Refined enumeration of permutations sorted with two stacks and a D_8 symmetry

Mathilde Bouvel and Olivier Guibert (LaBRI)

Permutation Patterns 2012, University of Strathclyde

The little story of the problem, with many characters!

- Questions of Anders, Einar and Mark: What are the permutations sorted by the composition of two operators of the form $\mathbf{S} \circ \alpha$ for $\alpha \in D_8$? How are they enumerated?
- Answer to the 1st question, with Mike and Michael also: Characterization of permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ (a set we denote $\mathrm{Id}(\mathbf{S} \circ \alpha \circ \mathbf{S})$) by (generalized) excluded patterns.
- Conjectures of Anders, Einar and Mark for the 2nd question:
 - $Id(S \circ r \circ S)$ and $Id(S \circ S)$ are enumerated by the same sequence, and a tuple of 15 statistics is equidistributed.
 - $Id(S \circ i \circ S)$ and Bax are enumerated by the same sequence, and a tuple of 3 statistics is equidistributed.
- Answer to the 2nd question, by Olivier and myself: The conjectures are true, and a few more statistics can be added to the first one.

Definitions

Definitions

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

- Linear representation: $\sigma = 18364257$
- Two lines representation:

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{array}\right)$$

Representation as a product of cycles: $\sigma = (1) (2 8 7 5 4 6) (3)$ Representation by diagram:

Id(S o i o S), Bax, and TBax

Classical patterns in permutations

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k \text{ such that } \sigma_{i_1} \ldots \sigma_{i_k} \text{ is order isomorphic } (\equiv) \text{ to } \pi.$

Notation: $\pi \preceq \sigma$.

Definitions

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \leq 312854796$

since $3157 \equiv 2134$.

Classical patterns in permutations

Occurrence of a pattern: $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists i_1 < \ldots < i_k \text{ such that } \sigma_{i_1} \ldots \sigma_{i_k} \text{ is order isomorphic } (\equiv) \text{ to } \pi.$

Notation: $\pi \preceq \sigma$.

Definitions

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \leq 312854796$ since $3157 \equiv 2134$.

Avoidance: Av $(\pi, \tau, ...)$ = set of permutations that do not contain any occurrence of π or τ or . . .

Definitions

Generalizations of excluded patterns

- **Dashed** pattern [Babson, Steingrímsson 2000]: Add adjacency constraints between some elements $\sigma_{i_1}, \ldots, \sigma_{i_k}$. Example: $\sigma_{i_1}\sigma_{i_2}\sigma_{i_3}\sigma_{i_4}$ occurrence of 2-41-3 $\Rightarrow i_3 = i_2 + 1$.
- Barred pattern [West 1990]: Add some absence constraints Example: Occurrence of $3\overline{5}241 = \text{occurrence of } 3241 \text{ that}$ cannot be extended to an occurrence of 35241
- Mesh pattern [Úlfarsson, Brändén, Claesson 2011]: Stretched diagram with shaded cells ...

An occurrence of a mesh pattern is a set of points matching the diagram while leaving zones //// empty.

Example:
$$\mu$$

Example: $\mu = \emptyset$ is a pattern of $\sigma = \emptyset$

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

D₈ symmetries

Definitions

000000

Symmetries of the square transform permutations via their diagrams

These operators generate an 8-element group:

$$D_8 = \{id, r, c, i, r \circ c, i \circ r, i \circ c, i \circ c \circ r\}$$

Definitions

000000

Perspectives

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

The stack sorting operator **S**

Definitions

000000

Perspectives

The stack sorting operator **S**

Definitions

000000

Definitions

000000

Definitions

000000

Definitions

000000

Definitions

000000

Perspectives

The stack sorting operator **S**

Definitions

000000

Definitions

000000

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6

7 5 4

Definitions

000000

Sort (or try to do so) using a stack satisfying the Hanoi condition.

5 4

Perspectives

The stack sorting operator **S**

Definitions

000000

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

The stack sorting operator **S**

Definitions

000000

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

The stack sorting operator **S**

Id(S o i o S), Bax, and TBax

The stack sorting operator **S**

Definitions

000000

Perspectives

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

The stack sorting operator **S**

Definitions

000000

(Generalized) Permutation patterns, D_8 symmetries, and the stack sorting operator.

