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Random permutations in Av(7) for 7 of size 3
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Random separable permutations (i.e., in Av(2413,3142))

Separable permutations of size 204523 and 903073, drawn uniformly at
random among those of the same size.

(Figures generated with a Boltzmann sampler by Carine Pivoteau.)
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Goal: Explain these diagrams, by describing the “limit shape” of random
separable permutations of size n — 4co.
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More about Av(7) for 7 of size 3

@ Madras with Atapour, Liu and Pehlivan and Miner-Pak:
< very precise local description of the asymptotic shape

@ Hoffman-Rizzolo-Slivken:
— scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal)

@ Janson, following earlier works by Béna, Cheng-Eu-Fu, Homberger,
Janson-Nakamura-Zeilberger, Rudolph:
— study the (normalized) number of occurrences of any pattern x in
large uniform ¢ avoiding 7, and find its limiting distribution.
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More about Av(7) for 7 of size 3

@ Madras with Atapour, Liu and Pehlivan and Miner-Pak:
< very precise local description of the asymptotic shape

@ Hoffman-Rizzolo-Slivken:
— scaling limits and link with the Brownian excursion (for the
fluctuations around the main diagonal)

@ Janson, following earlier works by Béna, Cheng-Eu-Fu, Homberger,
Janson-Nakamura-Zeilberger, Rudolph:
— study the (normalized) number of occurrences of any pattern x in
large uniform ¢ avoiding 7, and find its limiting distribution.

Main result of Janson: For any pattern r, the quantity

number of occurrences of 7 in uniform o € Av,(132)
nlzl+ number of descents of 741

converges in distribution to a strictly positive random variable.
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Our main result: the limit of separable permutations

Notation:

° 666(71’ 0’) __ number of occurrences of 7 in o forn = |0_| and k = |7T|
S () a a
@ U , = a uniform random separable permutation of size n

There exist random variables (A\;), = ranging over all permutations,
such that for all 7, 0 < A, < 1 and when n — +oo,
occ(m, O ) converges in distribution to A,.
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Our main result: the limit of separable permutations

Notation:
P 666(71’, O’) _ _number of occ%;ences of rino forn = |0_| and k = |7T|
Kk

@ U , = a uniform random separable permutation of size n

There exist random variables (A\;), = ranging over all permutations,
such that for all 7, 0 < A, < 1 and when n — +oo,
occ(m, O ) converges in distribution to A,.

Moreover,
@ We describe a construction of A;.
@ This holds jointly for patterns =4, ..., x,.
o If mis separable of size at least 2, A is non-deterministic.

@ Combinatorial formula for all moments of A,.
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Why separable permutations?

Separable permutations are Av(2413,3142). But more importantly, they:
@ form one of the most studied class after Av(r) for |7] = 3;

@ are the smallest family closed under @ and ©
(and hence form the simplest non-trivial substitution-closed class);

@ are encoded by signed Schrdder trees.
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Separable permutations are Av(2413,3142). But more importantly, they:
@ form one of the most studied class after Av(r) for |7] = 3;

@ are the smallest family closed under @ and ©
(and hence form the simplest non-trivial substitution-closed class);

@ are encoded by signed Schrdder trees.

Example: o = 3214576 = @[e[1,1,1],1,1,6[1,1]] = s
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Why separable permutations?

Separable permutations are Av(2413,3142). But more importantly, they:
@ form one of the most studied class after Av(r) for |7] = 3;

@ are the smallest family closed under @ and ©
(and hence form the simplest non-trivial substitution-closed class);

@ are encoded by signed Schrdder trees. 5

Example: o = 3214576 = @[o[1,1,1],1,1,0[1,1]] = [—F

o corresponds to , among other trees.

The correspondence can be made one-to-one imposing alternating signs.

Here, o <
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Construction of A,

Excursion = continuous function f from [0, 1] to [0, +o0) with
f(0) = f(1) = 0.

With x = {x1, ..., Xk} a set of points in [0, 1], and f an excursion, we
classically associate a tree looking at the minima of f between the x;’s.
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Construction of A, (1/2)

Excursion = continuous function f from [0, 1] to [0, +o0) with

f(0) =f(1)=0.

