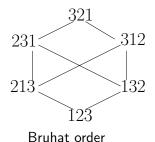
Between weak and Bruhat: the middle order on permutations

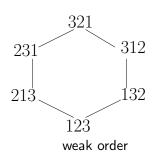
Mathilde Bouvel
Loria, CNRS and Univ. Lorraine (Nancy, France).

talk based on joint work with Luca Ferrari and Bridget E. Tenner

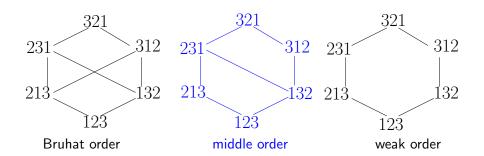
Midi-Combi de Nancy, 7 octobre 2024, en avant-première de Journées annuelles du GT Combinatoire Algébrique, Lyon, October 2024.

You may know these two

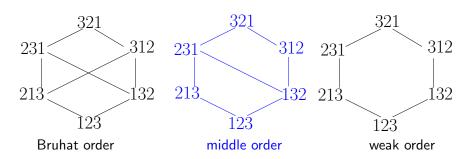




You may know these two, but that one is likely new



You may know these two, but that one is likely new



Goals of the talk:

- Define the middle order on S_n
- Give meaning to the property that "it sits between weak and Bruhat"
- Describe some of its properties
- Popularize this new order, hoping to raise new questions about it

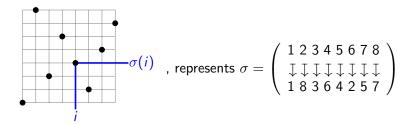
Our 3 orders through "mesh patterns"

Permutation diagrams

Notation:

- S_n = the set of permutations of size n
- $\sigma \in S_n$ is seen as the word $\sigma(1)\sigma(2)\cdots\sigma(n)$
- σ is also seen as its diagram *i.e.* the $n \times n$ grid with points at coordinates $(i, \sigma(i))$

Example: The word 1 8 3 6 4 2 5 7, or equivalently the diagram



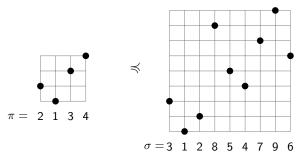
Permutation patterns

A permutation $\pi \in S_k$ is a pattern of a permutation $\sigma \in S_n$ (written $\pi \preccurlyeq \sigma$) when there exist indices $1 \leq i_1 < i_2 \cdots < i_k \leq n$ such that $\sigma(i_a) < \sigma(i_b)$ if and only if $\pi(a) < \pi(b)$

The subsequence $\sigma(i_1)\sigma(i_2)\cdots\sigma(i_k)$ is an occurrence of π in σ

Example: 2134 is a pattern of 312854796, one occurrence being 3157

This is also seen on diagrams:



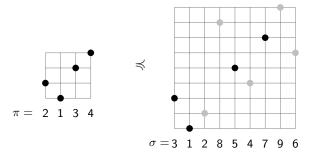
Permutation patterns

A permutation $\pi \in S_k$ is a pattern of a permutation $\sigma \in S_n$ (written $\pi \preccurlyeq \sigma$) when there exist indices $1 \leq i_1 < i_2 \cdots < i_k \leq n$ such that $\sigma(i_a) < \sigma(i_b)$ if and only if $\pi(a) < \pi(b)$

The subsequence $\sigma(i_1)\sigma(i_2)\cdots\sigma(i_k)$ is an occurrence of π in σ

Example: 2134 is a pattern of 312854796, one occurrence being 3157

This is also seen on diagrams:



Permutation patterns

A permutation $\pi \in S_k$ is a pattern of a permutation $\sigma \in S_n$ (written $\pi \preccurlyeq \sigma$) when there exist indices $1 \leq i_1 < i_2 \cdots < i_k \leq n$ such that $\sigma(i_a) < \sigma(i_b)$ if and only if $\pi(a) < \pi(b)$

The subsequence $\sigma(i_1)\sigma(i_2)\cdots\sigma(i_k)$ is an occurrence of π in σ

Example: 2134 is a pattern of 312854796, one occurrence being 3157

This is also seen on diagrams:

An inversion is a subsequence $\cdots j \cdots i \cdots$ in a permutation, with j > i.