The stack sorting operator **S**

Definitions

$$\mathbf{S}(\sigma) = 1\ 2\ 3\ 6\ 4\ 5\ 7$$

Equivalently,
$$S(\varepsilon) = \varepsilon$$
 and $S(LnR) = S(L)S(R)n$, $n = \max(LnR)$

Definitions

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$\mathbf{S}(\sigma) = 1 \ 2 \ 3 \ 6 \ 4 \ 5 \ 7$$

Equivalently, $S(\varepsilon) = \varepsilon$ and S(LnR) = S(L)S(R)n, $n = \max(LnR)$

- Stack sortable permutations: Id(S) = Av(231), enumeration by Catalan numbers [Knuth]
- Two-stack sortable: $Id(\mathbf{S} \circ \mathbf{S}) = Av(2341, 3\overline{5}241)$, enumeration by $\frac{2(3n)!}{(n+1)!(2n+1)!}$ [West, Zeilberger,...]
- Many other variants studied, in connection with excluded patterns [Bóna, Bousquet-Mélou, Rossin, ...]

Stating the main results

Characterization by generalized excluded patterns

Theorem

Definitions

Permutations that are sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$, for α in D_8 , are:

■
$$Id(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S}) = Id(\mathbf{S} \circ \mathbf{i} \circ \mathbf{c} \circ \mathbf{S}) = Av(1342, 31-4-2)$$

= $Av(1342, 3\bar{5}142)$;

- \blacksquare Av(231) = Id(**S**) is enumerated by Catalan numbers
- Av(2341, $3\overline{5}$ 241) = Id(**S** \circ **S**) is enumerated by $\frac{2(3n)!}{(n+1)!(2n+1)!}$

Definitions

Some permutation statistics...and many more

Number of RtoL-max

 $rmax(\sigma) = 4$

Number of LtoR-max

 $lmax(\sigma) = 5$

Number of components

 $comp(\sigma) = 4$

Some permutation statistics...and many more

Number of RtoL-max

$rmax(\sigma) = 4$

Number of LtoR-max

$$lmax(\sigma) = 5$$

$$w \in \{u, d\}^{n-1}, w_i =$$

$$udword(\sigma) = dudduuududu$$

Number of components

$$comp(\sigma) = 4$$

Up-down word of
$$\sigma \in \mathfrak{S}_n$$
: $w \in \{u, d\}^{n-1}$, $w_i = \begin{cases} u & \text{if } \sigma_i < \sigma_{i+1} \\ d & \text{if } \sigma_i > \sigma_{i+1} \end{cases}$

Refined enumeration of $Id(S \circ r \circ S)$

Theorem

Definitions

The two sets $Id(S \circ S)$ and $Id(S \circ r \circ S)$ are enumerated by the same sequence. Moreover, the tuple of statistics (udword, rmax, Imax, I

The underlying bijection actually preserves the joint distribution of these statistics.

Consequence

The statistics (asc, des, maj, maj $\circ \mathbf{r}$, maj $\circ \mathbf{c}$, maj $\circ \mathbf{rc}$, valley, peak, ddes, dasc, rir, rdr, lir, ldr) are also (and jointly) equidistributed.

Refined enumeration of $Id(S \circ i \circ S)$

$\mathsf{Theorem}$

Definitions

The set $Id(S \circ i \circ S)$ is enumerated by the Baxter numbers, and the triple of statistics (Imax, des, comp) has the same joint distribution on $Id(S \circ i \circ S)$ and on Bax.

Lemma

It also has the same distribution than the triple of statistics (Imax, occ_{μ} , comp) on TBax, where $\mu=$

- Baxter permutations: Bax = Av(2-41-3, 3-14-2)
- Twisted Baxter permutations: TBax = Av(2-41-3, 3-41-2)

Both are enumerated by $Bax_n = \frac{2}{n(n+1)^2} \sum_{k=1}^{n} {n+1 \choose k-1} {n+1 \choose k} {n+1 \choose k+1}$

(A few) elements of proof

Characterization of $Id(\mathbf{S} \circ \alpha \circ \mathbf{S})$ with excluded patterns

- ✓ Bijection between $Id(S \circ S)$ and $Id(S \circ r \circ S)$ Bijection between $Id(S \circ i \circ S)$ and TBax
- √ Bijection between TBax and Bax

Enumeration of $Id(S \circ r \circ S)$

Results

Theorem (partial statement)

The two sets $Id(S \circ S)$ and $Id(S \circ r \circ S)$ are enumerated by the same sequence.

