## Limit shapes of pattern-avoiding permutations

Mathilde Bouvel (Institut für Mathematik, Universität Zürich)<br>talk based on joint works with<br>Frédérique Bassino, Valentin Féray, Lucas Gerin, Mickaël Maazoun and Adeline Pierrot

Including additional pictures by Jacopo Borga and Carine Pivoteau

Winter Combinatorics Meeting, The Open University, Feb. 2019.

## What are permutations? (in this talk)

A permutation of size $n$ is a bijection from $\{1,2, \ldots, n\}$ to itself. We often write a permutation $\sigma$ of size $n$ as the word $\sigma(1) \sigma(2) \ldots \sigma(n)$. For the purpose of this talk, we represent permutations by their permutation matrices, or rather their diagram.

Example: the diagram of $\sigma=596741283$ is


## What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10

size 10000

size 100


## What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10

size 10000

size 100

size 100000

size 1000

in the limit

## What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:


Goal of the talk: Describe limit shapes of (the diagrams of) pattern-avoiding permutations.

## Patterns in permutations

A permutation $\pi$ of size $k$ is a pattern of a permutation $\sigma$ of size $n$ if there exist $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order ( $\equiv$ ) as $\pi$.

Example: 2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

## Patterns in permutations

A permutation $\pi$ of size $k$ is a pattern of a permutation $\sigma$ of size $n$ if there exist $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order ( $\equiv$ ) as $\pi$.

Example: 2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.


## Patterns in permutations

A permutation $\pi$ of size $k$ is a pattern of a permutation $\sigma$ of size $n$ if there exist $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order ( $\equiv$ ) as $\pi$.

Example: 2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.


## Patterns in permutations

A permutation $\pi$ of size $k$ is a pattern of a permutation $\sigma$ of size $n$ if there exist $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order ( $\equiv$ ) as $\pi$.

Example: 2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.


## Patterns in permutations

A permutation $\pi$ of size $k$ is a pattern of a permutation $\sigma$ of size $n$ if there exist $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order ( $\equiv$ ) as $\pi$.

Example: 2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.


Permutation classes are sets of permutations defined by the avoidance of patterns. They are denoted $A v(B)$ for $B$ a set of excluded patterns.

## Uniform random permutations in $\operatorname{Av}(\tau)$ for $\tau$ of size 3

$A v(231)$



from Miner-Pak (2013) from Hoffman-Rizzolo-Slivken (2015)

## Uniform random permutations in $\operatorname{Av}(\tau)$ for $\tau$ of size 3

$\operatorname{Av}(231)$



from Miner-Pak (2013) from Hoffman-Rizzolo-Slivken (2015)

- Miner-Pak, also Madras with Atapour, Liu and Pehlivan: very precise local description of the average asymptotic shape
- Hoffman-Rizzolo-Slivken: scaling limits and link with the Brownian excursion (for the fluctuations around the main diagonal)


## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ?


## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical large permutations in $\operatorname{Av}(2413,3142)$, the class of separable permutations, also described as the substitution-closed class with set of simple permutations $\emptyset$ :



## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical large permutations in the substitution-closed class with set of simple permutations $\{2413,3142,24153\}$ :



## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical large permutation in the substitution-closed class with (infinite) set of simple permutations $\operatorname{Av}(321) \cap\{$ Simples $\}$, i.e. in the substitution closure of $\operatorname{Av}(321)$ :


## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical (large) permutations in $\operatorname{Av}(2413,1243,2341,41352,531642)$ :



## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical (large) permutation in $\operatorname{Av}(2413,3142,2143,3412)$, called the X -class and denoted $\mathcal{X}$ later:


## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical (large) permutation in $\operatorname{Av}(2413,3142,2143,34512)$ :


## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical (large) permutations in the downward closure of $\oplus[\mathcal{X}, \mathcal{X}]$ :



## Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in $\operatorname{Av}(\tau)$ for $\tau=231$ or 321 is just

So, is first order interesting ? Yes!