Equivalently, it is an occurrence of the pattern $21 = \Box$

Example: The inversions of 312854796 are 31, 32, 85, 84, 87, 86, 54, 76 and 96

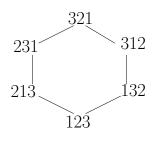
Mesh patterns

A mesh pattern (π, M) is the data of a pattern π (say, of size k) drawn in the central $k \times k$ square of the grid $[0, k+1]^2$, together with a set M of shaded unit cells in this grid. (M is called the mesh.)

An occurrence of (π, M) in σ is an occurrence of π in σ such that the regions of $[0, n+1]^2$ corresponding to the mesh M contain no points of σ

Example: Consider the mesh pattern $\mu = \frac{1}{4}$. The permutation 1423 contains four occurrences of 12, but only three of μ .

Weak order, seen through mesh patterns



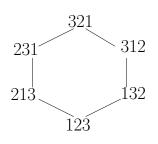
Covering relations are described by

$$\cdots ij \cdots \leadsto \cdots ji \cdots$$

i.e., transforming an $ascent^{(a)}$ into a $descent^{(d)}$ using the same two values.

- (a) occurrence of 12 at consecutive positions
- (d) occurrence of 21 at consecutive positions

Weak order, seen through mesh patterns



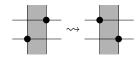
Covering relations are described by

$$\cdots ij \cdots \leadsto \cdots ji \cdots$$

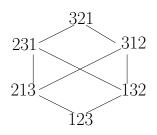
i.e., transforming an $ascent^{(a)}$ into a $descent^{(d)}$ using the same two values.

- (a) occurrence of 12 at consecutive positions
- (d) occurrence of 21 at consecutive positions

Equivalently, covering relations are described by



Bruhat order, seen through mesh patterns



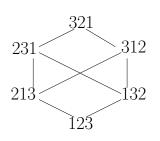
Relations are described by the swaps

$$\cdots i \cdots j \cdots \leadsto \cdots j \cdots i \cdots$$

i.e., transforming a non-inversion (=occurrence of 12) into an inversion using the same two values.

Covering relations are the relations that do not create additional inversions.

Bruhat order, seen through mesh patterns



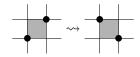
Relations are described by the swaps

$$\cdots i \cdots j \cdots \leadsto \cdots j \cdots i \cdots$$

i.e., transforming a non-inversion (=occurrence of 12) into an inversion using the same two values.

Covering relations are the relations that do not create additional inversions.

Equivalently, covering relations are described by

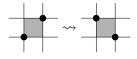


Middle order, defined through mesh patterns

• For the weak order, the covering relations are described by

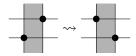


• For the Bruhat order, the covering relations are described by

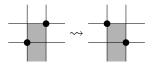


Middle order, defined through mesh patterns

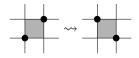
• For the weak order, the covering relations are described by



For the middle order, the covering relations are described by

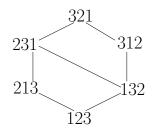


For the Bruhat order, the covering relations are described by

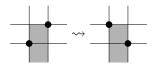


The middle order

• On permutations of size 3:



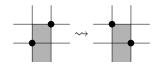
Covering relations described by



Summary so far, and what's ahead

What we have seen:

The covering relations of the middle order are described by



This interpolates between the weak order and the Bruhat order

What comes next:

- Another combinatorial interpretation of the middle order
- Some of its properties as a poset (in particular: distributive lattice)
- Enumeration of its intervals, and of its boolean intervals
- Implication on its Möbius function
- Combinatorial description of its Euler characteristic
 - Restriction to the subset of involutions

The middle order and inversion sequences

Inversion sequences, and bijection with permutations

- Reminder: Inversions are occurrences $\cdots j \cdots i \cdots$ of the pattern 21.
- *j* is called inversion top.
- Given $\sigma \in S_n$, let $x_j =$ number of inversions of σ such that j is the inversion top. Observe that $0 \le x_j < j$.
- Let $\varphi(\sigma) = (x_1, x_2, \dots, x_n)$ be the inversion sequence of σ .
- Sometimes called Lehmer code. Several (symmetric) variant exist.
- Example: For $\sigma=415623$, we have $\varphi(\sigma)=(0,0,0,3,2,2)$
- This is a bijection between S_n and the set I_n of inversion sequences of size n:

$$I_n = [0,0] \times [0,1] \times [0,2] \times \cdots \times [0,n-1]$$

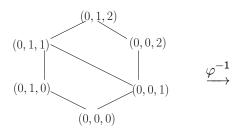
Middle order through inversion sequences

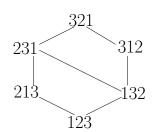
For inversion sequences $\mathbf{x}=(x_1,x_2,\cdots,x_n)$ and $\mathbf{y}=(y_1,y_2,\cdots,y_n)$, define the partial order

$$\mathbf{x} \leq \mathbf{y}$$
 when $x_i \leq y_i$ for all i

In particular, covering relations correspond to adding 1 to one component (provided we stay among inversion sequences).