Method of proof:

Definitions

- $Id(S \circ S) = Av(2341, 3\overline{5}241)$
- $Id(S \circ r \circ S) = Av(1342, 3\overline{5}142)$
- Provide a common rewriting system (encoding isomorphic generating trees) for $Id(S \circ S)$ and $Id(S \circ r \circ S)$

Refinement according to statistics: introduce each statistics into the rewriting system

Bijection between $Id(S \circ r \circ S)$ and $Id(S \circ S)$ that preserves a 20-tuple of statistics

Generating trees

Definitions

- Generating tree for $Av(\pi, \tau, ...)$: an infinite tree where vertices at level n are permutations of \mathfrak{S}_n avoiding π, τ, \dots
- The children σ' of σ are obtained by insertion of a new element in the active sites of σ .
 - Sites are often on one of the four sides of the diagram (e.g. on the right).
 - Sites are active when $\sigma' \in Av(\pi, \tau, ...)$ i.e., when the insertion does not create a pattern π or τ ...

$\mathsf{Theorem}$

Two classes having isomorphic generating trees are in bijection.

... eventhough the bijection is not explicit.

Bijection between $Id(S \circ r \circ S)$ and $Id(S \circ S)$ that preserves a 20-tuple of statistics

Generating trees

Definitions

Example: Av(321) with insertion on the right:

Bijection between $Id(S \circ r \circ S)$ and $Id(S \circ S)$ that preserves a 20-tuple of statistics

Generating trees

Definitions

Example: Av(321) with insertion on the right:

Remark: Active sites are the one above all the inversions of σ

Bijection between $Id(S \circ r \circ S)$ and $Id(S \circ S)$ that preserves a 20-tuple of statistics

Associated rewriting systems

Idea: Describe the tree compactly by a rewriting rule/systems

- Associate labels to permutations (e.g. number of active sites)
- From the label of σ , describe the labels of the children of σ

Example: The generating tree of Av(321) with labels

Associated rewriting systems

Results

Idea: Describe the tree compactly by a rewriting rule/systems

- Associate labels to permutations (e.g. number of active sites)
- **From** the label of σ , describe the labels of the children of σ

Example: For Av(321), we obtained

$$\begin{cases} (2) \\ (k) & \rightsquigarrow & (k+1)(2)(3)\dots(k) \end{cases}$$

Proof:

Definitions

- Labels record the number of sites above all the inversions.
- Insertion in the topmost site creates one new active site.
- Insertion in any other site creates an inversion with $\max(\sigma)$.

Rewriting system for $Id(S \circ S)$ and $Id(S \circ r \circ S)$

Lemma

Results

Definitions

A rewriting system for both $Id(S \circ S)$ and $Id(S \circ r \circ S)$ is

$$\mathcal{R}_{\Phi} \begin{cases} (2,1,(1)) \\ (x,k,(p_{1},\ldots,p_{k})) & \rightsquigarrow & (2+p_{j},j,(p_{1},\ldots,p_{j-1},i)) \\ & \text{for } 1 \leq j \leq k \text{ and } p_{j-1} < i \leq p_{j} \\ & (x+1,k+1,(p_{1},\ldots,p_{k},i)) \\ & \text{for } p_{k} < i \leq x \end{cases}$$

Adapted from [Dulucq, Gire, Guibert + West] by application of $\mathbf{c} \circ \mathbf{i}$. Interpretation of the labels:

- $\mathbf{x} = \mathbf{x} = \mathbf{x}$ the number of active sites of σ ,
- k =the number of RtoL-max in σ
- $\mathbf{p}_{\ell} = \mathsf{the}$ number of active sites above the ℓ -th RtoL-max in σ

Perspectives

Definitions

Bijection between $Id(S \circ r \circ S)$ and $Id(S \circ S)$ that preserves a 20-tuple of statistics

Refinement according to the statistics rmax

Recall the common rewriting system for $Id(S \circ S)$ and $Id(S \circ r \circ S)$:

$$\mathcal{R}_{\Phi} \begin{cases} (2, 1, (1)) \\ (x, k, (p_1, \dots, p_k)) & \leadsto & (2 + p_j, j, (p_1, \dots, p_{j-1}, i)) \\ & \text{for } 1 \leq j \leq k \text{ and } p_{j-1} < i \leq p_j \\ & (x + 1, k + 1, (p_1, \dots, p_k, i)) \\ & \text{for } p_k < i \leq x \end{cases}$$

