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Un peu de contexte

@ Dans cet exposé, on va parler d'informatique théorique et de
mathématiques discretes (par opposition aux mathématiques
continues).

@ Plus précisément, nous allons nous intéresser a la combinatoire
(énumérative), la “science de compter” des objets discrets.

@ Les objets au centre de cet exposé seront les permutations.
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Permutations : définition et énumération

Une permutation d'un ensemble fini X est une maniere d'ordonner
totalement les éléments de X.

En combinatoire, on fixe souvent X = {1,2,...,n} pour un entier n
quelconque. On parle alors de permutation de taille n.

Une permutation de taille n correspond a un tableau a n cases contenant
exactement une fois chaque valeur entiére entre 1 et n.

Exemple : [3,5,1,6,2,7,4,8] décrit une permutation de taille 8
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Permutations : définition et énumération

Une permutation d'un ensemble fini X est une maniere d'ordonner
totalement les éléments de X.

En combinatoire, on fixe souvent X = {1,2,...,n} pour un entier n
quelconque. On parle alors de permutation de taille n.

Une permutation de taille n correspond a un tableau a n cases contenant
exactement une fois chaque valeur entiére entre 1 et n.

Exemple : [3,5,1,6,2,7,4,8] décrit une permutation de taille 8

Enumération (ou comptage) : Notons a, le nombre de permutations de
taillen. Onaa,=n'=1x2x---x(n—1) xn.
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Digression : les classes combinatoires

L'ensemble des permutations (sous-entendu : d'un ensemble X de la forme
{1,2,...,n}) satisfait les propriétés suivantes :
@ chaque permutation a une taille (ici : le nombre d'objets permutés,
c'est-a-dire le nombre d’'éléments de I'ensemble X, ou I'entier n) ;

@ pour chaque taille fixé, il y a un nombre fini d'objets de taille n (ici :
on a vu que ce nombre est n!).

Mathilde Bouvel Permutations et motifs 4/19



Digression : les classes combinatoires

L'ensemble des permutations (sous-entendu : d'un ensemble X de la forme
{1,2,...,n}) satisfait les propriétés suivantes :

@ chaque permutation a une taille (ici : le nombre d'objets permutés,
c'est-a-dire le nombre d’'éléments de I'ensemble X, ou I'entier n) ;

@ pour chaque taille fixé, il y a un nombre fini d'objets de taille n (ici :
on a vu que ce nombre est n!).

Les ensembles d'objets qui possedent ces deux propriétés s'appellent des
classes combinatoires, et sont étudiés en ...combinatoire.

Questions classiques :

@ trouver une formule, ou a défaut toute I'information possible sur le
nombre d'objets de taille n, pour un n générique ;

@ savoir a quoi ressemble un objet typique de grande taille ;
o ...
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Une vision “géométrique” des permutations

Toute permutation de taille n, notée o = o(1)c(2)...0(n), peut étre
représentée par son diagramme : c'est la grille n X n ot on place, pour
chaque i de 1 a n, un point dans la case de coordonnées (i, o (i)).
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Une vision “géométrique” des permutations

Toute permutation de taille n, notée o = o(1)c(2)...0(n), peut étre
représentée par son diagramme : c'est la grille n X n ot on place, pour
chaque i de 1 a n, un point dans la case de coordonnées (i, o (i)).

Exemple : Le diagramme de Exercice :
0=18364257est De quelle permutation la figure
o ci-dessous est-elle le diagramme ?
o [
L °
o )
®------- o(i)eme ligne °
° } °

e °

d l

: Réponse : 431625
iéme colonne

Remarque :
Un diagramme contient exactement un point par ligne et par colonne.
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Motifs dans les permutations

On dit qu'une (petite) permutation o est motif de, ou est contenue dans,
une (grande) permutation 7 lorsque I'on peut obtenir le diagramme de o a
partir de celui de 7 en effagant des points (ainsi que les lignes et les
colonnes qui se retrouvent vides).

