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What are permutations? (in this talk)

A permutation of size n is a bijection from {1, 2, . . . , n} to itself.

We often write a permutation σ of size n as the word σ(1)σ(2) . . . σ(n).

For the purpose of this talk, we represent permutations by their
permutation matrices, or rather their diagram.

Example: the diagram of σ = 596741283 is
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What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10 size 100 size 1 000

size 10 000 size 100 000
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What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10 size 100 size 1 000

size 10 000 size 100 000 in the limit

Goal of the talk: Describe limit shapes of (the diagrams of)
pattern-avoiding permutations.
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Patterns in permutations

A permutation π of size k is a pattern of a permutation σ of size n if
there exist 1 ≤ i1 < . . . < ik ≤ n such that σ(i1) . . . σ(ik) is in the same
relative order (≡) as π.

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6 since 3 1 5 7 ≡ 2 1 3 4.
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Patterns in permutations

A permutation π of size k is a pattern of a permutation σ of size n if
there exist 1 ≤ i1 < . . . < ik ≤ n such that σ(i1) . . . σ(ik) is in the same
relative order (≡) as π.

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6 since 3 1 5 7 ≡ 2 1 3 4.

Permutation classes are sets of permutations defined by the avoidance of
patterns. They are denoted Av(B) for B a set of excluded patterns.
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Patterns in permutations

A permutation π of size k is a pattern of a permutation σ of size n if
there exist 1 ≤ i1 < . . . < ik ≤ n such that σ(i1) . . . σ(ik) is in the same
relative order (≡) as π.

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6 since 3 1 5 7 ≡ 2 1 3 4.

Permutation classes are sets of permutations defined by the avoidance of
patterns. They are denoted Av(B) for B a set of excluded patterns.

There is a large literature on permutation classes, with main focus on
enumerative aspects, but also in algorithmic and more recently logic and
(discrete) probability theory.
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Analoguous framework for graphs

Similarities:

permutation patterns ↔ induced subgraph

permutation class ↔ hereditary family

similar theory for limit shapes, as we shall see

Differences:

Less counting, more algorithms

For enumeration, additional difficulties arising from internal
symmetries (automorphisms)

However, permutations are not a special case of graphs via their
permutation graphs, since this correspondence is not one-to-one.

⇒ Two parallel worlds, with similarities, but also with their specificities.
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Uniform random permutations in Av(τ) for τ of size 3

Av(231)

Av(321)

from Miner-Pak, 2013 from Hoffman-Rizzolo-Slivken, 2015
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Uniform random permutations in Av(τ) for τ of size 3

Av(231)

Av(321)

from Miner-Pak, 2013 from Hoffman-Rizzolo-Slivken, 2015

Miner-Pak, also Madras with Atapour, Liu and Pehlivan: very precise
local description of the average asymptotic shape

Hoffman-Rizzolo-Slivken: scaling limits and link with the Brownian
excursion (for the fluctuations around the main diagonal)
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ?
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutations in Av(2413, 3142), the class of separable
permutations, also described as the substitution-closed class with set of
simple permutations ∅:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutations in the substitution-closed class with set of
simple permutations {2413, 3142, 24153}:

Mathilde Bouvel (Loria, Nancy) Limits of permutations 7 / 43



Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutation in the substitution-closed class with (infinite)
set of simple permutations Av(321) ∩ {Simples}, i.e. in the substitution
closure of Av(321):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutations in Av(2413, 1243, 2341, 41352, 531642):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in Av(2413, 3142, 2143, 3412),
called the X-class and denoted X later:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in Av(2413, 3142, 2143, 34512):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in the downward closure of ⊕[X ,X ]:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in the downward closure of ⊕[X ,X ]:

How can we explain these pictures?

Mathilde Bouvel (Loria, Nancy) Limits of permutations 7 / 43



Describing limits of permutations:
the framework of permutons



What type of objects are the limiting diagrams?

A permuton (defined by Hoppen-Kohayakawa-Moreira-Rath-Sampaio,
2013, named by Glebov-Grzesik-Klimošová-Král, 2015) is a probability
measure on the unit square with uniform projections,
i.e. the total mass on any vertical or horizontal strip of width x is x .
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What type of objects are the limiting diagrams?