Theorem: The middle order is the image of the above by the bijection φ^{-1} .





Proving this characterization of the middle order

Let
$$\varphi(\sigma) = (x_1, ..., x_n)$$
 and $\varphi(\tau) = (x_1, ..., x_{j-1}, x_j + 1, x_{j+1}, ..., x_n)$.

- In particular, $x_i < j 1$.
- So *j* is not a LtoR-minimum.
- So, we can define i as the rightmost entry to the left of j in σ such that i < j, and (i, j) is an occurrence of $\downarrow \downarrow$.
- We check that τ is the permutation obtained swapping i and j, so that τ covers σ in the middle order.

Proving this characterization of the middle order

Let
$$\varphi(\sigma) = (x_1, ..., x_n)$$
 and $\varphi(\tau) = (x_1, ..., x_{j-1}, x_j + 1, x_{j+1}, ..., x_n)$.

- In particular, $x_i < j 1$.
- So *j* is not a LtoR-minimum.
- So, we can define i as the rightmost entry to the left of j in σ such that i < j, and (i,j) is an occurrence of $\downarrow \downarrow$.
- We check that τ is the permutation obtained swapping i and j, so that τ covers σ in the middle order.

Let τ be obtained from σ by transforming one + into +.

- Let j be the largest of the two elements involved in
- $\varphi(\sigma)$ and $\varphi(\tau)$ differ only at their j-th coordinate
- \bullet and the difference is +1
- meaning that $\varphi(\tau)$ covers $\varphi(\sigma)$ in the defined order on inversion sequences

First properties of the middle order

A product of chains

We have seen that the middle order \mathcal{P}_n is isomorphic (with explicit bijection φ) to the product of chains

$$[0,0] \times [0,1] \times [0,2] \times \cdots \times [0,n-1]$$

Consequences:

- \mathcal{P}_n is a lattice: any σ and τ have a least upper bound $\sigma \vee \tau$ (called join) and a greatest lower bound, denoted $\sigma \wedge \tau$ (called meet). The join (resp. meet) is obtained taking component-wise maximum (resp. minimum) on corresponding inversion sequences.
- In addition, P_n is a distributive lattice.
 (meaning that ∨ is distributive over ∧ and vice-versa).
- \mathcal{P}_n is graded, *i.e.* has a rank function r, meaning that, for any σ , we can define $r(\sigma)$ as the length of any maximal chain from $12 \cdots n$ to σ . In \mathcal{P}_n , we have $r(\sigma) =$ number of inversions of σ .

Intervals in the middle order

Characterizing and counting all intervals in \mathcal{P}_n

Intervals of the *j*-element chain [0, j-1]:

- Such intervals are
 - of the form $\{a\}$ for $0 \le a \le j-1$,
 - or of the form [a, b] for $0 \le a < b \le j 1$.
- Therefore, there are $j+\binom{j}{2}=\binom{j+1}{2}$ such intervals.

Intervals of \mathcal{P}_n (up to isomorphism φ):

- Such intervals correspond to intervals $[(x_1, \ldots, x_n), (y_1, \ldots, y_n)]$ where each $[x_j, y_j]$ is an interval of [0, j-1].
- Therefore, there are $\prod_{j=1}^{n} {j+1 \choose 2} = \frac{n!(n+1)!}{2^n}$ intervals in \mathcal{P}_n .

Counting intervals by rank

Fact: An interval of rank k in \mathcal{P}_n corresponds to an interval $[(x_1, \ldots, x_n), (y_1, \ldots, y_n)]$ with $\sum x_j + k = \sum y_j$.

Theorem: Denote by f(n, k) the number of intervals in \mathcal{P}_n having rank k, with $n \ge 1$ and $k \ge 0$.

It holds that f(1,0) = 1 and for $n \ge 2$ and $k \in [0, \binom{n}{2}]$,

$$f(n,k) = \sum_{h=0}^{n-1} (n-h) \cdot f(n-1,k-h),$$

(with the convention that f(n,j) = 0 when j < 0).