Signed excursion = pair (f, s) where f is an excursion and s a sign function
giving a + or — sign to each local minimum of f.

With x = {x1, ..., Xk} a set of points in [0, 1], and f an excursion, we
classically associate a tree looking at the minima of f between the x;’s.
Signed variant associating a signed Schroder tree Tree. (f, s, x) with (f, s)
and x.
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Construction of A, (2/2)

For n a pattern and (f, s) a signed excursion,
V. (f, s) = probability that Tree.(f, s, X) is a signed Schrdder tree of &

when X consists of k = |z| uniform and independent points in [0, 1].
Remark: W, is identically O if  is not separable.
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Construction of A,

For n a pattern and (f, s) a signed excursion,
V. (f, s) = probability that Tree.(f, s, X) is a signed Schrdder tree of &

when X consists of k = |z| uniform and independent points in [0, 1].
Remark: W, is identically O if  is not separable.

The signed Brownian excursion is (e, S)
where e is the Brownian excursion and S assigns signs to the local
minima of e in a balanced and independent manner.

Forallm, A;=V,(e,S).
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Construction of A, (2/2)

For n a pattern and (f, s) a signed excursion,
V. (f, s) = probability that Tree.(f, s, X) is a signed Schrdder tree of &

when X consists of k = |z| uniform and independent points in [0, 1].
Remark: W, is identically O if  is not separable.

The signed Brownian excursion is (e, S)
where e is the Brownian excursion and S assigns signs to the local
minima of e in a balanced and independent manner.

Forallm, A;=V,(e,S).
You may ask:

What is the link between trees extracted from the signed Brownian
excursion and occurrences of patterns in separable permutations?
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Contours of trees

Classical case: tree — excursion called contour (via depth-first search).
Signed variant: signed tree — signed excursion called signed contour.

0,12,14,20 +

Remark: Leaves of the tree are peaks of the contour.
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Contours of trees

Classical case: tree — excursion called contour (via depth-first search).
Signed variant: signed tree — signed excursion called signed contour.

0,12,14,20

Remark: Leaves of the tree are peaks of the contour.

Separable permutations = signed Schrdder trees.

And contours of Schréder trees (with n leaves) — Brownian excursion.
(Pitman-Rizzolo or Kortchemski, using conditioned Galton-Watson trees.)
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Contours of trees

Classical case: tree — excursion called contour (via depth-first search).
Signed variant: signed tree — signed excursion called signed contour.

0.12114,20 + + + +
Remark: Leaves of the tree are peaks of the contour.

Separable permutations = signed Schrdder trees.

And contours of Schréder trees (with n leaves) — Brownian excursion.
(Pitman-Rizzolo or Kortchemski, using conditioned Galton-Watson trees.)

Open: Do signed Schrdder trees converge to the signed Brownian
excursion?
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Extracting subtrees from contours

Extracting a pattern 7 from a separable permutation o,
o = 3214576 +— 7 = 123
= extracting a subtree (induced by leaves) in a signed Schroder tree of o

3@ 1
@ 70 2 4

= extracting a subtree from a set x of peaks in a signed contour (f, s) of .

N %%Mm
+ T+ +
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Extracting subtrees from contours

Extracting a pattern 7 from a separable permutation o,
o = 3214576 +— 7 = 123
= extracting a subtree (induced by leaves) in a signed Schroder tree of o

3@ 1
@ 70 2 4

= extracting a subtree from a set x of peaks in a signed contour (f, s) of .

N %%Mm
+ T+ +

Patterns in separable permutations ~ Tree.(f, s,x) — A, ~ Tree.(e, S, X).
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Our main theorem

For the random variables N\, defined earlier, it holds that for all r,
0 <A, <1, and when n — +oo, occ(r, O ) converges in distribution to A,.

This gives the proportion of occurrences of any pattern x in a uniform
separable permutation of size n, as n — +oo.
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Our main theorem

For the random variables N\, defined earlier, it holds that for all r,
0 <A, <1, and when n — +oo, occ(r, O ) converges in distribution to A,.

This gives the proportion of occurrences of any pattern x in a uniform
separable permutation of size n, as n — +oo.

But how does this relate to the limit diagram of large uniform separable
permutations?
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Permuton interpretation of our result

@ A permuton is a measure on [0, 1]? with uniform marginals.