A permuton (defined by Hoppen-Kohayakawa-Moreira-Rath-Sampaio,
2013, named by Glebov-Grzesik-Klimošová-Král, 2015) is a probability
measure on the unit square with uniform projections,
i.e. the total mass on any vertical or horizontal strip of width x is x .

With its diagram, every permutation σ can be viewed as a permuton µσ.

=⇒

Informally, permutons can represent permutations of finite size,
but also “permutations of infinite size”.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Theorem [Hoppen-Kohayakawa-Moreira-Rath-Sampaio, 2013]:
In the deterministic setting, permuton convergence is characterized by the
convergence of probabilities (or densities) of all patterns.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Theorem [Hoppen-Kohayakawa-Moreira-Rath-Sampaio, 2013]:
In the deterministic setting, permuton convergence is characterized by the
convergence of probabilities (or densities) of all patterns.

Theorem [Bassino-Bouvel-Féray-Gerin-Maazoun-Pierrot, 2020]:
In the random setting, permuton convergence in distribution is
characterized by the convergence of probabilities (or densities) of all
patterns in expectation.

Mathilde Bouvel (Loria, Nancy) Limits of permutations 10 / 43



Characterization of permuton convergence

Let (σn)n≥1 be a sequence of permutations of size tending to infinity. Let
µ be a permuton. For any pattern π, writing |π| = k , define:

õcc(π, σn) = probability that k points picked uniformly at random in
σn form an occurrence of the pattern π = number of occurrences of π in σn

(|σn|k )
.

õcc(π, µ) = the probability that k points of the unit square picked at
random according to µ induce the pattern π.
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Characterization of permuton convergence

Let (σn)n≥1 be a sequence of permutations of size tending to infinity. Let
µ be a permuton. For any pattern π, writing |π| = k , define:

õcc(π, σn) = probability that k points picked uniformly at random in
σn form an occurrence of the pattern π = number of occurrences of π in σn

(|σn|k )
.

õcc(π, µ) = the probability that k points of the unit square picked at
random according to µ induce the pattern π.

Theorems:

(σn) converges to some permuton µ ⇔ for every pattern π,
õcc(π, σn) converges to some value δπ ∈ [0, 1], which characterize µ
through õcc(π, µ) = δπ for all π.
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Characterization of permuton convergence

Let (σn)n≥1 be a sequence of permutations of size tending to infinity. Let
µ be a permuton. For any pattern π, writing |π| = k , define:

õcc(π, σn) = probability that k points picked uniformly at random in
σn form an occurrence of the pattern π = number of occurrences of π in σn

(|σn|k )
.

õcc(π, µ) = the probability that k points of the unit square picked at
random according to µ induce the pattern π.

Theorems:

(σn) converges to some permuton µ ⇔ for every pattern π,
õcc(π, σn) converges to some value δπ ∈ [0, 1], which characterize µ
through õcc(π, µ) = δπ for all π.

(σn) converges in distribution to some permuton µ ⇔ for every
pattern π, E[õcc(π,σn)] converges to some value ∆π ∈ [0, 1].

If this holds, E[õcc(π,µ)] = ∆π for all π and (∆π)π characterizes µ.
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Before permutons were graphons

Graphons are used to express limits of dense graphs [Lovász, 2012,
based on prior works].

Graphons are essentially continuous analogues of adjacency matrices
of graphs (up to permuting rows and columns in all possible ways)

The space of graphons is less nice than that of permutons, but it is
possible to define graphon convergence.

Graphon convergence is characterized by the convergence of all
induces subgraph densities.

There is a large literature on graphons. Graphon limits of hereditary
graph classes is a drop in the ocean.
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Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random
permutations in permutation classes.

Framework: Express these limit shape results in the framework of
permutons.
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Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random
permutations in permutation classes.

Framework: Express these limit shape results in the framework of
permutons.

Key tools:

Permuton convergence is the convergence of all pattern probabilities;

Thanks to their substitution decomposition, permutations are trees
and their patterns are subtrees;

Limit shape results on random trees [BBFGP, 2018]

OR

Singularity analysis of generating functions for trees [BBFGMP, 2020
and 2022].
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Substitution decomposition
and decomposition trees



Substitution decomposition

Ingredients:

A way of building bigger permutations from smaller ones
⇝ substitution or inflation;

“Building blocks” allowing to build all permutations
⇝ simple permutations.

