Refined enumeration of permutations sorted with

 two stacks and a D_{8} symmetryMathilde Bouvel and Olivier Guibert (LaBRI)

Permutation Patterns 2012, University of Strathclyde
b

The little story of the problem, with many characters!

- Questions of Anders, Einar and Mark:

What are the permutations sorted by the composition of two operators of the form $\mathbf{S} \circ \alpha$ for $\alpha \in D_{8}$?
How are they enumerated?

- Answer to the 1st question, with Mike and Michael also:

Characterization of permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ (a set we denote $\operatorname{Id}(\mathbf{S} \circ \alpha \circ \mathbf{S}))$ by (generalized) excluded patterns.
■ Conjectures of Anders, Einar and Mark for the 2nd question:
$■ \operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ are enumerated by the same sequence, and a tuple of 15 statistics is equidistributed.
$\square \operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and Bax are enumerated by the same sequence, and a tuple of 3 statistics is equidistributed.

- Answer to the 2nd question, by Olivier and myself: The conjectures are true, and a few more statistics can be added to the first one.

Definitions

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.

- Linear representation:

$$
\sigma=18364257
$$

■ Two lines representation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

■ Representation as a product of cycles: $\sigma=(1)(287546)(3)$

■ Representation by diagram :

Classical patterns in permutations

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Classical patterns in permutations

Occurrence of a pattern: $\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently: The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Avoidance: $\operatorname{Av}(\pi, \tau, \ldots)=$ set of permutations that do not contain any occurrence of π or τ or ...

Generalizations of excluded patterns

- Dashed pattern [Babson, Steingrímsson 2000]: Add adjacency constraints between some elements $\sigma_{i_{1}}, \ldots, \sigma_{i_{k}}$. Example: $\sigma_{i_{1}} \sigma_{i_{2}} \sigma_{i_{3}} \sigma_{i_{4}}$ occurrence of $2-41-3 \Rightarrow i_{3}=i_{2}+1$.
- Barred pattern [West 1990]: Add some absence constraints Example: Occurrence of $3 \overline{5} 241=$ occurrence of 3241 that cannot be extended to an occurrence of 35241
■ Mesh pattern [Úlfarsson, Brändén, Claesson 2011]: Stretched diagram with shaded cells
An occurrence of a mesh pattern is a set of points matching the diagram while leaving zones ${ }^{W} / / /$ empty.

is a pattern of $\sigma=$

D_{8} symmetries

Symmetries of the square transform permutations via their diagrams

Reverse

$\mathbf{r}(\sigma)$

Complement Inverse

$\mathbf{c}(\sigma)$

$\mathbf{i}(\sigma)$

These operators generate an 8 -element group:

$$
D_{8}=\{\mathbf{i d}, \mathbf{r}, \mathbf{c}, \mathbf{i}, \mathbf{r} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{r}, \mathbf{i} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{c} \circ \mathbf{r}\}
$$

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
32754
$$

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1

$$
32754
$$

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1

754
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12

754
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

123

754
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

754
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54
(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
12364

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
123645

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

(Generalized) Permutation patterns, D_{8} symmetries, and the stack sorting operator.

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition. $\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
■ Stack sortable permutations: $\operatorname{Id}(\mathbf{S})=\operatorname{Av}(231)$, enumeration by Catalan numbers [Knuth]

- Two-stack sortable: $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})=\operatorname{Av}(2341,3 \overline{5} 241)$, enumeration by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$ [West, Zeilberger, ...]
- Many other variants studied, in connection with excluded patterns [Bóna, Bousquet-Mélou, Rossin, ...]

Stating the main results

Characterization by generalized excluded patterns

Theorem

Permutations that are sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$, for α in D_{8}, are:
$■ \operatorname{Id}(\mathbf{S} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{c} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Av}(2341,3 \overline{5} 241)$;
$■ \operatorname{ld}(\mathbf{S} \circ \mathbf{c} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Av}(231)$;
$■ \operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{c} \circ \mathbf{S})=\operatorname{Av}(1342,31-4-2)$

$$
=\operatorname{Av}(1342,35142)
$$

■ $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})=\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{c} \circ \mathbf{S})=\operatorname{Av}(3412,3-4-21)$.

- $\operatorname{Av}(231)=\operatorname{Id}(\mathbf{S})$ is enumerated by Catalan numbers
- $\operatorname{Av}(2341,3 \overline{5} 241)=\operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ is enumerated by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$

Characterizations with excluded patterns, and enumeration refined according to tuple of statistics.