@ The diagram of any permutation o is a permuton, denoted u,
(up to normalizing and filling in uniformly the cells containing dots).

@ And “limit shapes” of diagrams are also permutons.
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Permuton interpretation of our result

@ A permuton is a measure on [0, 1]? with uniform marginals.

@ The diagram of any permutation o is a permuton, denoted u,
(up to normalizing and filling in uniformly the cells containing dots).

@ And “limit shapes” of diagrams are also permutons.

Our main theorem can be interpreted in terms of permutons:

There exists a random permuton L such that ug- tends to LL in
distribution (in the weak convergence topology).

Concretely, U is the limit shape of uniform separable permutations.
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Permuton interpretation of our result

@ A permuton is a measure on [0, 1]? with uniform marginals.

@ The diagram of any permutation o is a permuton, denoted u,
(up to normalizing and filling in uniformly the cells containing dots).

@ And “limit shapes” of diagrams are also permutons.

Our main theorem can be interpreted in terms of permutons:

There exists a random permuton L such that ug- tends to LL in
distribution (in the weak convergence topology).

Concretely, U is the limit shape of uniform separable permutations.

The proof uses a result of Hoppen-Kohayakawa-Moreira-Rath-Sampaio:
For (on)n=1 a deterministic sequence of permutations of increasing size n,
assuming that occ(r, o) has a limit as n — +oo for every pattern r,

it holds that the sequence of permutons (u.,)n has a limit.
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What do we know about ,Ll?

We know the existence of 4. But can we describe (properties of) (U?
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What do we know about ,Ll?

We know the existence of 4. But can we describe (properties of) (U?

@ We know that (L is not deterministic (because A1z is not).
This is in contrast with permutation classes studied earlier, whose
limit is deterministic at first order.
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We know the existence of 4. But can we describe (properties of) (U?

@ We know that (L is not deterministic (because A1z is not).

This is in contrast with permutation classes studied earlier, whose
limit is deterministic at first order.

@ Properties of (L:

Is L absolutely continuous or singular with respect to Lebesgue
measure on the square? Can we explain the fractal-ness of [1?
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What do we know about ,Ll?

We know the existence of 4. But can we describe (properties of) (U?

@ We know that (L is not deterministic (because A1z is not).
This is in contrast with permutation classes studied earlier, whose
limit is deterministic at first order.

@ Properties of (L:
Is L absolutely continuous or singular with respect to Lebesgue
measure on the square? Can we explain the fractal-ness of [1?
@ Explicit construction of U:

Open problem in the arxiv preprint, but recently solved in collaboration
with J. Bertoin and V. Féray.
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What do we know about ,Ll?

We know the existence of 4. But can we describe (properties of) (U?

@ We know that L is not deterministic (because A1z is not).
This is in contrast with permutation classes studied earlier, whose
limit is deterministic at first order.

@ Properties of (L:
Is L absolutely continuous or singular with respect to Lebesgue
measure on the square? Can we explain the fractal-ness of [1?

@ Explicit construction of U:
Open problem in the arxiv preprint, but recently solved in collaboration
with J. Bertoin and V. Féray.

@ Universality of UU:
We believe that (a one-parameter deformation of) LI is the limit of all
substitution-closed classes with finitely many simples.
This is work in progress.

Mathilde Bouvel (I-Math, UZH) Random separable permutations 13/13



What do we know about ,Ll?

We know the existence of 4. But can we describe (properties of) (U?

@ We know that (L is not deterministic (because A1z is not).
This is in contrast with permutation classes studied earlier, whose
limit is deterministic at first order.

@ Properties of (L:
Is L absolutely continuous or singular with respect to Lebesgue
measure on the square? Can we explain the fractal-ness of [1?

@ Explicit construction of U:
Open problem in the arxiv preprint, but recently solved in collaboration
with J. Bertoin and V. Féray. More about that at PP 2017, hopefully!

