## The Brownian limit of separable permutations

Mathilde Bouvel<br>(Institut für Mathematik, Universität Zürich)

talk based on a joint work with
Frédérique Bassino, Valentin Féray, Lucas Gerin and Adeline Pierrot
Arxiv: 1602.04960

Permutation Patterns, June 2016

## Random permutations in $\operatorname{Av}(\tau)$ for $\tau$ of size 3

$\operatorname{Av}(231)$


Av(321)

from Miner-Pak presented at PP 2013


from Hoffman-Rizzolo-Slivken
presented at PP 2015

## Random separable permutations (i.e., in $\operatorname{Av}(2413,3142)$ )

Separable permutations of size 204523 and 903073, drawn uniformly at random among those of the same size.
(Figures generated with a Boltzmann sampler by Carine Pivoteau.)



Goal: Explain these diagrams, by describing the "limit shape" of random separable permutations of size $n \rightarrow+\infty$.

## More about $\operatorname{Av}(\tau)$ for $\tau$ of size 3

- Madras with Atapour, Liu and Pehlivan and Miner-Pak: $\hookrightarrow$ very precise local description of the asymptotic shape
- Hoffman-Rizzolo-Slivken:
$\hookrightarrow$ scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal)
- Janson, following earlier works by Bóna, Cheng-Eu-Fu, Homberger, Janson-Nakamura-Zeilberger, Rudolph:
$\hookrightarrow$ study the (normalized) number of occurrences of any pattern $\pi$ in large uniform $\sigma$ avoiding $\tau$, and find its limiting distribution.


## More about $\operatorname{Av}(\tau)$ for $\tau$ of size 3

- Madras with Atapour, Liu and Pehlivan and Miner-Pak: $\hookrightarrow$ very precise local description of the asymptotic shape
- Hoffman-Rizzolo-Slivken:
$\hookrightarrow$ scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal)
- Janson, following earlier works by Bóna, Cheng-Eu-Fu, Homberger, Janson-Nakamura-Zeilberger, Rudolph:
$\hookrightarrow$ study the (normalized) number of occurrences of any pattern $\pi$ in large uniform $\sigma$ avoiding $\tau$, and find its limiting distribution.

Main result of Janson: For any pattern $\pi$, the quantity

$$
\text { number of occurrences of } \pi \text { in uniform } \sigma \in A v_{n}(132)
$$

$$
n^{|\pi|+\text { number of descents of } \pi+1}
$$

converges in distribution to a strictly positive random variable.

## Our main result: the limit of separable permutations

Notation:

- $\widetilde{\operatorname{OCC}}(\pi, \sigma)=\frac{\text { number of occurrences of } \pi \text { in } \sigma}{\binom{k}{k}} \quad$ for $n=|\sigma|$ and $k=|\pi|$
- $\sigma_{n}=$ a uniform random separable permutation of size $n$


## Theorem

There exist random variables $\left(\Lambda_{\pi}\right), \pi$ ranging over all permutations, such that for all $\pi, 0 \leq \Lambda_{\pi} \leq 1$ and when $n \rightarrow+\infty$, $\widetilde{\operatorname{OCC}}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$.

## Our main result: the limit of separable permutations

Notation:

- $\widetilde{\operatorname{OCC}}(\pi, \sigma)=\frac{\text { number of occurrences of } \pi \text { in } \sigma}{\left(\begin{array}{c}(k)\end{array}\right.}$ for $n=|\sigma|$ and $k=|\pi|$
- $\sigma_{n}=$ a uniform random separable permutation of size $n$


## Theorem

There exist random variables $\left(\Lambda_{\pi}\right)$, $\pi$ ranging over all permutations, such that for all $\pi, 0 \leq \Lambda_{\pi} \leq 1$ and when $n \rightarrow+\infty$, $\widetilde{\text { OCC }}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$.