Some permutation statistics. . . and many more

Number of RtoL-max

$\operatorname{rmax}(\sigma)=4$

Number of LtoR-max

$\operatorname{Imax}(\sigma)=5$

Number of components

$\operatorname{comp}(\sigma)=4$

Some permutation statistics. . . and many more

Number of RtoL-max

$\operatorname{rmax}(\sigma)=4$

Number of LtoR-max

$\operatorname{Imax}(\sigma)=5$

Number of components

$$
\operatorname{comp}(\sigma)=4
$$

Up-down word of $\sigma \in \mathfrak{S}_{n}: w \in\{u, d\}^{n-1}, w_{i}=\left\{\begin{array}{l}u \text { if } \sigma_{i}<\sigma_{i+1} \\ d \text { if } \sigma_{i}>\sigma_{i+1}\end{array}\right.$ udword $(\sigma)=$ dudduuududu

Refined enumeration of Id(S $\circ \mathbf{r} \circ \mathbf{S}$)

Abstract

Theorem The two sets $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ are enumerated by the same sequence. Moreover, the tuple of statistics (udword, rmax, Imax, zeil, indmax, slmax, slmax or) has the same distribution.

The underlying bijection actually preserves the joint distribution of these statistics.

Consequence

The statistics (asc, des, maj, maj or, maj oc, maj orc, valley, peak, ddes, dasc, rir, rdr, lir, Idr) are also (and jointly) equidistributed.

Characterizations with excluded patterns, and enumeration refined according to tuple of statistics.

Refined enumeration of $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$

Theorem

The set $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ is enumerated by the Baxter numbers, and the triple of statistics (Imax, des, comp) has the same joint distribution on $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and on Bax.

Lemma

It also has the same distribution than the triple of statistics
(Imax, occ $_{\mu}$, comp) on TBax, where $\mu=$

■ Baxter permutations: $\operatorname{Bax}=\operatorname{Av}(2-41-3,3-14-2)$

- Twisted Baxter permutations: $\operatorname{TBax}=\operatorname{Av}(2-41-3,3-41-2)$

Both are enumerated by $B a x_{n}=\frac{2}{n(n+1)^{2}} \sum_{k=1}^{n}\binom{n+1}{k-1}\binom{n+1}{k}\binom{n+1}{k+1}$
Mathilde Bouvel and Olivier Guibert (LaBRI)
Refined enumeration of permutations sorted with two stacks and a D_{8}-symmetry

(A few) elements of proof

Characterization of $\operatorname{Id}(\mathbf{S} \circ \alpha \circ \mathbf{S})$ with excluded patterns
\checkmark Bijection between $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$
Bijection between $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and TBax
\checkmark Bijection between TBax and Bax

Enumeration of $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$

Theorem (partial statement)

The two sets $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ are enumerated by the same sequence.

Method of proof:

- $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})=\operatorname{Av}(2341,3 \overline{5241})$
- $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})=\operatorname{Av}(1342,3 \overline{5} 142)$

■ Provide a common rewriting system (encoding isomorphic generating trees) for $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$

Refinement according to statistics: introduce each statistics into the rewriting system

Generating trees

- Generating tree for $\operatorname{Av}(\pi, \tau, \ldots)$: an infinite tree where vertices at level n are permutations of \mathfrak{S}_{n} avoiding π, τ, \ldots.
- The children σ^{\prime} of σ are obtained by insertion of a new element in the active sites of σ.
- Sites are often on one of the four sides of the diagram (e.g. on the right).
- Sites are active when $\sigma^{\prime} \in \operatorname{Av}(\pi, \tau, \ldots)$ i.e., when the insertion does not create a pattern π or $\tau \ldots$

Theorem

Two classes having isomorphic generating trees are in bijection.
\ldots eventhough the bijection is not explicit.