Essential property:

For every permutation σ, there exists a unique way of obtaining it
recursively using inflations of simple permutations.
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Substitution decomposition

Ingredients:

A way of building bigger permutations from smaller ones
⇝ substitution or inflation;

“Building blocks” allowing to build all permutations
⇝ simple permutations.

Essential property:

For every permutation σ, there exists a unique way of obtaining it
recursively using inflations of simple permutations.

Outcome:

Bijection between permutations and decomposition trees.

(Some) permutation classes are (nice) families of trees:

easiest case: substitution-closed classes;
beyond those: classes with a finite combinatorial specification.
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Inflating permutations

Substitution or inflation: π[α(1), α(2), . . . , α(k)], for π of size k.

Example: Here, π = 13 2, and


α(1) = 21 =

α(2) = 13 2 =

α(3) = 1 =

.

Hence 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

Not simple:

Simple:
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Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simple permutations:
12, 21, 2413, 3142, 6 of size 5, . . .
Remark:
It is convenient to consider 12 and 21 not
simple.

Not simple:

Simple:
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Substitution decomposition theorem for permutations

Theorem [Albert-Atkinson, 2005]:
Every σ ( ̸= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)] = ⊕[α(1), . . . , α(k)],
where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)] = ⊖[α(1), . . . , α(k)],
where the α(i) are ⊖-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Notations:

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

⊖-indecomposable: that cannot be written as ⊖[β(1), β(2)]
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Substitution decomposition theorem for permutations

Theorem [Albert-Atkinson, 2005]:
Every σ ( ̸= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)] = ⊕[α(1), . . . , α(k)],
where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)] = ⊖[α(1), . . . , α(k)],
where the α(i) are ⊖-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Notations:

⊕-indecomposable: that cannot be written as ⊕[β(1), β(2)]

⊖-indecomposable: that cannot be written as ⊖[β(1), β(2)]

Decomposing recursively inside the α(i) ⇒ decomposition tree
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Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

⊖

⊖

⊕

2 4 1 5 3

⊖ ⊕

Notations and properties:

• ⊕ = 12 . . . k , ⊖ = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor ⊖−⊖.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,⊖[1, 1, 1], 1], 1,⊖[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,⊖[1, 1], 1,⊕[1, 1, 1]]]
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⊖
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Bijection between permutations and their decomposition trees.

Mathilde Bouvel (Loria, Nancy) Limits of permutations 19 / 43



Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

⊖

⊖

⊕

2 4 1 5 3

⊖ ⊕

Notations and properties:

• ⊕ = 12 . . . k , ⊖ = k . . . 21
= linear nodes.

• π simple of size ≥ 4
= prime node.

• No edge ⊕−⊕ nor ⊖−⊖.

• Rooted ordered trees.

• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,⊖[1, 1, 1], 1], 1,⊖[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,⊖[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

A substitution-closed class of permutations is characterized by a
(pattern-closed) set of simple permutations.
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Several graph analogues

There are several ways of encoding graphs with “decomposition trees”,
where leaves correspond to vertices of the graph.

Modular decomposition

intervals ↔ modules

simple permutations ↔ prime graphs

the resulting tree is rooted but not fully ordered

Split decomposition

tree-edge ↔ cut which is a complete bipartite graph

the resulting tree is neither rooted nor ordered
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Separable permutations
and the Brownian separable permuton



Separable permutations

They are equivalently described as

Av(2413, 3142);

the substitution-closed class with set of simple permutations ∅.

Theorem:
Uniform random separable permutations converge to a genuinely random
permuton: the Brownian separable permuton.
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Decomposition trees of separable permutations

A Schröder tree of size n is a rooted plane tree with n leaves whose
internal vertices have at least two children.

◦

• ◦

• • ◦

• • •

• •

• ◦

◦

• • •

•
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Decomposition trees of separable permutations

A Schröder tree of size n is a rooted plane tree with n leaves whose
internal vertices have at least two children.

⊕

• ⊖

• • ⊕

• • •

• •

• ⊖

⊕

• • •

•

Decomposition trees of separable permutations are signed Schröder
trees, as above with additional signs ⊕ and ⊖ on the internal vertices,
which alternate on any path from the root to a leaf (i.e. the sign of
the root determines all others).
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The combinatorial specification of separable permutations

Up to the “right binarization”
⊕

T1 T2
. . . Tk

7→ ⊕
T1 ⊕

T2 ⊕
. . . Tk(and same with ⊖),

the decomposition trees of separable permutations are generated by the
following combinatorial specification:

Tsep = {•} ⊎ ⊕
T not⊕
sep Tsep

⊎ ⊖
T not⊖
sep Tsep

;

T not⊕
sep = {•} ⊎ ⊖

T not⊖
sep Tsep

;

T not⊖
sep = {•} ⊎ ⊕

T not⊕
sep Tsep

.