Proof: By induction, decomposing an interval of rank k of $[0,0]\times[0,1]\times\cdots\times[0,n-2]\times[0,n-1]$ into an interval of rank h of [0,n-1] and an interval of rank k-h of $[0,0]\times[0,1]\times\cdots\times[0,n-2]$

Table of f(n, k), which is A139769 on the OEIS

n	0	1	2	3	4	5	6	7	8	9	10
1	1										
2	2	1									
3	6	7	4	1							
4	24	46	49	36	18	6	1				
1 2 3 4 5	120	326	501	562	497	354	204	94	33	8	1

- $\mathbf{k} = \mathbf{0}$: f(n,0) = n! since it counts elements in \mathcal{P}_n
- k=1: f(n,1) counts the covering relations in \mathcal{P}_n . From the previous theorem, we have $f(n,1)=n!(n-H_n)$, where $H_n=\sum_{i=1}^n\frac{1}{i}$. This is sequence A067318 in the OEIS.

Another interpretation of this sequence is as the sum of reflection lengths of all elements of S_n . Is there a bijective explanation?

Boolean intervals in the middle order

Characterizing and counting boolean intervals in \mathcal{P}_n

Dfn: An interval is boolean if it is isomorphic to a boolean algebra.

Characterization and enumeration:

- Boolean intervals of \mathcal{P}_n correspond to pairs $(x_1, \ldots, x_n), (y_1, \ldots, y_n)$ of inversion sequences with $y_i \in \{x_i, x_i + 1\}$ for all j.
- The number of boolean intervals in \mathcal{P}_n is (2n-1)!!.
 - Indeed, each pair (x_j, y_j) has j possibilities if $y_j = x_j$, and j 1 possibilities if $y_j = x_j + 1$, hence 2j 1 possibilities.

Properties about rank of boolean intervals:

- The rank is the number of j's such that $y_j = x_j + 1$.
- The maximal rank is n-1 (as $x_1=y_1=0$).

Counting boolean intervals in \mathcal{P}_n by rank

For $n > k \ge 0$, let b(n, k) be the number of rank-k boolean intervals in \mathcal{P}_n .

- For $n \ge j \ge 0$, let c(n,j) be the number of permutations of size n having j cycles.
- Equivalently (using a variant of Foata's bijection), c(n,j) is the number of permutations of size n having j RtoL-minima.

Theorem:
$$b(n,k) = \sum_{i=0}^{n} {i \choose k} c(n,n-i)$$
.

Proof:

- $x_i = 0$ if and only if i is a RtoL-minimum. So c(n, n i) is the number of inversion sequences of size n with i non-zero entries.
- A boolean interval of rank k in \mathcal{P}_n is characterized by an inversion sequence (y_1, \ldots, y_n) with k non-zero entries marked (those such that $x_i = y_i 1$; we take $x_i = y_i$ for non-marked entries).

Möbius function

Dfn: The Möbius function μ on any poset \mathcal{P} is defined recursively by

$$\mu(s,u) = egin{cases} 0 & ext{if } s \not \leq u, \ 1 & ext{if } s = u, ext{ and } \ -\sum\limits_{s \leq t < u} \mu(s,t) & ext{for all } s < u. \end{cases}$$

Prop: In finite distributive lattices, for any v, w, it holds that

- $\mu(v, w)$ is equal to 0 if the interval [v, w] is not boolean
- and otherwise $\mu(v, w) = (-1)^t$, where t is the rank of [v, w].

This holds in \mathcal{P}_n . In particular, for $\sigma \in \mathcal{S}_n$,

- $\mu(12\cdots n, \sigma)=0$ if and only if $\varphi(\sigma)$ contains ≥ 1 entry ≥ 2 . This is equivalent to σ containing a 312- or 321-pattern.
- Otherwise, $\mu(12\cdots n, \sigma) = (-1)^t$, where t is the number of 1's in $\varphi(\sigma)$ (here, also the number of inversions of σ).

Euler characteristic

Euler characteristic of a finite distributive lattice

Let \mathcal{P} be a finite distributive lattice. (Recall that \mathcal{P}_n has this property.)