- $Id(S \circ S)$ and $Id(S \circ r \circ S)$ have isomorphic generating trees.
- \Rightarrow At any level n, there is the same number of vertices labeled $(x, k, (p_1, \ldots, p_k))$ in both trees.
 - In the label $(x, k, (p_1, ..., p_k))$ of σ we have $k = \text{rmax}(\sigma)$.
- \Rightarrow The statistics rmax is equidistributed in Id($S \circ S$) and $Id(S \circ r \circ S)$

Refinement according to the statistics Imax

Lemma

Definitions

The rewriting system can be refined to account for the statistics lmax as follows:

$$\mathcal{R}_{\Phi}^{\mathsf{Imax}} \text{ as follows:} \\ \begin{cases} (2,1,(1),1) \\ (x,k,(p_1,\ldots,p_k),q) \end{cases} & \rightsquigarrow & (2+p_1,1,(1),q+1) \\ & (2+p_j,j,(p_1,\ldots,p_{j-1},i),q) \\ & \text{ for } 1 \leq j \leq k \text{ and } p_{j-1} < i \leq p_j, i \neq 1 \\ & (x+1,k+1,(p_1,\ldots,p_k,i),q) \\ & \text{ for } p_k < i \leq x \end{cases}$$

Proof: The number of LtoR-max does not change when inserting a new element on the right, except when inserting a maximal element (+1) in this case).

Refinement according to the statistics udword

Lemma

Definitions

The rewriting system can be refined to account for the statistics udword as follows:

$$\mathcal{R}_{\Phi}^{\text{udword}} \begin{cases} (2,1,(1),\varepsilon) \\ (x,k,(p_1,\ldots,p_k),\textbf{w}) & \rightsquigarrow & (2+p_j,j,(p_1,\ldots,p_{j-1},i),\textbf{w} \cdot \textbf{u}) \\ & \text{for } 1 \leq j \leq k \text{ and } p_{j-1} < i \leq p_j \\ & (x+1,k+1,(p_1,\ldots,p_k,i),\textbf{w} \cdot \textbf{d}) \\ & \text{for } p_k < i \leq x \end{cases}$$

Proof: In the first (resp. second) case of the rewriting rule, a new element on the right is inserted above (resp. below) the rightmost one.

Perspectives

 $\textbf{Bijection between } \mathsf{Id}(S \circ i \circ S) \text{ and Baxter permutations that preserves the statistics } \underline{(\mathsf{Imax}, \mathsf{des}, \mathsf{comp})}$

From $Id(S \circ i \circ S)$ to Bax...via TBax and twin binary trees

Definitions

Perspectives

From $Id(S \circ i \circ S)$ to Bax...via TBax and twin binary trees

Bijection between $Id(S \circ i \circ S)$ and TBax: Rewriting system, refined according to the three statistics.

Definitions

Bijection between $Id(S \circ i \circ S)$ and Baxter permutations that preserves the statistics (Imax, des, comp)

From $Id(S \circ i \circ S)$ to Bax...via TBax and twin binary trees

```
Pairs of twin
Id(S \circ i \circ S)
                        TBax
                                                                         Bax
                                             binary trees
                                          rightmost branch
        lmax
                         lmax
                                                                         lmax
         des
                                               left edges
                                                                         des
                         OCC<sub>II</sub>
       comp
                        comp
                                                                         comp
```

Bijection between $Id(S \circ i \circ S)$ and TBax: Rewriting system, refined according to the three statistics.

Bijection between TBax and Bax: One recently described by

S. Giraudo, that goes through pairs of twin binary trees

i.e., trees of

Definitions

complementary

Example: canopies

S. Giraudo's bijection between TBax and Bax

• To any $\sigma \in \mathfrak{S}_n$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_1, \sigma_2, \ldots, \sigma_n$.

Definitions

 Similarly for T_← by insertion of $\sigma_n, \ldots, \sigma_2, \sigma_1$. Example: $\sigma = 52471836$

S. Giraudo's bijection between TBax and Bax

• To any $\sigma \in \mathfrak{S}_n$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_1, \sigma_2, \ldots, \sigma_n$.

Results

 Similarly for T_← by insertion of $\sigma_n, \ldots, \sigma_2, \sigma_1$. Example: $\sigma = 52471836$

Lemma

Definitions

 $(T_{\rightarrow}, T_{\leftarrow})$ is a pair of twin binary trees (with n+1 leaves).