Starting point of the “analytic combinatorics” proof, discussed later.
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The combinatorial specification of separable permutations

Up to the “right binarization”
⊕

T1 T2
. . . Tk

7→ ⊕
T1 ⊕

T2 ⊕
. . . Tk(and same with ⊖),

the decomposition trees of separable permutations are generated by the
following combinatorial specification:

Tsep = {•} ⊎ ⊕
T not⊕
sep Tsep

⊎ ⊖
T not⊖
sep Tsep

;

T not⊕
sep = {•} ⊎ ⊖

T not⊖
sep Tsep

;

T not⊖
sep = {•} ⊎ ⊕

T not⊕
sep Tsep

.

Starting point of the “analytic combinatorics” proof, discussed later.
For now, we present the “random trees” proof.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +

We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.
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We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the
signed Brownian excursion?
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.
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1,9,11

2,4,6,8

3 5 7
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15,17,19
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+ +

We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the
signed Brownian excursion? But. . .
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

In the limit:

This characterizes the
probabilities of all
subtrees extracted from
e±, hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑

Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±

Mathilde Bouvel (Loria, Nancy) Limits of permutations 26 / 43



Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

In the limit:
This characterizes the
probabilities of all
subtrees extracted from
e±,

hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑
Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ
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≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ
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In the limit:
This characterizes the
probabilities of all
subtrees extracted from
e±, hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑
Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±
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Substitution-closed classes
and universality

of the Brownian separable permuton



Separable permutations and substitution-closed classes

The class of separable permutations is the one whose decomposition trees
are described by the combinatorial specification

Tsep = {•} ⊎ ⊕
T not⊕
sep Tsep

⊎ ⊖
T not⊖
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

;

T not⊕
sep = {•} ⊎ ⊖

T not⊖
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

;

T not⊖
sep = {•} ⊎ ⊕

T not⊕
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

.
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Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described
by a combinatorial specification of the form

T = {•} ⊎ ⊕

T not⊕ T

⊎ ⊖

T not⊖ T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊕ = {•} ⊎ ⊖

T not⊖ T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊖ = {•} ⊎ ⊕

T not⊕ T

⊎ ⊎
π∈S

π

T . . . T
.

where S is the set of simple permutations in the class CS considered.
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Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described
by a combinatorial specification of the form

T = {•} ⊎ ⊕

T not⊕ T

⊎ ⊖

T not⊖ T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊕ = {•} ⊎ ⊖

T not⊖ T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊖ = {•} ⊎ ⊕

T not⊕ T

⊎ ⊎
π∈S

π

T . . . T
.

where S is the set of simple permutations in the class CS considered.

Theorem:
Under an analytic condition on the generating function S(z) of S, uniform
random permutations in the substitution-closed class CS converge to a
biased Brownian separable permuton.
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The biased Brownian separable permuton of parameter p

Biased version of the signed Brownian excursion (for p ∈ [0, 1]):
in e±,p, local minima carry independent signs, but not balanced;
instead, + with probability p, − with probability 1− p.

The biased Brownian separable permuton µp of parameter p is
characterized as above but starting from e±,p instead of e±.

Mathilde Bouvel (Loria, Nancy) Limits of permutations 29 / 43



The biased Brownian separable permuton of parameter p

Biased version of the signed Brownian excursion (for p ∈ [0, 1]):
in e±,p, local minima carry independent signs, but not balanced;
instead, + with probability p, − with probability 1− p.

The biased Brownian separable permuton µp of parameter p is
characterized as above but starting from e±,p instead of e±.

The higher p is, the more drift there is towards the direction of the main
diagonal in µp.

simulations of µp for p = 0.2, 0.45, 0.5.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
Example 1: Separable permutations, i.e. C∅, ⇒ p = 0.5
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
Example 2: CS with S = {2413, 3142, 24153}, ⇒ p = 0.5
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
Example 3: CS with S = Av(321) ∩ {Simples}, ⇒ p ∈ [0.577, 0.622]
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
Further examples: All substitution-closed classes

with finitely many simple permutations,

or more generally such that RS = 1,

or such that S ′ diverges at RS (rational, square root singularities, . . . ).