Moreover,

- We describe a construction of $\Lambda_{\pi}$.
- This holds jointly for patterns $\pi_{1}, \ldots, \pi_{r}$.
- If $\pi$ is separable of size at least $2, \Lambda_{\pi}$ is non-deterministic.
- Combinatorial formula for all moments of $\Lambda_{\pi}$.


## Why separable permutations?

Separable permutations are $\operatorname{Av}(2413,3142)$. But more importantly, they:

- form one of the most studied class after $\operatorname{Av}(\tau)$ for $|\tau|=3$;
- are the smallest family closed under $\oplus$ and $\ominus$
(and hence form the simplest non-trivial substitution-closed class);
- are encoded by signed Schröder trees.


## Why separable permutations?

Separable permutations are $\operatorname{Av}(2413,3142)$. But more importantly, they:

- form one of the most studied class after $\operatorname{Av}(\tau)$ for $|\tau|=3$;
- are the smallest family closed under $\oplus$ and $\ominus$
(and hence form the simplest non-trivial substitution-closed class);
- are encoded by signed Schröder trees.

Example: $\sigma=3214576=\oplus[\ominus[1,1,1], 1,1, \ominus[1,1]]=$


## Why separable permutations?

Separable permutations are $\operatorname{Av}(2413,3142)$. But more importantly, they:

- form one of the most studied class after $\operatorname{Av}(\tau)$ for $|\tau|=3$;
- are the smallest family closed under $\oplus$ and $\ominus$
(and hence form the simplest non-trivial substitution-closed class);
- are encoded by signed Schröder trees.

Example: $\sigma=3214576=\oplus[\ominus[1,1,1], 1,1, \ominus[1,1]]=$

$\sigma$ corresponds to

or
 , among other trees.

## Why separable permutations?

Separable permutations are $\operatorname{Av}(2413,3142)$. But more importantly, they:

- form one of the most studied class after $\operatorname{Av}(\tau)$ for $|\tau|=3$;
- are the smallest family closed under $\oplus$ and $\ominus$
(and hence form the simplest non-trivial substitution-closed class);
- are encoded by signed Schröder trees.

Example: $\sigma=3214576=\oplus[\ominus[1,1,1], 1,1, \ominus[1,1]]=$

$\sigma$ corresponds to


Or
 , among other trees.

The correspondence can be made one-to-one imposing alternating signs.
Here, $\sigma \leftrightarrow$


## Construction of $\Lambda_{\pi}$

Excursion $=$ continuous function $f$ from $[0,1]$ to $[0,+\infty)$ with $f(0)=f(1)=0$.

With $\mathbf{x}=\left\{x_{1}, \ldots, x_{k}\right\}$ a set of points in $[0,1]$, and $f$ an excursion, we classically associate a tree looking at the minima of $f$ between the $x_{i}$ 's.


## Construction of $\Lambda_{\pi}$

Excursion $=$ continuous function $f$ from $[0,1]$ to $[0,+\infty)$ with $f(0)=f(1)=0$.
Signed excursion = pair $(f, s)$ where $f$ is an excursion and $s$ a sign function giving a + or - sign to each local minimum of $f$.

With $\mathbf{x}=\left\{x_{1}, \ldots, x_{k}\right\}$ a set of points in $[0,1]$, and $f$ an excursion, we classically associate a tree looking at the minima of $f$ between the $x_{i}$ 's. Signed variant associating a signed Schröder tree $\operatorname{Tree}_{ \pm}(f, s, \mathbf{x})$ with $(f, s)$ and $\mathbf{x}$.


## Construction of $\Lambda_{\pi}$

For $\pi$ a pattern and $(f, s)$ a signed excursion, $\Psi_{\pi}(f, s)=$ probability that $\operatorname{Tree}_{ \pm}(f, s, \mathbf{X})$ is a signed Schröder tree of $\pi$
when $\mathbf{X}$ consists of $k=|\pi|$ uniform and independent points in $[0,1]$. Remark: $\Psi_{\pi}$ is identically 0 if $\pi$ is not separable.