Bijection between $\operatorname{Id}(\mathrm{S} \circ \mathrm{r} \circ \mathrm{S})$ and $\operatorname{Id}(\mathrm{S} \circ \mathrm{S})$ that preserves a 20-tuple of statistics

Generating trees

Example: $\operatorname{Av}(321)$ with insertion on the right:

Legend: $\left\{\begin{array}{l}\diamond \text { for an active site } \\ \times \text { for an inactive site }\end{array}\right.$

Generating trees

Example: $\operatorname{Av}(321)$ with insertion on the right:

Legend: $\left\{\begin{array}{l}\diamond \text { for an active site } \\ \times \text { for an inactive site }\end{array}\right.$

Remark: Active sites are the one above all the inversions of σ

Associated rewriting systems

Idea: Describe the tree compactly by a rewriting rule/systems

- Associate labels to permutations (e.g. number of active sites)
- From the label of σ, describe the labels of the children of σ

Example: The generating tree of $\operatorname{Av}(321)$ with labels

Associated rewriting systems

Idea: Describe the tree compactly by a rewriting rule/systems

- Associate labels to permutations (e.g. number of active sites)

■ From the label of σ, describe the labels of the children of σ
Example: For $\operatorname{Av}(321)$, we obtained

$$
\left\{\begin{array}{l}
(2) \\
(k) \quad \rightsquigarrow \quad(k+1)(2)(3) \ldots(k)
\end{array}\right.
$$

Proof:
■ Labels record the number of sites above all the inversions.

- Insertion in the topmost site creates one new active site.
- Insertion in any other site creates an inversion with $\max (\sigma)$.

Rewriting system for $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$

Lemma

A rewriting system for both $\operatorname{ld}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ is

$$
\mathcal{R}_{\Phi}\left\{\begin{array}{lcc}
(2,1,(1)) & \\
\left(x, k,\left(p_{1}, \ldots, p_{k}\right)\right) & \rightsquigarrow & \left(2+p_{j}, j,\left(p_{1}, \ldots, p_{j-1}, i\right)\right) \\
& \text { for } 1 \leq j \leq k \text { and } p_{j-1}<i \leq p_{j} \\
& \left(x+1, k+1,\left(p_{1}, \ldots, p_{k}, i\right)\right) \\
& \text { for } p_{k}<i \leq x
\end{array}\right.
$$

Adapted from [Dulucq, Gire, Guibert + West] by application of $\mathbf{c} \circ \mathbf{i}$. Interpretation of the labels:

■ $x=$ the number of active sites of σ,

- $k=$ the number of RtoL-max in σ
- $p_{\ell}=$ the number of active sites above the ℓ-th RtoL-max in σ

Refinement according to the statistics rmax

Recall the common rewriting system for $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$:

$$
\mathcal{R}_{\Phi}\left\{\begin{array}{lr}
(2,1,(1)) & \\
\left(x, k,\left(p_{1}, \ldots, p_{k}\right)\right) & \rightsquigarrow \\
& \left(2+p_{j}, j,\left(p_{1}, \ldots, p_{j-1}, i\right)\right) \\
& \text { for } 1 \leq j \leq k \text { and } p_{j-1}<i \leq p_{j} \\
& \left(x+1, k+1,\left(p_{1}, \ldots, p_{k}, i\right)\right) \\
& \text { for } p_{k}<i \leq x
\end{array}\right.
$$

$■ \operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{Id}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$ have isomorphic generating trees.
\Rightarrow At any level n, there is the same number of vertices labeled $\left(x, k,\left(p_{1}, \ldots, p_{k}\right)\right)$ in both trees.
■ In the label $\left(x, k,\left(p_{1}, \ldots, p_{k}\right)\right)$ of σ we have $k=\operatorname{rmax}(\sigma)$.
\Rightarrow The statistics rmax is equidistributed in $\operatorname{Id}(\mathbf{S} \circ \mathbf{S})$ and $\operatorname{ld}(\mathbf{S} \circ \mathbf{r} \circ \mathbf{S})$

Refinement according to the statistics Imax

Lemma

The rewriting system can be refined to account for the statistics Imax as follows:

$$
\mathcal{R}_{\Phi}^{\operatorname{lmax}} \begin{cases}(2,1,(1), 1) & \\ \left(x, k,\left(p_{1}, \ldots, p_{k}\right), q\right) & \left(2+p_{1}, 1,(1), q+1\right) \\ & \left(2+p_{j}, j,\left(p_{1}, \ldots, p_{j-1}, i\right), q\right) \\ & \text { for } 1 \leq j \leq k \text { and } p_{j-1}<i \leq p_{j}, i \neq 1 \\ & \left(x+1, k+1,\left(p_{1}, \ldots, p_{k}, i\right), q\right) \\ & \text { for } p_{k}<i \leq x\end{cases}
$$

Proof: The number of LtoR-max does not change when inserting a new element on the right, except when inserting a maximal element (+1 in this case).