This covers all substitution-closed classes whose simple permutations have
been enumerated.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
Non-example: Av(2413)

Limit not known.

We believe it is “degenerate”: typical permutations in Av(2413) look like
typical simple permutations in Av(2413).
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Proof schema

σn = uniform random permutation of size n in CS .
It is enough to prove the convergence of

(
E [õcc(π,σn)]

)
n
for all π.
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Proof schema

σn = uniform random permutation of size n in CS .
It is enough to prove the convergence of

(
E [õcc(π,σn)]

)
n
for all π.

By definition, E [õcc(π,σn)] =
total number of occ. of π in σ of size n in CS

( n
|π|)× number of σ of size n in CS

.
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Proof schema

σn = uniform random permutation of size n in CS .
It is enough to prove the convergence of

(
E [õcc(π,σn)]

)
n
for all π.

By definition, E [õcc(π,σn)] =
total number of occ. of π in σ of size n in CS

( n
|π|)× number of σ of size n in CS

.

Numerator and denominator are expressed as coefficients of
generating series of trees (possibly with marked leaves).

The combinatorial specification for CS yields equations for these tree
series, which all have the same radius of convergence.

simple
+

simple

simple

2413
+

132

−

ϕ
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Proof schema

σn = uniform random permutation of size n in CS .
It is enough to prove the convergence of

(
E [õcc(π,σn)]

)
n
for all π.

By definition, E [õcc(π,σn)] =
total number of occ. of π in σ of size n in CS

( n
|π|)× number of σ of size n in CS

.

Numerator and denominator are expressed as coefficients of
generating series of trees (possibly with marked leaves).

The combinatorial specification for CS yields equations for these tree
series, which all have the same radius of convergence.

Estimate their coefficients with analytic combinatorics, via the
singular behavior of the trees series and the transfer theorem.

This gives the limit of E [õcc(π,σn)].
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Proof schema

σn = uniform random permutation of size n in CS .
It is enough to prove the convergence of

(
E [õcc(π,σn)]

)
n
for all π.

By definition, E [õcc(π,σn)] =
total number of occ. of π in σ of size n in CS

( n
|π|)× number of σ of size n in CS

.

Numerator and denominator are expressed as coefficients of
generating series of trees (possibly with marked leaves).

The combinatorial specification for CS yields equations for these tree
series, which all have the same radius of convergence.

Estimate their coefficients with analytic combinatorics, via the
singular behavior of the trees series and the transfer theorem.

This gives the limit of E [õcc(π,σn)].

Rk: The limit of E [õcc(π,σn)] is non-zero if and only if π is separable.
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Extension:
Finitely generated classes,

not necessarily substitution-closed



Combinatorial specifications of classes

For substitution-closed classes: there is always a combinatorial
specification for the associated decomposition trees.

For other classes, there is sometimes a combinatorial specification for
the associated decomposition trees.

It is always the case when the number of simple permutations in the
class is finite. Moreover, in this case, the specification is automatically
produced [Bassino-Bouvel-Pierrot-Pivoteau-Rossin, 2017].
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Combinatorial specifications of classes

For substitution-closed classes: there is always a combinatorial
specification for the associated decomposition trees.

For other classes, there is sometimes a combinatorial specification for
the associated decomposition trees.

It is always the case when the number of simple permutations in the
class is finite. Moreover, in this case, the specification is automatically
produced [Bassino-Bouvel-Pierrot-Pivoteau-Rossin, 2017].

Example: Av(132)


T = {•}
⊎ ⊕

T not⊕ T⟨21⟩
⊎ ⊖

T not⊖ T
T not⊕ = {•}

⊎ ⊖
T not⊖ T

T not⊖ = {•}
⊎ ⊕

T not⊕ T⟨21⟩

T⟨21⟩ = {•}
⊎ ⊕

T not⊕
⟨21⟩ T⟨21⟩

T not⊕
⟨21⟩ = {•}.
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.

Define that Ti is critical when its generating function has minimal radius
of convergence among all those of the (Tj)j (which is that of T0).
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.