Exemple: 2134 est motifde3128547 96 car
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Motifs dans les permutations

On dit qu'une (petite) permutation o est motif de, ou est contenue dans,
une (grande) permutation 7 lorsque I'on peut obtenir le diagramme de o a
partir de celui de 7 en effagant des points (ainsi que les lignes et les
colonnes qui se retrouvent vides).

Exemple: 2134 est motifde312854796car...

Autrement dit, car on trouve une sous-séquence de 3128547 9 6 dont
les éléments se comparent comme dans2134.1Ici: 312854796.
La sous-séquence 3 1 5 7 est appelée occurrence de 2 1 3 4.
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Motifs dans les permutations

On dit qu'une (petite) permutation o est motif de, ou est contenue dans,
une (grande) permutation 7 lorsque I'on peut obtenir le diagramme de o a
partir de celui de 7 en effagant des points (ainsi que les lignes et les
colonnes qui se retrouvent vides).

Exemple: 2134 est motifde312854796car...

Autrement dit, car on trouve une sous-séquence de 3128547 9 6 dont
les éléments se comparent comme dans2134.1Ici: 312854796.
La sous-séquence 3 1 5 7 est appelée occurrence de 2 1 3 4.

Exercice :
Est-ce que les motifs 1 2 3 et 32 1 apparaissent dans7=4316527

Réponse :  oui pour 3 2 1 mais non pour 1 2 3.
Il'y a méme 3 occurrences de 3 2 1 dans 7.
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Pourquoi introduire ces motifs ?

@ a l'origine, pour caractériser les permutations triables par une pile (on
y revient juste apres) ;

@ c'est une notion naturelle de sous-structure dans les permutations ;

@ |'ordre partiel induit a de belles propriétés ;

@ la combinatoire des familles de permutations évitant des motifs est
riche, et un bon cadre pour le développement de nouvelles méthodes
utiles plus largement en combinatoire ;

@ les permutations évitant des motifs sont en bijection avec de
nombreux autres objets discrets ;

@ les motifs de permutations apparaissent aussi naturellement dans
d’autres domaines (par exemple en mathématiques pour caractériser
certaines propriétés des variétés de Schubert, en algorithmique et en
complexité, ...)
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

ﬁﬁ6132754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

N 132754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

‘ﬁﬁ 32754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1 N 32754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1 N 2754

W
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1 TN/ 754

SDWN
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

12 N 754

W
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

123 N 754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1236 N 754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1236 N 54
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1236 N 4

~ C1
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

ENTSEN
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

12364 N

~ C1
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

123645 N
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1236457 N
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

1236457 ﬁﬁ6132754
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en

bas".

S(c)=1236457 ﬁﬁ6132754:0
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en
bas".

S(c)=1236457 ﬁﬁ6132754:0

Exercice :  Calculer S(p) pour p=2137645
et S(7) pour T=2136745.
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en
bas".

S(c)=1236457 ﬁﬁ6132754:0

Exercice :  Calculer S(p) pour p=2137645
et S(7) pour T=2136745.

Réponse : S(p)=1234567etS(7)=1236457
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Tri par pile des permutations

Le tri par pile est la fonction S qui “essaie de trier une permutation en
utilisant une pile dont les valeurs doivent rester croissantes de haut en
bas".

S(c)=1236457 ﬁﬁ6132754:0

Exercice :  Calculer S(p) pour p=2137645
et S(7) pour T=2136745.

Réponse : S(p)=1234567etS(7)=1236457

Définition : Une permutation o est triable par une pile lorsque S(o) est en
ordre croissant.
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Lien entre motifs et tri par pile

Théoreme ([Knuth, The Art of Computer Programming (vol. 1), 1968]) :
o est triable par une pile si et seulement si o évite le motif 231.
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On démontre plutdt la contraposée (qui est logiquement équivalente) :
o n'est pas triable par une pile si et seulement si o contient le motif 231.
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Théoreme ([Knuth, The Art of Computer Programming (vol. 1), 1968]) :
o est triable par une pile si et seulement si o évite le motif 231.