Refinement according to the statistics udword

Lemma

The rewriting system can be refined to account for the statistics udword as follows:

$$
\mathcal{R}_{\Phi}^{\text {udword }}\left\{\begin{array}{rr}
(2,1,(1), \varepsilon) \\
\left(x, k,\left(p_{1}, \ldots, p_{k}\right), w\right) & \rightsquigarrow \quad\left(2+p_{j}, j,\left(p_{1}, \ldots, p_{j-1}, i\right), w \cdot u\right) \\
\text { for } 1 \leq j \leq k \text { and } p_{j-1}<i \leq p_{j} \\
\left(x+1, k+1,\left(p_{1}, \ldots, p_{k}, i\right), w \cdot d\right) \\
& \text { for } p_{k}<i \leq x
\end{array}\right.
$$

Proof: In the first (resp. second) case of the rewriting rule, a new element on the right is inserted above (resp. below) the rightmost one.

Bijection between $\operatorname{Id}(\mathrm{S} \circ \mathrm{i} \circ \mathrm{S})$ and Baxter permutations that preserves the statistics (Imax, des, comp)

From $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ to Bax. . via TBax and twin binary trees

Bijection between $\operatorname{Id}(\mathrm{S} \circ \mathbf{i} \circ \mathrm{S})$ and Baxter permutations that preserves the statistics (Imax, des, comp)

From $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ to Bax. . via TBax and twin binary trees

Bijection between $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and TBax: Rewriting system, refined according to the three statistics.

Bijection between $\operatorname{Id}(\mathrm{S} \circ \mathrm{i} \circ \mathrm{S})$ and Baxter permutations that preserves the statistics (Imax, des, comp)

From $\operatorname{ld}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ to Bax. . via TBax and twin binary trees

$\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$	\longleftrightarrow TBax	\longleftrightarrow	binary trees	\longleftrightarrow
Imax	$\longleftrightarrow \operatorname{Imax}$	\longleftrightarrow	rightmost branch	\longleftrightarrow
des	$\longleftrightarrow \operatorname{lmax}$			
comp	\longleftrightarrow occ $_{\mu}$	\longleftrightarrow	left edges	\longleftrightarrow
comp	\longleftrightarrow	?	\longleftrightarrow	

Bijection between $\operatorname{Id}(\mathbf{S} \circ \mathbf{i} \circ \mathbf{S})$ and TBax: Rewriting system, refined according to the three statistics.
Bijection between TBax and Bax: One recently described by S. Giraudo, that goes through pairs of twin binary trees
i.e., trees of complementary
canopies Example:

S. Giraudo's bijection between TBax and Bax

- To any $\sigma \in \mathfrak{S}_{n}$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$.
- Similarly for T_{\leftarrow} by insertion of $\sigma_{n}, \ldots, \sigma_{2}, \sigma_{1}$.

Bijection between Id(S $\circ \mathbf{i} \circ \mathbf{S})$ and Baxter permutations that preserves the statistics (Imax, des, comp)

S. Giraudo's bijection between TBax and Bax

- To any $\sigma \in \mathfrak{S}_{n}$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$.
- Similarly for T_{\leftarrow} by insertion of $\sigma_{n}, \ldots, \sigma_{2}, \sigma_{1}$.

Lemma
($T_{\rightarrow}, T_{\leftarrow}$) is a pair of twin binary trees (with $n+1$ leaves).

Bijection between Id(S $\circ \mathbf{i} \circ \mathbf{S})$ and Baxter permutations that preserves the statistics (Imax, des, comp)

S. Giraudo's bijection between TBax and Bax

- To any $\sigma \in \mathfrak{S}_{n}$, associate T_{\rightarrow} the (unlabelled) binary search tree obtained by insertion of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$.
- Similarly for T_{\leftarrow} by
insertion of $\sigma_{n}, \ldots, \sigma_{2}, \sigma_{1}$.

Example: $\sigma=52471836$

Lemma

$\left(T_{\rightarrow}, T_{\leftarrow}\right)$ is a pair of twin binary trees (with $n+1$ leaves).

Theorem ([Giraudo])

A pair $\left(T_{\rightarrow}, T_{\leftarrow}\right)$ corresponds to a set of permutations containing exactly one Baxter and exactly one Twisted Baxter permutation. This provides a bijection between Bax and TBax.