Define that Ti is critical when its generating function has minimal radius
of convergence among all those of the (Tj)j (which is that of T0).

The limiting behavior of uniform permutations in C is determined by:

the strongly connected components of the specification restricted to
critical families;

whether the restriction of the specification to each strongly connected
component is linear or branching.
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Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).
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Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 1: Av(132), with critical families in blue.

T = {•}
⊎ ⊕

T not⊕ T⟨21⟩
⊎ ⊖

T not⊖ T
T not⊕ = {•}

⊎ ⊖
T not⊖ T

T not⊖ = {•}
⊎ ⊕

T not⊕ T⟨21⟩

T⟨21⟩ = {•}
⊎ ⊕

T not⊕
⟨21⟩ T⟨21⟩

T not⊕
⟨21⟩ = {•}.

The limit is the Brownian separable permuton of parameter p = 0.
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Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 2: Av(2413, 31452, 41253, 41352, 531246), with critical families
in blue. 

T0 = {•} ⊎ ⊕[T1, T0] ⊎ ⊖[T2, T0] ⊎ 3142[T0, T3, T3, T0]

T1 = {•} ⊎ ⊖[T2, T0] ⊎ 3142[T0, T3, T3, T0]

T2 = {•} ⊎ ⊕[T1, T0] ⊎ 3142[T0, T3, T3, T0]

T3 = {•} ⊎ ⊖[T4, T3]

T4 = {•}

The limit is the Brownian separable permuton of parameter
p ≈ 0.4748692376... (only real root of a certain polynomial of degree 9).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in red and blue (for two strongly connected components).

T0 = {•} ⊎ ⊕[T1, T2] ⊎ ⊕[T1, T3] ⊎ ⊕[T4, T2] ⊎ ⊖[T1, T5] ⊎ ⊖[T1, T6] ⊎ ⊖[T7, T5]

T1 = {•}
T2 = {•} ⊎ ⊕[T1, T2]

T3 = ⊕[T1, T3] ⊎ ⊕[T4, T2] ⊎ ⊖[T1, T5] ⊎ ⊖[T1, T6] ⊎ ⊖[T7, T5]

T4 = ⊖[T1, T5] ⊎ ⊖[T1, T6] ⊎ ⊖[T7, T5]

T5 = {•} ⊎ ⊖[T1, T5]

T6 = ⊕[T1, T2] ⊎ ⊕[T1, T3] ⊎ ⊕[T4, T2] ⊎ ⊖[T1, T6] ⊎ ⊖[T7, T5]

T7 = ⊕[T1, T2] ⊎ ⊕[T1, T3] ⊎ ⊕[T4, T2].
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in red and blue (for two strongly connected components).

The limit is the centered X-permuton (of parameter (1/4, 1/4, 1/4, 1/4)).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in red and
blue (for two strongly connected components).

T0 = {•} ⊎ ⊕[T1,T2] ⊎ ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T5,T6] ⊎ ⊖[T5,T7] ⊎ ⊖[T8,T6]

T1 = {•}
T2 = {•} ⊎ ⊕[T1,T2]

T3 = ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T5,T6] ⊎ ⊖[T5,T7] ⊎ ⊖[T8,T6]

T4 = ⊖[T5,T6] ⊎ ⊖[T5,T7] ⊎ ⊖[T8,T6]

T5 = {•} ⊎ ⊕[T1,T1] ⊎ ⊕[T1,T9] ⊎ ⊕[T9,T1]

T6 = {•} ⊎ ⊖[T1,T6]

T7 = ⊕[T1,T2] ⊎ ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T10,T6] ⊎ ⊖[T10,T7] ⊎ ⊖[T1,T7] ⊎ ⊖[T8,T6]

T8 = ⊕[T1,T11] ⊎ ⊕[T1,T12] ⊎ ⊕[T13,T11] ⊎ ⊕[T9,T11] ⊎ ⊕[T13,T1]

T9 = ⊖[T1,T6]

T10 = ⊕[T1,T1] ⊎ ⊕[T1,T9] ⊎ ⊕[T9,T1]

T11 = ⊕[T1,T2]

T12 = ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T10,T6] ⊎ ⊖[T10,T7] ⊎ ⊖[T1,T7] ⊎ ⊖[T8,T6]

T13 = ⊖[T10,T6] ⊎ ⊖[T10,T7] ⊎ ⊖[T1,T7] ⊎ ⊖[T8,T6].
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in red and
blue (for two strongly connected components).