On démontre plutdt la contraposée (qui est logiquement équivalente) :
o n'est pas triable par une pile si et seulement si o contient le motif 231.
Elements de preuve :

@ S(231) =213 : lorsque le "3" entre dans la pile, il pousse le “2" vers
la sortie, alors que le “1" est plus loin a droite.
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On démontre plutdt la contraposée (qui est logiquement équivalente) :
o n'est pas triable par une pile si et seulement si o contient le motif 231.

Elements de preuve :

@ S(231) =213 : lorsque le "3" entre dans la pile, il pousse le “2" vers
la sortie, alors que le “1" est plus loin a droite.

< Lorsqu'on a une occurrence ...j...k...i... de 231 dans o (avec
i < j < k), de la méme maniére, le k fait sortir le j avant que le i
n'entre dans la pile, donc i et j ne sont pas triés dans S(o).
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Lien entre motifs et tri par pile

Théoreme ([Knuth, The Art of Computer Programming (vol. 1), 1968]) :
o est triable par une pile si et seulement si o évite le motif 231.

On démontre plutdt la contraposée (qui est logiquement équivalente) :
o n'est pas triable par une pile si et seulement si o contient le motif 231.

Elements de preuve :

@ S(231) =213 : lorsque le "3" entre dans la pile, il pousse le “2" vers
la sortie, alors que le “1" est plus loin a droite.

< Lorsqu'on a une occurrence ...j...k...i... de 231 dans o (avec
i < j < k), de la méme maniére, le k fait sortir le j avant que le i
n'entre dans la pile, donc i et j ne sont pas triés dans S(o).

= La situation ci-dessus est la seule qui empéche deux éléments j > |
apparaissant dans l'ordre ...j...i... dans o d'étre triés dans S(o).
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Description des permutations évitant 231

Bilan jusqu'ici : Les permutations évitant 231 sont intéressantes.
Essayons maintenant de mieux les comprendre !
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Description des permutations évitant 231

Bilan jusqu'ici : Les permutations évitant 231 sont intéressantes.
Essayons maintenant de mieux les comprendre !

Décomposons une permutation évitant 231 en isolant son maximum :

(]
oD
o} évitant
231
oG
évitant 1%}
231

Réciproquement, une telle permutation évite 231.

Mathilde Bouvel
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De la structure au comptage (ou énumération)

On a vu que toute permutation o évitant 231 se décompose en trois :
@ son maximum,
@ la permutation o¢ qui évite 231,
@ et la permutation op qui évite 231.

Si o est de taille n, alors la taille de o¢ est une valeur k telle que
0< k<n-—1, et lataille de op est alors n — 1 — k.
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De la structure au comptage (ou énumération)

On a vu que toute permutation o évitant 231 se décompose en trois :
@ son maximum,
@ la permutation o¢ qui évite 231,
@ et la permutation op qui évite 231.

Si o est de taille n, alors la taille de o¢ est une valeur k telle que
0< k<n-—1, et lataille de op est alors n — 1 — k.

Si on note ¢, le nombre de permutations de taille n n—1
qui évitent 231, on a donc la récurrence suivante : Ch = g CkCn_k—1-
k=0

Avec cette récurrence, sachant que ¢cp =1 (et aussi cg = 1,0 =2,c3 =5
si vous voulez), on peut calculer autant de ¢, que I'on veut.
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De la structure au comptage (ou énumération)

On a vu que toute permutation o évitant 231 se décompose en trois :
@ son maximum,
@ la permutation o¢ qui évite 231,
@ et la permutation op qui évite 231.

Si o est de taille n, alors la taille de o¢ est une valeur k telle que
0< k<n-—1, et lataille de op est alors n — 1 — k.

Si on note ¢, le nombre de permutations de taille n n—1
qui évitent 231, on a donc la récurrence suivante : Ch = g CkCn_k—1-
k=0

Avec cette récurrence, sachant que ¢cp =1 (et aussi cg = 1,0 =2,c3 =5
si vous voulez), on peut calculer autant de ¢, que I'on veut.

