Vn,f, > 0; and 93n > 2,1, #0 .
Let R, be its radius of convergence.

If IimuﬁR; u(f(lff)l) > 1, T::(/S) = 1 has a unique solution 7 € (0, Ry).

Then, T(z) = z-¢(T(z)) has a unique solution T(z),
which is analytic at 0, and has radius of convergence p = ﬁ = ﬁ

The singular expansion of T(z) near p (in an appropriate A-domain) is
SB35 o ()
Iz)=71- 1-=) +0(1-=).
D= e\ ,

Moreover, under aperiodicity conditions, ~ Notation: [z"]|T(z) is the
coefficient t, of z" in the

20(t) p" expansion T(z) =), tyz

[z"]T(z) ~ ¢”7(T) S 32
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Variant: enumeration of trees counted by leaves

Let A be a function analytic at 0, with A(u) = > <, Apu" and A, > 0.
Let Rp be its radius of convergence.

If lim, - N(u) > 1, N'(7) = 1 has a unique solution 7 € (0, Rp).

Then, T(z) = z+ A(T(z)) has a unique solution T(z),
which is analytic at 0, and has radius of convergence p = 7 — A(7).

The singular expansion of T(z) near p (in an appropriate A-domain) is

Moreover, under aperiodicity conditions,

—n

PP
2rN'(1) n3/2°

[2"]T(2) ~
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Examples of application

Objects o(u) Asymptotic behavior
40
Plane binary trees | 14 u? .
mn
) 3n+1/2
Unary-binary trees | 14+ u+u
Y Y 2y wn3
4_n—1
General plane trees | (1 —u)™! =
mn
en
Cayley trees exp(u)
27 n3
2] 2) — 1 —n+1/2
Canonical cotrees | (*) (210g(2) — 1)
v rn3

(*): The studied family of trees satisfies
T(z) =z+N(T(2)) for N(u) =exp(u) —1—u
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Generalization: Drmota-Lalley-Woods

Setting: A(z) := Ap(z) is solution of a system of equations, say
Ai(z) = Pi(z,Ao(z2),...,An(2)) for 1 < i < N,

where the P; are polynomials.

The nice case: The dependency graph of the system is strongly
connected, meaning that the equation defining each series A; “uses”
(possibly unraveling the definitions) each A;.

In this case, we observe the same squareroot-type singular behavior, with
asymptotics of coefficients in ¢ - p~"n~3/2.

Beyond: Other exponents can occur.
Namely, the coefficients behave asymptotically in ¢ - p~"n”
for B=—1—2"Kfork>1orB=—-1+m2"¥form>1and k>0.
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One application: canonical cotrees
(preparation for next talk)



Canonical cotrees

Definition: A labeled canonical
cotree of size n is

@ a rooted tree

@ which is non-plane,
@ having n leaves,

@ labeled from 1 to n,

@ where internal nodes have at
least two children

@ and carry decorations 0 or 1,

@ in such a way that
decorations along each path
from the root to a leaf
alternate.

Remark:

Canonical cotrees bijectively
encode cographs, which we will
study next week.
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A simpler class: forget the decorations

Let £ be the family of non-plane rooted trees, labeled on their leaves,
where internal nodes have at least two children.

Let L(z) =), %z" be the exponential generating function of L.

A specification for L is

Applying the dictionary (for labeled objects to EGF) gives
L(z) =z+ AN(L(z)) for A(u)=exp(u)—1-—u.
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Singular behavior of L(z)

Since A(u) =exp(u) =1 —u=3" -, U is analytic at 0, with radius of
convergence +o0o, we can apply the theorem for enumeration of trees.

o N(7) =1 defines 7 = log(2).

@ The equation L(z) = z + A(L(z)) has a unique solution L(z) which is
analytic at 0, with radius of convergence p = 7 — A(7) = 2log(2) — 1.

o Near p, we have

L(z) = log(2) = /pv/1—=2/p+O(1 = z/p).

o Consequently,

n _tn 1 /p p"
[Z ]L(Z) o ﬁ n—;\—;-oo 2\/;. n3/2°
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Back to canonical cotrees

Reminder:
Canonical cotrees are trees of £ with additional decorations 0 and 1 on
internal nodes, which alternate on each path from the root to a leaf.