## Construction of $\Lambda_{\pi}$

For $\pi$ a pattern and $(f, s)$ a signed excursion,
$\Psi_{\pi}(f, s)=$ probability that $\operatorname{Tree}_{ \pm}(f, s, \mathbf{X})$ is a signed Schröder tree of $\pi$
when $\mathbf{X}$ consists of $k=|\pi|$ uniform and independent points in $[0,1]$.
Remark: $\Psi_{\pi}$ is identically 0 if $\pi$ is not separable.
The signed Brownian excursion is $(e, S)$
where $e$ is the Brownian excursion and $S$ assigns signs to the local minima of $e$ in a balanced and independent manner.

For all $\pi, \quad \Lambda_{\pi}=\Psi_{\pi}(e, S)$.

## Construction of $\Lambda_{\pi}$

For $\pi$ a pattern and $(f, s)$ a signed excursion, $\Psi_{\pi}(f, s)=$ probability that $\operatorname{Tree}_{ \pm}(f, s, \mathbf{X})$ is a signed Schröder tree of $\pi$
when $\mathbf{X}$ consists of $k=|\pi|$ uniform and independent points in $[0,1]$.
Remark: $\Psi_{\pi}$ is identically 0 if $\pi$ is not separable.
The signed Brownian excursion is $(e, S)$
where $e$ is the Brownian excursion and $S$ assigns signs to the local minima of $e$ in a balanced and independent manner.

For all $\pi, \quad \Lambda_{\pi}=\Psi_{\pi}(e, S)$.
You may ask:
What is the link between trees extracted from the signed Brownian excursion and occurrences of patterns in separable permutations?

## Contours of trees

Classical case: tree $\rightarrow$ excursion called contour (via depth-first search). Signed variant: signed tree $\rightarrow$ signed excursion called signed contour.


## Remark: Leaves of the tree are peaks of the contour.

## Contours of trees

Classical case: tree $\rightarrow$ excursion called contour (via depth-first search). Signed variant: signed tree $\rightarrow$ signed excursion called signed contour.


## Remark: Leaves of the tree are peaks of the contour.

Separable permutations $\equiv$ signed Schröder trees.
And contours of Schröder trees (with $n$ leaves) $\rightarrow$ Brownian excursion. (Pitman-Rizzolo or Kortchemski, using conditioned Galton-Watson trees.)

## Contours of trees

Classical case: tree $\rightarrow$ excursion called contour (via depth-first search). Signed variant: signed tree $\rightarrow$ signed excursion called signed contour.


## Remark: Leaves of the tree are peaks of the contour.

Separable permutations $\equiv$ signed Schröder trees.
And contours of Schröder trees (with $n$ leaves) $\rightarrow$ Brownian excursion. (Pitman-Rizzolo or Kortchemski, using conditioned Galton-Watson trees.)

Open: Do signed Schröder trees converge to the signed Brownian excursion?

## Extracting subtrees from contours

Extracting a pattern $\pi$ from a separable permutation $\sigma$,

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ extracting a subtree (induced by leaves) in a signed Schröder tree of $\sigma$

$\equiv$ extracting a subtree from a set $\mathbf{x}$ of peaks in a signed contour $(f, s)$ of $\sigma$.

$\qquad$

## Extracting subtrees from contours

Extracting a pattern $\pi$ from a separable permutation $\sigma$,

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ extracting a subtree (induced by leaves) in a signed Schröder tree of $\sigma$

$\equiv$ extracting a subtree from a set $\mathbf{x}$ of peaks in a signed contour $(f, s)$ of $\sigma$.


Patterns in separable permutations $\approx \operatorname{Tree}_{ \pm}(f, s, \mathbf{x}) \rightarrow \Lambda_{\pi} \approx \operatorname{Tree}_{ \pm}(e, S, \mathbf{X})$.

## Our main theorem

## Theorem

For the random variables $\Lambda_{\pi}$ defined earlier, it holds that for all $\pi$, $0 \leq \Lambda_{\pi} \leq 1$, and when $n \rightarrow+\infty, \widetilde{\operatorname{OCC}}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$.