The limit is the X-permuton of parameter ≈ (0.2003, 0.2003, 0.4313, 0.1681).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
red and blue (for two strongly connected components).


T0 = {•} ⊎ ⊕[T1,T2] ⊎ ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T5,T0] ⊎ 3142[T1,T1,T1,T6]

T1 = {•} ⊎ ⊖[T7,T1]

T2 = {•} ⊎ ⊕[T7,T2]

T3 = ⊕[T8,T2] ⊎ ⊖[T9,T6]

T4 = ⊖[T10,T11] ⊎ ⊖[T10,T1] ⊎ ⊖[T7,T11] ⊎ 3142[T1,T1,T1,T6]

T5 = {•} ⊎ ⊕[T1,T1] ⊎ 3142[T1,T1,T1,T1]

T6 = {•} ⊎ ⊕[T12,T2] ⊎ ⊖[T9,T6]

T7 = {•}
T8 = ⊖[T9,T6]

T9 = {•} ⊎ ⊕[T1,T7]

T10 = ⊕[T1,T1] ⊎ 3142[T1,T1,T1,T1]

T11 = ⊕[T1,T2] ⊎ ⊕[T1,T3] ⊎ ⊕[T4,T2] ⊎ ⊖[T10,T11] ⊎ ⊖[T10,T1] ⊎ ⊖[T7,T11] ⊎ 3142[T1,T1,T1,T6]

T12 = {•} ⊎ ⊖[T9,T6]
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
red and blue (for two strongly connected components).

The limit is the X-permuton of parameter (0, 0, 1− p, p) with p ≈ 0.81863.
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Several strongly connected components

Assume the specification for C restricted to critical families has several
strongly connected components.

Limit shape in each strongly connected component: as above.

Sometimes, the limit shape of C is a combination of those in each
component.
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Several strongly connected components

Assume the specification for C restricted to critical families has several
strongly connected components.

Limit shape in each strongly connected component: as above.

Sometimes, the limit shape of C is a combination of those in each
component.

Example: the downward closure of ⊕[X ,X ]:
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Summary of the described limit shapes

(Biased) Brownian separable permuton:

Separable permutations;

Substitution-closed class under an analytic condition on S(z);

Classes with a specification that is essentially strongly connected and
essentially branching.

(Parametrized) X-permuton:

Classes with a specification that is essentially strongly connected and
essentially linear.

A mix of the above:

Classes with a specification that is not essentially strongly connected.
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Further extensions,
or related results



Cographs and the Brownian cographon

Cographs are the graph analogues of separable permutations.
With the same general approach, we can prove convergence of uniform
random cographs to the Brownian cographon.
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Cographs and the Brownian cographon

Cographs are the graph analogues of separable permutations.
With the same general approach, we can prove convergence of uniform
random cographs to the Brownian cographon.

In addition, we can deduce that the size of the largest independent set of a
uniform random cograph is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property,
answering a question of Kang, McDiarmid, Reed and Scott in 2014)

Mathilde Bouvel (Loria, Nancy) Limits of permutations 40 / 43



More families of graphs

• Théo Lenoir’s PhD thesis: Convergence to the Brownian cographon of

various families of graphs with few P4,

families of graphs with “nice” modular decompositions.

©Théo Lenoir
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More families of graphs

• Théo Lenoir’s PhD thesis: Convergence to the Brownian cographon of

various families of graphs with few P4,

families of graphs with “nice” modular decompositions.

©Théo Lenoir

• Convergence to Aldous’ Brownian CRT, with respect to the
Gromov–Prokhorov topology, for distance-hereditary graphs (and a few
relevant subclasses), using the split-decomposition [BBFGP, 2025+].
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Other tree-encodings of permutations

The software PermPal developed by
Albert-Bean-Claesson-Nadeau-Pantone-Ulfarsson automatically
produces combinatorial specifications of permutation classes, where
permutations are encoded by proof-trees.

It includes random samplers whenever a specification is automatically
derived, allowing observation of candidate limit permuton.

Our current project is to adapt our method proving permuton
convergence to these proof-trees, explaining their observations. . .

. . . and perhaps to automatize the derivation of the permuton limit in
PermPal.
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Thank you!

©Jay Pantone, talk at Permutation Patterns 2023
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