The statistics Imax into S. Giraudo's bijection

Lemma

The elements on the rightmost branch from the root of T_{\rightarrow} are the LtoR-max of σ.

This holds in particular when $\sigma \in$ Bax or TBax.

Theorem (partial statement)

The bijection of S. Giraudo between Bax and TBax preserves the number of LtoR-max.

The statistics comp into S. Giraudo's bijection

> Lemma ([Giraudo])
> If $\sigma \in$ Bax has exactly one component, then so does every τ sharing $\left(T_{\rightarrow}, T_{\leftarrow}\right)$ with σ.

This holds in particular for $\tau \in$ TBax.

The statistics comp into S. Giraudo's bijection

Lemma ([Giraudo])

If $\sigma \in$ Bax has exactly one component, then so does every τ sharing $\left(T_{\rightarrow}, T_{\leftarrow}\right)$ with σ.

This holds in particular for $\tau \in$ TBax.

Lemma

If $\sigma \in \operatorname{Bax}$ and $\tau \in \mathrm{TBax}$ are in correspondance by S. Giraudo's bijection, then $\operatorname{comp}(\sigma)=\operatorname{comp}(\tau)$.

This does not hold in general, but only for $\tau \in$ TBax!
Proof: The above lemma and $\operatorname{TBax}=\operatorname{Av}(2-41-3,3-41-2)$.
In particular, no interpretation of comp on $\left(T_{\rightarrow}, T_{\leftarrow}\right) \ldots$

From computer experiments to open questions

■ For any $\alpha, \beta \in D_{8}$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.

From computer experiments to open questions

■ For any $\alpha, \beta \in D_{8}$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.

- Count such permutations.
- Refine enumeration according to statistics.

> Or when computers provide conjectures
> (Schröder numbers)...

From computer experiments to open questions

■ For any $\alpha, \beta \in D_{8}$, describe the permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S}$ by excluded patterns.

■ Count such permutations.

- Refine enumeration according to statistics.

Or when computers provide conjectures
 (Schröder numbers)...

■ And keep composing: $\mathbf{S} \circ \alpha \circ \mathbf{S} \circ \beta \circ \mathbf{S} \circ \gamma \circ \mathbf{S} \ldots$

And new conjectures. . .

Conjecture

Fix $k \geq 1$. For any $(k-1)$-tuple $\left(\alpha_{2}, \ldots, \alpha_{k}\right) \in\{\mathbf{i d}, \mathbf{r}\}^{k-1}$, permutations sorted by $\mathbf{S} \circ \mathbf{i d} \circ \mathbf{S} \circ \alpha_{2} \circ \ldots \circ \mathbf{S} \circ \alpha_{k} \circ \mathbf{S}$ and by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S} \circ \alpha_{2} \circ \ldots \circ \mathbf{S} \circ \alpha_{k} \circ \mathbf{S}$ are enumerated by the same sequence.
\Rightarrow New approach to the study of k-stack sortable permutations?

And new conjectures. . .

Conjecture

Fix $k \geq 1$. For any $(k-1)$-tuple $\left(\alpha_{2}, \ldots, \alpha_{k}\right) \in\{\mathbf{i d}, \mathbf{r}\}^{k-1}$, permutations sorted by $\mathbf{S} \circ \mathbf{i d} \circ \mathbf{S} \circ \alpha_{2} \circ \ldots \circ \mathbf{S} \circ \alpha_{k} \circ \mathbf{S}$ and by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S} \circ \alpha_{2} \circ \ldots \circ \mathbf{S} \circ \alpha_{k} \circ \mathbf{S}$ are enumerated by the same sequence.
\Rightarrow New approach to the study of k-stack sortable permutations?

Stronger conjecture

For any $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right)$, we have either
$■ \operatorname{Id}\left(\mathbf{S} \circ \alpha_{1} \circ \mathbf{S} \circ \alpha_{2} \circ \ldots \circ \mathbf{S} \circ \alpha_{k} \circ \mathbf{S}\right)=\operatorname{Id}\left(\mathbf{S} \circ \beta_{1} \circ \mathbf{S} \circ \beta_{2} \circ \ldots \circ \mathbf{S} \circ \beta_{k} \circ \mathbf{S}\right) ;$

- or these sets are not enumerated by the same sequence;
- or they fall into the first conjecture.