Fact:
Because of alternation, all decorations are determined by that of the root.

Consequences:
The exponential generating series M(z) of canonical cotrees satisfies
M(z) = 2(L(z) — z) + z = 2L(z) — z. Therefore,

e M(z) is analytic at 0 with radius of convergence p = 2log(2) — 1.

@ Near p, we have M(z) =1—-2,/p\/1—z/p+ O(1 - z/p).

n p p"
e And [z"|M(z2) e \/; 3

Application:
Used in the proof of the graphon convergence of cographs, next week.
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Bivariate generating series
and distribution of statistics
in random discrete objects



Statistics on objects and bivariate GF

Reminder: The (ordinary) generating function of a combinatorial class A
is A(z) = 3,50 anz".

Definition: Consider a statistic y on the objects of A.
The bivariate (ordinary) generating function of A for the statistic y is

A(z,u) = ZZankuz

n>0 k

where a,, , is the number of objects « of size n in A such that x(«) = k.
Fact: A(z,1) = A(z), or equivalently a, = >, ap « for all n.

Example: For A = {words on {a, b}} and x = number of a's, we have

Az, u) = Zzn: (Z) - l—z(lu—i—l)

n>0 k=0
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Extension of the dictionary

In many cases, the statistics can be tracked in the translation of the
dictionary “operation on objects” — “operation on GF".

Examples:
@ Number of components in a sequence: #A(Z)
@ ...orin a set: exp(uA(z))

@ ...or in any operation

Number of leaves in general plane trees: G(z,u) = zu + %
Pathlength in trees: A(z,u) = z¢(A(zu, u))

@ and many more

The pathlength is the sum of all the distances
from a node to the root in a tree.
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Moments from bivariate generating functions

Setting: Class A, parameter y, with bivariate GF > >, ankukz",
Consider the uniform distribution over A, = {objects of size nin A}.

Expectation: Let X, be the r.v. which records the value the parameter y.

[ n]aAzu

B . _ _ . an,k _ —|“1
E[X,] —;k P(x = k) Zk:k a  2A( 1)

Higher moments: Classical moments are obtained from factorial
moments, and

d
[z"]a g\l(;,u) lum1

E[Xp(Xn —1)...(Xp —d +1)] = [z"A(z, 1)

To remember: Derivative in u = 1 gives access to moments of .
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Letting n — oo

Goal: Describe the limiting behavior of X, as n — oco.
The easy cases: If A(z, u) is explicit, and the moments of X, can be
explicitly computed, then we may be able to
@ prove concentration of Yy,
o find the distributional limit of X, provided it is determined by its
moments.
Going further:
e Apply analytic combinatorics to A(z, u) (for the variable z, as usual,
u being seen as a parameter).

@ Study the dependency in u, close to u = 1, of the singular behavior so
obtained to derive the limit law of x.

@ We may also obtain information on the speed of convergence and tail
estimates.
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Example of limit laws encountered

|

The parameter . ..

|

in ... ‘

has limit law . ..

Number of initial a's

binary words

geometric

Number of initial a's

Dyck words

Negative binomial distribution

Cycles of length 1 (or m)

permutations

Poisson

Root degree

general trees

shifted Poisson

Number of a's binary words | Gaussian

Number of cycles permutations | Gaussian

Image cardinality Surjections Gaussian

Perimeter Parallelogram | Gaussian
polyominoes

Number of leaves general trees | Gaussian

Position of first max. random walk | arcsin law

Path length

general trees

Airy distribution

Area under the path

Dyck path

Airy distribution

Contacts with x-axis

bridges

Rayleigh law
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If you want to know more: the purple book

The reference on the topic.

@ over 800 pages

@ many examples

Analytic o “black-box" theorems, but also
Cﬂmbinﬂtﬂrics guidelines to study examples
which do not satisfy the
hypothesis of these “black-box”
theorems

Philippe Flapolet and
Robert Sedpewick
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If you want to know more: the purple book

The reference on the topic.

@ over 800 pages

@ many examples

Analytic o “black-box" theorems, but also
Cﬂmbinﬂtﬂrics guidelines to study examples
which do not satisfy the
hypothesis of these “black-box”
theorems

Philippe Flapolet and
Robert Sedpewick

Merci, et a la semaine prochaine
pour parler de cographes !
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