“Philosophie” : Si on sait compter des objets,
c’est que I'on a compris leur structure.
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Nombres de Catalan : contexte

Les nombres ¢, définis par cg = 1 et la récurrence ¢, = Zz;é CkCn—k—1
sont appelés nombres de Catalan (en référence au mathématicien
franco-belge Eugéne Charles Catalan, 1814-1894).

lls énumeérent les permutations qui évitent 231 mais aussi plein d'autres
familles d'objets combinatoires : chemins de Dyck, arbres binaires,
triangulations de polygones, ...

AN

Le Catalan addendum de R. Stanley référence plus de 200 telles familles !
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Mieux connaitre les nombres de Catalan, et 'OEIS

Rappel : Les nombres de Catalan sont définis par cg = 1 et la récurrence
n—1
Cn = D _j—o CkCn—k—1-

Premiéres valeurs :
n= [1|2(3| 4|5 6 7 8 9 10
=112 5|14 |42 | 132 | 429 | 1430 | 4862 | 16796
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Mieux connaitre les nombres de Catalan, et 'OEIS

Rappel : Les nombres de Catalan sont définis par cg = 1 et la récurrence
n—1
Cn = D _j—o CkCn—k—1-

Premiéres valeurs :
n= [1|2(3| 4|5 6 7 8 9 10
=112 5|14 |42 | 132 | 429 | 1430 | 4862 | 16796

OEIS : C'est I'encyclopédie en ligne des séquences d'entiers
https://oeis.org/

La suite des nombres de Catalan y porte I'identifiant A000108.
On trouve sur sa page énormément d'information sur ces nombres !
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Mieux connaitre les nombres de Catalan, et 'OEIS

Rappel : Les nombres de Catalan sont définis par cg = 1 et la récurrence
n—1
Cn = D _j—o CkCn—k—1-

Premiéres valeurs :
n= [1|2(3| 4|5 6 7 8 9 10
=112 5|14 |42 | 132 | 429 | 1430 | 4862 | 16796

OEIS : C'est I'encyclopédie en ligne des séquences d'entiers
https://oeis.org/

La suite des nombres de Catalan y porte I'identifiant A000108.
On trouve sur sa page énormément d'information sur ces nombres !

Et cela fonctionne pour toutes les suites d'entiers connues, qu’elles soient
célebres ou non (plus de 370 000 entrées).

Exemples : A000142 (factorielles), A000045 (Fibonacci), A093907 (table
périodique des éléments !), A281784 (surprise. .. )
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Nombres de Catalan : formule close

Rappel (encore) : Les nombres de Catalan sont définis par cg = 1 et la
récurrence ¢, = ZZ;%) CiCn—k—1-

Théoréeme : Pour tout entier n, on a
1 2n
Ch = )
" n+1\n

e Factorielles : nl =1x2x---x (n—1) x n (convention : 0! =1)

o Coefficients binomiaux : (}) = k!(:ik)! = "("71%."2'.(.'_7;’(“)

Notations :
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Nombres de Catalan : formule close

Rappel (encore) : Les nombres de Catalan sont définis par cg = 1 et la
récurrence ¢, = ZZ;%) CiCn—k—1-

Théoréeme : Pour tout entier n, on a
1 2n
Ch = )
" n+1\n

e Factorielles : nl =1x2x---x (n—1) x n (convention : 0! =1)

o Coefficients binomiaux : (}) = k!(:ik)! = "("71%."2'.(.'_7;’(“)

Notations :

Preuve “classique” : Par séries génératrices et développements limités
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Nombres de Catalan : formule close

Rappel (encore) : Les nombres de Catalan sont définis par cg = 1 et la
récurrence ¢, = ZZ;%) CiCn—k—1-

