A variant of the tandem duplication - random loss model of genome rearrangement

Mathilde Bouvel Dominique Rossin

Permutation Patterns 2007

LIAFA

Outline of the talk

1 Biological motivations and the combinatorial model

2 Previous results: the whole genome duplication - random loss model

3 Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

4 Other questions to be considered

Duplications and losses in the biological models of genome rearrangement

■ Complete genome sequences at disposal:
\hookrightarrow study molecular evolution and compute distance between genomes
■ Classical models of genome rearrangement:
\hookrightarrow duplications and losses of genes not taken into account

- On the tandem duplication-random loss model of genome rearrangement [2005]:
\hookrightarrow Chaudhuri, Chen, Mihaescu and Rao isolate the duplication-loss problem

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

The tandem duplication - random loss model

Genes $=\{1,2, \ldots, n\} ;$ Genome $=$ Permutation $\sigma \in S_{n}$

Definition

One tandem duplication - random loss step:
1 duplication of a contiguous fragment of the genome, inserted immediately after the original fragment

2 loss of one of the two copies of every duplicated gene

```
12\mp@subsup{\overbrace}{3456}{*}\rightsquigarrow12\mp@subsup{\overbrace}{3456}{~44567}~12\not245634567\rightsquigarrow1245367
```


The tandem duplication - random loss model

Example

$$
\begin{aligned}
12 \overbrace{3456} & \rightsquigarrow 12 \overbrace{3456} \overbrace{34567} \\
& \rightsquigarrow 12 \not 345634567
\end{aligned}
$$

Beware! Duplication-loss steps are not reversible!
Example
$\overbrace{123456} \rightsquigarrow 246135 \not \approx 123456$

The tandem duplication - random loss model

"Oriented distance" $=$ minimum cost of a path from σ_{1} to σ_{2}

- Compute $\operatorname{cost}(12 \ldots n \cdots-)=\operatorname{cost}(\sigma)=$ the minimum cost of a duplication-loss scenario from $12 \ldots n$ to σ

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

The tandem duplication - random loss model

■ "Oriented distance" $=$ minimum cost of a path from σ_{1} to σ_{2}
■ Compute $\operatorname{cost}(12 \ldots n \hookrightarrow \sigma)=\operatorname{cost}(\sigma)=$ the minimum cost of a duplication-loss scenario from $12 \ldots n$ to σ

Mathilde Bouvel
A variant of the tandem duplication - random loss model of genome rearrangement

Cost functions

■ Power cost function: width $k \Rightarrow \operatorname{cost} \alpha^{k}$ for some $\alpha \geq 1$
\hookrightarrow Studied by Chaudhuri, Chen, Mihaescu and Rao

- Linear or affine cost function
\hookrightarrow What they suggest to study
- Piecewise constant cost function:
width $k \Rightarrow \operatorname{cost}\left\{\begin{array}{l}1 \text { if } k \leq K \\ \infty \text { if } k>K\end{array}\right.$
\hookrightarrow Where we find combinatorial properties

Model with power cost function

Duplication-loss on a fragment of width $k \Rightarrow \operatorname{cost} \alpha^{k}$
■ $\alpha=1$: whole genome duplication-random loss model
\hookrightarrow the cost of any step is 1
$\hookrightarrow \operatorname{cost}(\sigma)$ is known, together with a corresponding scenario (radix sort algorithm)

- $\alpha \geq 2$: reduces to width $=2$
$\hookrightarrow \operatorname{cost}(\sigma)=\alpha^{2} \times$ number of inversions in σ (Kendall-Tau or bubblesort distance)
■ $1<\alpha<2$: open question

Duplication-loss from the pattern-avoidance point of view

For the whole genome duplication - random loss model:

Theorem

$$
\operatorname{cost}(\sigma)=\left\lceil\log _{2}(\operatorname{desc}(\sigma)+1)\right\rceil
$$

Consequence

The permutations obtainable in p steps are those having at most $2^{p}-1$ descents.
\Longrightarrow a pattern-avoiding permutation class $S(B)$, with $B=$ the minimal permutations (for \prec) with 2^{p} descents.
\prec is the pattern involvement relation

The variant of the model we considered

Piecewise constant cost function: width $k \Rightarrow \operatorname{cost}\left\{\begin{array}{l}1 \text { if } k \leq K \\ \infty \text { if } k>K\end{array}\right.$
Alternatively: Duplication of fragments of width at most K Cost $=$ number of steps

Problems to consider:

- Characterization of the permutations obtained in p steps in terms of excluded patterns ?
■ Cost of obtaining a permutation ? on average ? in the worst case ?
■ Finding an optimal sequence of steps from $12 \ldots n$ to σ, i.e. a sequence of minimal cost ?

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

Definition

Definition

$\mathcal{C}(K, p)=$ the class of all permutations obtained from $12 \ldots n$ (for any n) after p duplication-loss steps of width at most K.

Notice: $\mathcal{C}(K, p)$ is stable for \prec

First theorem

Focus on $\mathcal{C}(K, 1)$: one duplication-loss step from $12 \ldots n$

Theorem

$\mathcal{C}(K, 1)=S(B)$.
The basis B is $\{321,3142,2143\} \cup D, D$ being the set of all permutations of S_{K+1} that do not start with 1 nor end with $K+1$, and containing exactly one descent.