This gives the proportion of occurrences of any pattern $\pi$ in a uniform separable permutation of size $n$, as $n \rightarrow+\infty$.

## Our main theorem

## Theorem

For the random variables $\Lambda_{\pi}$ defined earlier, it holds that for all $\pi$, $0 \leq \Lambda_{\pi} \leq 1$, and when $n \rightarrow+\infty, \widetilde{\operatorname{OCC}}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$.

This gives the proportion of occurrences of any pattern $\pi$ in a uniform separable permutation of size $n$, as $n \rightarrow+\infty$.

But how does this relate to the limit diagram of large uniform separable permutations?



## Permuton interpretation of our result

- A permuton is a measure on $[0,1]^{2}$ with uniform marginals.
- The diagram of any permutation $\sigma$ is a permuton, denoted $\mu_{\sigma}$ (up to normalizing and filling in uniformly the cells containing dots).
- And "limit shapes" of diagrams are also permutons.


## Permuton interpretation of our result

- A permuton is a measure on $[0,1]^{2}$ with uniform marginals.
- The diagram of any permutation $\sigma$ is a permuton, denoted $\mu_{\sigma}$ (up to normalizing and filling in uniformly the cells containing dots).
- And "limit shapes" of diagrams are also permutons.

Our main theorem can be interpreted in terms of permutons:

## Theorem

There exists a random permuton $\mu$ such that $\mu_{\sigma_{n}}$ tends to $\mu$ in distribution (in the weak convergence topology).

Concretely, $\mu$ is the limit shape of uniform separable permutations.

## Permuton interpretation of our result

- A permuton is a measure on $[0,1]^{2}$ with uniform marginals.
- The diagram of any permutation $\sigma$ is a permuton, denoted $\mu_{\sigma}$ (up to normalizing and filling in uniformly the cells containing dots).
- And "limit shapes" of diagrams are also permutons.

Our main theorem can be interpreted in terms of permutons:

## Theorem

There exists a random permuton $\mu$ such that $\mu_{\sigma_{n}}$ tends to $\mu$ in distribution (in the weak convergence topology).

Concretely, $\mu$ is the limit shape of uniform separable permutations.
The proof uses a result of Hoppen-Kohayakawa-Moreira-Rath-Sampaio: For $\left(\sigma_{n}\right)_{n \geq 1}$ a deterministic sequence of permutations of increasing size $n$, assuming that $\widetilde{\text { OCC }}\left(\pi, \sigma_{n}\right)$ has a limit as $n \rightarrow+\infty$ for every pattern $\pi$, it holds that the sequence of permutons $\left(\mu_{\sigma_{n}}\right)_{n}$ has a limit.

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

- We know that $\mu$ is not deterministic (because $\Lambda_{12}$ is not).

This is in contrast with permutation classes studied earlier, whose limit is deterministic at first order.

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

- We know that $\mu$ is not deterministic (because $\Lambda_{12}$ is not).

This is in contrast with permutation classes studied earlier, whose limit is deterministic at first order.

- Properties of $\mu$ :

Is $\mu$ absolutely continuous or singular with respect to Lebesgue measure on the square? Can we explain the fractal-ness of $\mu$ ?

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

- We know that $\mu$ is not deterministic (because $\Lambda_{12}$ is not).

This is in contrast with permutation classes studied earlier, whose limit is deterministic at first order.

- Properties of $\mu$ :

Is $\mu$ absolutely continuous or singular with respect to Lebesgue measure on the square? Can we explain the fractal-ness of $\mu$ ?

- Explicit construction of $\mu$ :

Open problem in the arxiv preprint, but recently solved in collaboration with J. Bertoin and V. Féray.

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

- We know that $\mu$ is not deterministic (because $\Lambda_{12}$ is not).

This is in contrast with permutation classes studied earlier, whose limit is deterministic at first order.

- Properties of $\mu$ :

Is $\mu$ absolutely continuous or singular with respect to Lebesgue measure on the square? Can we explain the fractal-ness of $\mu$ ?