Théoréeme : Pour tout entier n, on a
1 2n
Ch = )
" n+1\n

e Factorielles : nl =1x2x---x (n—1) x n (convention : 0! =1)

o Coefficients binomiaux : (}) = k!(:ik)! = "("71%."2'.(.'_7;’(“)

Notations :

Preuve “classique” : Par séries génératrices et développements limités

Une preuve par récurrence existe, mais elle est astucieuse.
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Asymptotique des nombres de Catalan

L'asymptotique d'une suite de nombres décrit sa vitesse de croissance.

n= |1[2|3]| 4 5 6 7 e 20
cp=1|1]12]5 |14 | 42 | 132 | 429 | ... 6564120420
nl=11[2|6|24|120 | 720 | 75040 | ... | 2432902008176640000
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Asymptotique des nombres de Catalan

L'asymptotique d'une suite de nombres décrit sa vitesse de croissance.

n= |1[2|3]| 4 5 6 7 o 20
cph=1112|5 |14 ] 42 | 132 429 . 6564120420
nl=11[2 624|120 | 720 | 75040 | ... | 2432902008176640000
Théoreme :
1 4"

Ch ~Yn—oo ﬁm
Remarques :

@ On peut le démontrer a partir de la formule de Stirling pour
I'équivalent de la factorielle.

@ En comparaison, n! ~ (2)"v2mn. C'est beaucoup plus rapide !
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Asymptotique des nombres de Catalan

L'asymptotique d'une suite de nombres décrit sa vitesse de croissance.

n= |1[2|3]| 4 5 6 7 o 20
cph=1112|5 |14 ] 42 | 132 429 . 6564120420
nl=11[2 624|120 | 720 | 75040 | ... | 2432902008176640000
Théoreme :
1 4"

Ch ~Yn—oo ﬁm
Remarques :

@ On peut le démontrer a partir de la formule de Stirling pour
I'équivalent de la factorielle.

@ En comparaison, n! ~ (2)"v2mn. C'est beaucoup plus rapide !

Théoreme ([Marcus-Tardos, 2004, ex-conjecture de Stanley-Wilf]) :
Pour tout motif o, il existe une constante ¢, telle que le nombre a, de
permutations de taille n qui évitent o est inférieur a ¢ pour tout n.
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Autres motifs de taille 3

Par rotation, pour tout n, on a égalité entre

@ le nombre de permutations de taille n évitant 231,
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Par rotation, pour tout n, on a égalité entre
@ le nombre de permutations de taille n évitant 231,

@ le nombre de permutations de taille n évitant 132,
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Autres motifs de taille 3

Par rotation, pour tout n, on a égalité entre
@ le nombre de permutations de taille n évitant 231,
@ le nombre de permutations de taille n évitant 132,

@ le nombre de permutations de taille n évitant 312,
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Par rotation, pour tout n, on a égalité entre
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le nombre de permutations de taille n évitant 213.
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Autres motifs de taille 3

Par rotation, pour tout n, on a égalité entre
@ le nombre de permutations de taille n évitant 231,
@ le nombre de permutations de taille n évitant 132,
@ le nombre de permutations de taille n évitant 312,
o

le nombre de permutations de taille n évitant 213.

Donc pour tout motif de taille 3 non-monotone, le nombre de
permutations de taille n qui évitent ce motif est c,,.
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Autres motifs de taille 3

Par rotation, pour tout n, on a égalité entre
@ le nombre de permutations de taille n évitant 231,
@ le nombre de permutations de taille n évitant 132,
@ le nombre de permutations de taille n évitant 312,
o

le nombre de permutations de taille n évitant 213.

Donc pour tout motif de taille 3 non-monotone, le nombre de
permutations de taille n qui évitent ce motif est c,,.

Théoreme :
Le nombre de permutations de taille n qui évitent un motif de taille 3
monotone (c'est-a-dire 123, ou 321) est aussi c.

Il existe beaucoup de preuves par bijection, dont une bonne partie utilise
les chemins de Dyck comme objets intermédiaires.
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Evitement de motifs plus grands

Il'y a des centaines d'articles de recherche sur le sujet !