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

An important property

Notice:

$$
\begin{aligned}
& \sigma \in \mathcal{C}(K, 1) \Rightarrow \operatorname{desc}(\sigma) \leq 1 \\
& |\sigma| \leq K, \operatorname{desc}(\sigma) \leq 1 \Rightarrow \sigma \in \mathcal{C}(K, 1)
\end{aligned}
$$

Proposition

For the permutations σ of size $K+1$ having exactly one descent we have: $\sigma \notin \mathcal{C}(K, 1) \Leftrightarrow \sigma$ does not start with 1 nor end with $K+1$.
$\sigma \in S_{K+1}$ with 1 descent

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

An important property

Notice:

$$
\begin{aligned}
& \sigma \in \mathcal{C}(K, 1) \Rightarrow \operatorname{desc}(\sigma) \leq 1 \\
& |\sigma| \leq K, \operatorname{desc}(\sigma) \leq 1 \Rightarrow \sigma \in \mathcal{C}(K, 1)
\end{aligned}
$$

Proposition

For the permutations σ of size $K+1$ having exactly one descent we have: $\sigma \notin \mathcal{C}(K, 1) \Leftrightarrow \sigma$ does not start with 1 nor end with $K+1$.
$\sigma \in S_{K+1}$ with 1 descent
■ $\sigma=1 \sigma_{2} \ldots \sigma_{K+1}$ or $\sigma=\sigma_{1} \ldots \sigma_{K} K+1 \Rightarrow \sigma \in \mathcal{C}(K, 1)$

- $\sigma_{1} \neq 1$ and $\sigma_{K+1} \neq K+1 \Rightarrow \sigma \notin \mathcal{C}(K, 1)$

Is $\mathcal{C}(K, p)$ also a pattern-avoiding class ?

Theorem

The class $\mathcal{C}(K, p)$ is a class of pattern-avoiding permutations $S(B)$. Its basis B is finite and contains only patterns of size at most $(K p+2)^{2}-2$.
$\mathcal{C}(K, p)$ is stable for the pattern relation \prec
\Rightarrow show that the basis is finite + bound the size of the patterns

Some combinatorial properties of the classes $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$

Key Proposition to the Theorem

Proposition

If $\sigma \notin \mathcal{C}(K, p)$, then either $|\sigma| \leq(K p+2)^{2}-2$, or there exists a strict pattern τ of $\sigma, \tau \notin \mathcal{C}(K, p)$.

Proposition \Rightarrow Theorem: stability for \prec

Idea of the proof of the Proposition:
Consider the minimal permutations $\sigma \notin \mathcal{C}(K, p)$, and bound the necessary moves of elements to go from $12 \ldots n$ to σ

$v p$-vectors and $v p$-domain

$v p=$ value \rightarrow position

$$
\begin{gathered}
\sigma=\underset{\leftarrow}{4123576} \leftrightarrows \stackrel{4}{\leftrightarrows} \\
\text { vp-domain of } \sigma \\
=\{1,2,3,4,6,7\}
\end{gathered}
$$

Represents the necessary moves from σ to $12 \ldots n$, or when reversing the arrows from $12 \ldots n$ to σ

If $\sigma \in \mathcal{C}(K, p)$, then its $v p$-domain contains at most $K p$ elements

What does minimal $\sigma \notin \mathcal{C}(K, p)$ look like ?

Previously: If $\sigma \in \mathcal{C}(K, p)$, then its $v p$-domain contains at most $K p$ elements
Consequence: If $\sigma \notin \mathcal{C}(K, p)$ is minimal, then its $v p$-domain contains at most $2 K p+2$ elements at most $K p+1 v p$-windows

because σ is minimal
Conclusion: $|\sigma| \leq(K p+2) K p+2 K p+2=(K p+2)^{2}-2$

How many steps from $12 \ldots n$ to σ ?

Duality between "long moves" and "local reordering"

- Lower bound: $\Omega\left(\frac{n}{K} \log K+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average
- Algorithm (upper bound): $\Theta\left(\frac{n}{K} \log K+\frac{n^{2}}{K^{2}}\right)$ steps in the worst case and on average

What about $\operatorname{cost}(\sigma)$? Our algorithm gives an K-approximation of an optimal duplication-loss scenario

Open questions

Algorithmic:
■ Formula for $\operatorname{cost}(\sigma)$?
■ Optimal sequence of steps from $12 \ldots n$ to σ ?
■ Characterization of those sequences ? with a decreasing energy function?
Combinatorics:

- Characterization of the minimal permutations with $d=2^{p}$ descents (excluded patterns for the whole genome duplication - random loss model) ?
- Description of the excluded patterns in $\mathcal{C}(K, p)$?
\square Order of the cardinality of $\mathcal{C}(K, 1)$ and $\mathcal{C}(K, p)$?
Biology:
■ How can the knowledge of pattern-avoidance be of use to compute probable evolution scenarios ?