- Explicit construction of $\mu$ :

Open problem in the arxiv preprint, but recently solved in collaboration with J. Bertoin and V. Féray.

- Universality of $\mu$ :

We believe that (a one-parameter deformation of) $\mu$ is the limit of all substitution-closed classes with finitely many simples.
This is work in progress.

## What do we know about $\mu$ ?

We know the existence of $\mu$. But can we describe (properties of) $\mu$ ?

- We know that $\mu$ is not deterministic (because $\Lambda_{12}$ is not).

This is in contrast with permutation classes studied earlier, whose limit is deterministic at first order.

- Properties of $\mu$ :

Is $\mu$ absolutely continuous or singular with respect to Lebesgue measure on the square? Can we explain the fractal-ness of $\mu$ ?

- Explicit construction of $\mu$ :

Open problem in the arxiv preprint, but recently solved in collaboration with J. Bertoin and V. Féray. More about that at PP 2017, hopefully!

- Universality of $\mu$ :

We believe that (a one-parameter deformation of) $\mu$ is the limit of all substitution-closed classes with finitely many simples.
This is work in progress. More about that at PP 2017, hopefully!

## Some hints about the proof (that you were spared)

## Proof, step 1: Convergence in expectation in enough

Our main theorem: $\widetilde{\operatorname{occ}}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$. It is enough to prove: $\mathbb{E}\left[\widetilde{\mathrm{OCC}}\left(\pi, \sigma_{n}\right)\right] \longrightarrow \mathbb{E}\left[\Lambda_{\pi}\right]$, i.e., $\widetilde{\circ} \widetilde{\mathrm{Oc}}\left(\pi, \sigma_{n}\right)$ converges in expectation to $\Lambda_{\pi}$.

## Proof, step 1: Convergence in expectation in enough

Our main theorem: $\widetilde{\operatorname{occ}}\left(\pi, \sigma_{n}\right)$ converges in distribution to $\Lambda_{\pi}$. It is enough to prove: $\mathbb{E}\left[\widetilde{\mathrm{OCC}}\left(\pi, \sigma_{n}\right)\right] \longrightarrow \mathbb{E}\left[\Lambda_{\pi}\right]$, i.e., $\widetilde{\text { occ }}\left(\pi, \sigma_{n}\right)$ converges in expectation to $\Lambda_{\pi}$.

- Our random variables are bounded (they take values in $[0,1]$ ), so convergence in distribution $\Leftrightarrow$ convergence of all moments.
- Expectation determines all moments, since we can write:

$$
\begin{aligned}
\prod_{i=1}^{r} \Lambda_{\pi_{i}} & =\sum_{\rho \in \mathfrak{E}_{K}} c_{\pi_{1}, \ldots, \pi_{r}}^{\rho} \Lambda_{\rho} \text { and } \\
\prod_{i=1}^{r} \widetilde{O C C}\left(\pi_{i}, \sigma\right) & =\sum_{\rho \in \mathfrak{E}_{K}} c_{\pi_{1}, \ldots, \pi_{r}}^{\rho} \widetilde{O C C}(\rho, \sigma)+O(1 / n) .
\end{aligned}
$$

Remark: The above is the combinatorial formula for computing moments of $\Lambda_{\pi}$, knowing a combinatorial formula for $\mathbb{E}\left[\Lambda_{\pi}\right]$ (omitted but easy).

## Proof, step 2: Convergence in the unsigned case

For $t_{0}$ a tree, $f$ an excursion, and $d$ a probability distribution on $[0,1]$, let $\Psi_{t_{0}}(f, d)=\mathbb{P}$ (the tree extracted from the set of points $\mathbf{X}$ in $f$ is $\left.t_{0}\right)$ where $\mathbf{X}$ consists of $k=\left|t_{0}\right|$ points in $[0,1]$ drawn independently along $d$.