Voir, en particulier, la page Wikipédia
Enumerations of specific permutation classes
Classes avoiding one pattern of length 3 1 edit)

There are two symmetry classes and a single Wilf class for single permutations of length three.

B | sequence enumerating Av,(B) | OEIS type of

exact ion reference
12312

R algebraic (nonrational) g.f. | MacMahon (1916)
231 1,2, 5, 14, 42, 132, 429, 1430, ... | A000108

Catalan numbers Knuth (1968)
Classes avoiding one pattern of length 4 [ edit]
There are seven symmetry classes and three Wilf classes for single permutations of length four.

B sequence enumerating Av,(B) OEIS type of

e exact ation reference
134212 1 . "
V5 1,2, 6, 23, 103, 512, 2740, 15485, ... | A022558 | algebraic (nonrational) g.f Boéna (1997)

123412
124312
143202
2143

1,2, 6, 23, 103, 513, 2761, 15767, ... | A005802 | holonomic (nonalgebraic) g.f. | Gessel (1990)

1324 |1, 2,6, 23,103, 513, 2762, 15793, ... | AO61552
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Un probleme ouvert

Comment sont énumérées les permutations évitant le motif 1324 777

Notons a, le nombre de permutations de taille n qui évitent 1324.
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Un probleme ouvert

Comment sont énumérées les permutations évitant le motif 1324 777

Notons a, le nombre de permutations de taille n qui évitent 1324.

@ On connait la valeur de a, seulement jusqu'a n = 50 (et avant 2018,
c'était seulement jusqu'a n = 36).
Pour les obtenir, il a fallu concevoir un algorithme treés malin.
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Comment sont énumérées les permutations évitant le motif 1324 777

Notons a, le nombre de permutations de taille n qui évitent 1324.

@ On connait la valeur de a, seulement jusqu'a n = 50 (et avant 2018,
c'était seulement jusqu'a n = 36).
Pour les obtenir, il a fallu concevoir un algorithme treés malin.

@ On sait qu'il existe des constantes c¢; et ¢, telles que
a1 % (10.271)" < a, < ¢3 x (13.5)"

(et ces bornes étaient moins bonnes avant 2017).
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Un probleme ouvert

Comment sont énumérées les permutations évitant le motif 1324 777

Notons a, le nombre de permutations de taille n qui évitent 1324.

@ On connait la valeur de a, seulement jusqu'a n = 50 (et avant 2018,
c'était seulement jusqu'a n = 36).
Pour les obtenir, il a fallu concevoir un algorithme treés malin.

@ On sait qu'il existe des constantes c¢; et ¢, telles que
a1 % (10.271)" < a, < ¢3 x (13.5)"

(et ces bornes étaient moins bonnes avant 2017).

@ On ne connait pas I'asymptotique de a,, mais on conjecture (2018)

que

a,,Nc3><,u"><uiﬁ><ng

ou p ~ 11.600 + 0.003, uy ~ 0.0400 +0.0005 et g = —1.1 £0.1.
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Merci de votre écoute !

Cequ'onavu:

e Comprendre et compter les permutations évitant 231 est facile (pour
un probleme de recherche !).

@ Comprendre et compter les permutations évitant 1324 est
extrémement difficile.

Plus généralement, cet exposé illustre ce que peut étre la recherche en
combinatoire, un des domaines a la frontiere math-info.
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Merci de votre écoute !

Cequ'onavu:

e Comprendre et compter les permutations évitant 231 est facile (pour
un probleme de recherche !).

@ Comprendre et compter les permutations évitant 1324 est
extrémement difficile.

Plus généralement, cet exposé illustre ce que peut étre la recherche en
combinatoire, un des domaines a la frontiere math-info.

N'hésitez pas a me poser (tout de suite, ou plus tard) :

@ des questions générales sur ma recherche, mon métier, mes études,
...ou tout autre sujet lié ;

@ des questions “techniques” sur le contenu de I'exposé ou plus
généralement les permutations.
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