- Dfn: An element of $\mathcal P$ is join-irreducible if it covers exactly one element of $\mathcal P$.
- Dfn: A valuation on \mathcal{P} is a function ν that satisfies $\nu(\min(\mathcal{P})) = 0$ and for all x, y,

$$\nu(x) + \nu(y) = \nu(x \wedge y) + \nu(x \vee y).$$

- Prop.: A valuation is determined by its values on the join-irreducibles.
- Dfn: The Euler characteristic is the unique valuation χ such that $\chi(a)=1$ for every join-irreducible a.

Join-irreducibles and Euler characteristic in \mathcal{P}_n

Prop.: The join-irreducible elements of \mathcal{P}_n are the permutations

$$1 \ 2 \ \cdots \ i \ j \ (i+1) \ (i+2) \ \cdots \ (j-1) \ (j+1) \ \cdots \ n,$$

for $i \in [0, n-2]$ and $j \in [i+2, n]$.

Proof: Similar to previous ones, using inversion sequences.

Theorem: The Euler characteristic χ on \mathcal{P}_n is

$$\chi(\sigma) = \text{ number of RtoL-non-minima of } \sigma.$$

Proof:

- χ is indeed 0 on $12 \cdots n$, and 1 on join-irreducibles.
- We can easily check that $\chi(x) + \chi(y) = \chi(x \wedge y) + \chi(x \vee y)$.

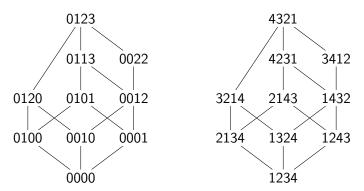
Cor.: The number of σ with Euler characteristic k in \mathcal{P}_n is c(n, n-k).

Proof: As c(n, n - k) = number of σ of size n with k RtoL-non-minima

Restriction to involutions

Finding something not-so-nice in something too-beautiful

 \mathcal{P}_n is extremely well behaved. What about its restriction to involutions?



The subsequent poset \mathcal{I}_n is not a lattice, not graded, and not an interval-closed subposet of \mathcal{P}_n .

But ... we can still compute the Möbius function in \mathcal{I}_n .

Characterizing inversion sequences of involutions

Recall that the number i(n) of involutions of size n satisfies

$$i(n) = i(n-1) + (n-1) \cdot i(n-2)$$
 for $n \ge 2$.

The decomposition used to prove this recurrence also proves that:

Prop.: Let σ be a permutation and $(x_1, \ldots, x_n) = \varphi(\sigma)$ be its inversion sequence.

Then σ is an involution if and only if

- (i) $x_n = 0$ and $(x_1, \dots x_{n-1})$ is the inversion sequence of an involution of size n-1, or
- (ii) $x_n = k > 0$, $x_{n-k} = 0$ and $(x_1, \dots, x_{n-k-1}, x_{n-k+1} 1, \dots, x_{n-1} 1)$ is the inversion sequence of an involution of size n 2.

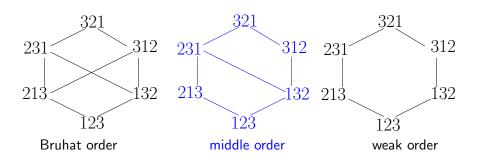
Möbius function on \mathcal{I}_n

- We say that $(x_1, ..., x_n)$ is slow-climbing when it does not contain large ascents, defined as factors (x_i, x_{i+1}) with $x_{i+1} > x_i + 1$.
- Lemma: The inversion sequence of an involution is slow-climbing if and only if it is the concatenation of factors $(0, 1, \dots, h)$ for some (possibly different) $h \ge 0$.

Theorem: For any involution $\sigma \in \mathcal{I}_n$, let α be the number of non-zero entries in $\varphi(\sigma)$. The Möbius function in \mathcal{I}_n is given by

$$\mu(12\ldots n,\sigma) = egin{cases} (-1)^{lpha} & ext{if } \sigma ext{ is slow-climbing, and} \ 0 & ext{otherwise.} \end{cases}$$

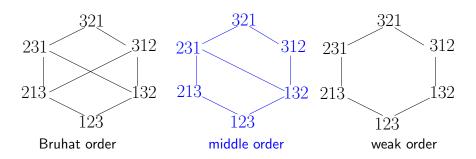
Recap



My goals were:

- Define the middle order on S_n
- Give meaning to the property that "it sits between weak and Bruhat"
- Describe some of its properties
- Popularize this new order, hoping to raise new questions about it

Recap



My goals were:

- Define the middle order on S_n
- Give meaning to the property that "it sits between weak and Bruhat"
- Describe some of its properties
- Popularize this new order, hoping to raise new questions about it

Thank you!