## Proof, step 2: Convergence in the unsigned case

For $t_{0}$ a tree, $f$ an excursion, and $d$ a probability distribution on $[0,1]$, let $\Psi_{t_{0}}(f, d)=\mathbb{P}$ (the tree extracted from the set of points $\mathbf{X}$ in $f$ is $\left.t_{0}\right)$ where $\mathbf{X}$ consists of $k=\left|t_{0}\right|$ points in $[0,1]$ drawn independently along $d$.

- $C_{n}=$ the (normalized) contour of a uniform Schröder tree with $n$ leaves;
- $d_{n}=$ the uniform distribution on the peaks of $C_{n}$;
- $e=$ the Brownian excursion;
- $u=$ the uniform distribution on $[0,1]$.


## Theorem

For all $t_{0}, \Psi_{t_{0}}\left(C_{n}, d_{n}\right)$ converges in distribution to $\Psi_{t_{0}}(e, u)$ when $n \rightarrow+\infty$.

## Proof, step 2: Convergence in the unsigned case

For $t_{0}$ a tree, $f$ an excursion, and $d$ a probability distribution on $[0,1]$, let $\Psi_{t_{0}}(f, d)=\mathbb{P}$ (the tree extracted from the set of points $\mathbf{X}$ in $f$ is $\left.t_{0}\right)$ where $\mathbf{X}$ consists of $k=\left|t_{0}\right|$ points in $[0,1]$ drawn independently along $d$.

- $C_{n}=$ the (normalized) contour of a uniform Schröder tree with $n$ leaves;
- $d_{n}=$ the uniform distribution on the peaks of $C_{n}$;
- $e=$ the Brownian excursion;
- $u=$ the uniform distribution on $[0,1]$.


## Theorem

For all $t_{0}, \Psi_{t_{0}}\left(C_{n}, d_{n}\right)$ converges in distribution to $\Psi_{t_{0}}(e, u)$ when $n \rightarrow+\infty$.

- $C_{n} \rightarrow e$ : Pitman-Rizzolo or Kortchemski (with Galton-Watson trees)
- $d_{n} \rightarrow u$ : similar to Marckert-Mokkadem (concentration inequalities)
- continuity of $\Psi_{t_{0}}$ : exercise (using nice properties of e)


## Proof, step 3: Re-introducing signs

- In the signed Brownian excursion ( $e, S$ ), the signs are balanced and independent.
So, this also holds in the signed trees extracted from $(e, S)$.


## Proof, step 3: Re-introducing signs

- In the signed Brownian excursion (e,S), the signs are balanced and independent.
So, this also holds in the signed trees extracted from $(e, S)$.
- We prove that, in the limit when $n \rightarrow+\infty$, the signs are also balanced and independent in the trees extracted from the signed contours of separable permutations of size $n$.


## Proof, step 3: Re-introducing signs

- In the signed Brownian excursion (e,S), the signs are balanced and independent.
So, this also holds in the signed trees extracted from $(e, S)$.
- We prove that, in the limit when $n \rightarrow+\infty$, the signs are also balanced and independent in the trees extracted from the signed contours of separable permutations of size $n$.

Proof idea:

1. Taking $k$ leaves uniformly in a uniform Schröder tree with $n$ leaves, the distances between their common ancestors tend to $+\infty$ with $n$.
2. With a subtree exchangeability argument, this implies that the parities of the height of these common ancestors are balanced and independent.

## Proof, step 3: Re-introducing signs

- In the signed Brownian excursion (e,S), the signs are balanced and independent.
So, this also holds in the signed trees extracted from $(e, S)$.
- We prove that, in the limit when $n \rightarrow+\infty$, the signs are also balanced and independent in the trees extracted from the signed contours of separable permutations of size $n$.

Proof idea:

1. Taking $k$ leaves uniformly in a uniform Schröder tree with $n$ leaves, the distances between their common ancestors tend to $+\infty$ with $n$.
2. With a subtree exchangeability argument, this implies that the parities of the height of these common ancestors are balanced and independent.

Conclusion of the proof:
relate the expectation in the signed and in the unsigned cases.