S. Giraudo's bijection between TBax and Bax

- To any $\sigma \in \mathfrak{S}_n$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_1, \sigma_2, \ldots, \sigma_n$.
- Similarly for T_← by insertion of $\sigma_n, \ldots, \sigma_2, \sigma_1$.

Example: $\sigma = 52471836$

Lemma

Definitions

 $(T_{\rightarrow}, T_{\leftarrow})$ is a pair of twin binary trees (with n+1 leaves).

Theorem ([Giraudo])

A pair $(T_{\rightarrow}, T_{\leftarrow})$ corresponds to a set of permutations containing exactly one Baxter and exactly one Twisted Baxter permutation. This provides a bijection between Bax and TBax.

The statistics Imax into S. Giraudo's bijection

Lemma

Definitions

The elements on the rightmost branch from the root of T_{\rightarrow} are the I toR-max of σ .

This holds in particular when $\sigma \in Bax$ or TBax.

Theorem (partial statement)

The bijection of S. Giraudo between Bax and TBax preserves the number of LtoR-max.

Id(S o i o S), Bax, and TBax

The statistics comp into S. Giraudo's bijection

Lemma ([Giraudo])

Results

Definitions

If $\sigma \in \mathsf{Bax}$ has exactly one component, then so does every τ sharing $(T_{\rightarrow}, T_{\leftarrow})$ with σ .

This holds in particular for $\tau \in \mathsf{TBax}$.

Id(S o i o S), Bax, and TBax

The statistics comp into S. Giraudo's bijection

Lemma ([Giraudo])

Results

If $\sigma \in \mathsf{Bax}$ has exactly one component, then so does every τ sharing $(T_{\rightarrow}, T_{\leftarrow})$ with σ .

This holds in particular for $\tau \in \mathsf{TBax}$.

Lemma

Definitions

If $\sigma \in Bax$ and $\tau \in TBax$ are in correspondence by S. Giraudo's bijection, then $comp(\sigma) = comp(\tau)$.

This does not hold in general, but only for $\tau \in TBax!$

Proof: The above lemma and TBax = Av(2-41-3, 3-41-2). In particular, no interpretation of comp on $(T_{\rightarrow}, T_{\leftarrow})$...

Definitions

From computer experiments to open questions

■ For any $\alpha, \beta \in D_8$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.

Results

Definitions

From computer experiments to open questions

- For any $\alpha, \beta \in D_8$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.
- Count such permutations.
- Refine enumeration according to statistics.

Or when computers provide conjectures (Schröder numbers)...

Definitions

From computer experiments to open questions

- For any $\alpha, \beta \in D_8$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.
- Count such permutations.
- Refine enumeration according to statistics.

Or when computers provide conjectures (Schröder numbers)...

■ And keep composing: $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \gamma \circ \mathbf{S} \dots$

Id(S o i o S), Bax, and TBax

Definitions

And new conjectures. . .

Conjecture

Fix $k \geq 1$. For any (k-1)-tuple $(\alpha_2, \ldots, \alpha_k) \in \{id, r\}^{k-1}$, permutations sorted by $S \circ id \circ S \circ \alpha_2 \circ \ldots \circ S \circ \alpha_k \circ S$ and by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S} \circ \alpha_2 \circ \ldots \circ \mathbf{S} \circ \alpha_k \circ \mathbf{S}$ are enumerated by the same sequence.

 \Rightarrow New approach to the study of k-stack sortable permutations?

Definitions

And new conjectures. . .

Conjecture

Fix $k \geq 1$. For any (k-1)-tuple $(\alpha_2, \ldots, \alpha_k) \in \{id, r\}^{k-1}$, permutations sorted by $S \circ id \circ S \circ \alpha_2 \circ \ldots \circ S \circ \alpha_k \circ S$ and by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S} \circ \alpha_2 \circ \ldots \circ \mathbf{S} \circ \alpha_k \circ \mathbf{S}$ are enumerated by the same sequence.

 \Rightarrow New approach to the study of k-stack sortable permutations?

Stronger conjecture

For any $(\alpha_1, \alpha_2, \dots, \alpha_k)$ and $(\beta_1, \beta_2, \dots, \beta_k)$, we have either

- or these sets are not enumerated by the same sequence;
- or they fall into the first conjecture.