@ Universality of UU:
We believe that (a one-parameter deformation of) LI is the limit of all
substitution-closed classes with finitely many simples.
This is work in progress. More about that at PP 2017, hopefully!
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Some hints about the proof
(that you were spared)



Proof, step 1: Convergence in expectation in enough

Our main theorem: occ(r, 0 ) converges in distribution to A,.
It is enough to prove: E [occ(r, O )] — E[A,],
i.e., occ(m, 0 ) converges in expectation to A,.
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Proof, step 1: Convergence in expectation in enough

Our main theorem: occ(r, 0 ) converges in distribution to A,.
It is enough to prove: E [occ(r, O )] — E[A,],
i.e., occ(m, 0 ) converges in expectation to A,.

@ Our random variables are bounded (they take values in [0, 1]), so
convergence in distribution < convergence of all moments.
@ Expectation determines all moments, since we can write:

pECK

Remark: The above is the combinatorial formula for computing moments
of A, knowing a combinatorial formula for E [A,] (omitted but easy).
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Proof, step 2: Convergence in the unsigned case

For ty a tree, f an excursion, and d a probability distribution on [0, 1], let
WV, (f, d) = P(the tree extracted from the set of points X'in f is 1)
where X consists of k = |ty| points in [0, 1] drawn independently along d.
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Proof, step 2: Convergence in the unsigned case

For ty a tree, f an excursion, and d a probability distribution on [0, 1], let
WV, (f, d) = P(the tree extracted from the set of points X'in f is 1)
where X consists of k = |ty| points in [0, 1] drawn independently along d.

@ C,, = the (normalized) contour of a uniform Schréder tree with n leaves;
@ d, = the uniform distribution on the peaks of Cy;

@ e = the Brownian excursion;

@ u = the uniform distribution on [0, 1].

For all ty, W1,(Cn, dn) converges in distribution to W (e, u) when n — +oo.
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Proof, step 2: Convergence in the unsigned case

For ty a tree, f an excursion, and d a probability distribution on [0, 1], let
WV, (f, d) = P(the tree extracted from the set of points X'in f is 1)
where X consists of k = |ty| points in [0, 1] drawn independently along d.

@ C,, = the (normalized) contour of a uniform Schréder tree with n leaves;
@ d, = the uniform distribution on the peaks of Cy;

@ e = the Brownian excursion;

@ u = the uniform distribution on [0, 1].

For all ty, W1,(Cn, dn) converges in distribution to W (e, u) when n — +oo.

@ C, — e: Pitman-Rizzolo or Kortchemski (with Galton-Watson trees)
@ d, — u: similar to Marckert-Mokkadem (concentration inequalities)
@ continuity of W, : exercise (using nice properties of e)
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Proof, step 3: Re-introducing signs

@ In the signed Brownian excursion (e, S), the signs are balanced and
independent.
So, this also holds in the signed trees extracted from (e, S).
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Proof, step 3: Re-introducing signs

@ In the signed Brownian excursion (e, S), the signs are balanced and
independent.
So, this also holds in the signed trees extracted from (e, S).

@ We prove that, in the limit when n — +o0, the signs are also balanced
and independent in the trees extracted from the signed contours of
separable permutations of size n.
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Proof, step 3: Re-introducing signs

@ In the signed Brownian excursion (e, S), the signs are balanced and
independent.
So, this also holds in the signed trees extracted from (e, S).

@ We prove that, in the limit when n — +o0, the signs are also balanced
and independent in the trees extracted from the signed contours of
separable permutations of size n.

Proof idea:
1. Taking k leaves uniformly in a uniform Schrdder tree with n leaves,
the distances between their common ancestors tend to +co with n.
2. With a subtree exchangeability argument, this implies that
the parities of the height of these common ancestors are
balanced and independent.

Mathilde Bouvel (I-Math, UZH) Random separable permutations 17/13



Proof, step 3: Re-introducing signs

@ In the signed Brownian excursion (e, S), the signs are balanced and
independent.
So, this also holds in the signed trees extracted from (e, S).

@ We prove that, in the limit when n — +o0, the signs are also balanced
and independent in the trees extracted from the signed contours of
separable permutations of size n.

Proof idea:
1. Taking k leaves uniformly in a uniform Schrdder tree with n leaves,

the distances between their common ancestors tend to +co with n.
2. With a subtree exchangeability argument, this implies that

the parities of the height of these common ancestors are

balanced and independent.

Conclusion of the proof:
relate the expectation in the signed and in the unsigned cases.
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