Typical (large) permutations in the downward closure of $\oplus[\mathcal{X}, \mathcal{X}]$ :



How can we explain these pictures?

## What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform marginals, i.e. the total mass on any vertical or horizontal strip of width $x$ is $x$.

## What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform marginals,
i.e. the total mass on any vertical or horizontal strip of width $x$ is $x$.

With its diagram, every permutation $\sigma$ can be viewed as a permuton $\mu_{\sigma}$.


## What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform marginals,
i.e. the total mass on any vertical or horizontal strip of width $x$ is $x$.

With its diagram, every permutation $\sigma$ can be viewed as a permuton $\mu_{\sigma}$.


Informally, permuton can represent permutations of finite size, but also "permutations of infinite size".

## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

Permuton convergence is characterized by the convergence of probabilities of all patterns.

## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

Permuton convergence is characterized by the convergence of probabilities of all patterns.

- $\widetilde{\text { occ }}(\pi, \sigma)=$ probability of occurrence of the pattern $\pi$ in $\sigma$
- $\widetilde{\text { occ }}(\pi, \mu)=$ probability of occurrence of the pattern $\pi$ in $\mu$


## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

Permuton convergence is characterized by the convergence of probabilities of all patterns.

- $\widetilde{\text { occ }}(\pi, \sigma)=$ probability of occurrence of the pattern $\pi$ in $\sigma$
- $\widetilde{\text { occ }}(\pi, \mu)=$ probability of occurrence of the pattern $\pi$ in $\mu$

More precisely, with $\pi=k$

- $\widetilde{\text { occ }}(\pi, \sigma)=$ probability that $k$ points picked uniformly at random in $\sigma$ form an occurrence of the pattern $\pi=\frac{\text { number of occurrences of } \pi \text { in } \sigma}{\binom{\sigma \bar{\sigma}}{k}}$.
- $\widetilde{\text { occ }}(\pi, \mu)=$ the probability that $k$ points of the unit square picked at random according to $\mu$ induce the pattern $\pi$.


## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

Permuton convergence is characterized by the convergence of probabilities of all patterns.

- $\widetilde{\text { occ }}(\pi, \sigma)=$ probability of occurrence of the pattern $\pi$ in $\sigma$
- $\widetilde{\text { occ }}(\pi, \mu)=$ probability of occurrence of the pattern $\pi$ in $\mu$
- $\left(\boldsymbol{\sigma}_{n}\right)$ converges to $\boldsymbol{\mu} \Leftrightarrow\left(\widetilde{\mathrm{occ}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right)_{\pi}$ converges to $(\widetilde{\mathrm{occ}}(\pi, \boldsymbol{\mu}))_{\pi}$ in distribution (jointly for all patterns $\pi$ ).


## Permuton convergence

We say that a sequence of permutations $\left(\sigma_{n}\right)$ converges to a permuton $\mu$ when the sequence of permutons $\left(\mu_{\sigma_{n}}\right)$ converges to $\mu$ (for the weak convergence of measures).
This extends to sequences of random permutations $\left(\sigma_{n}\right)$, converging to a (a priori random) permuton $\boldsymbol{\mu}$.

Permuton convergence is characterized by the convergence of probabilities of all patterns.

- $\widetilde{\text { occ }}(\pi, \sigma)=$ probability of occurrence of the pattern $\pi$ in $\sigma$
- $\widetilde{\text { occ }}(\pi, \mu)=$ probability of occurrence of the pattern $\pi$ in $\mu$
- $\left(\boldsymbol{\sigma}_{n}\right)$ converges to $\boldsymbol{\mu} \Leftrightarrow\left(\widetilde{\circ}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right)_{\pi}$ converges to $(\widetilde{\circ} \bar{\circ}(\pi, \boldsymbol{\mu}))_{\pi}$ in distribution (jointly for all patterns $\pi$ ).
- If $\left(\widetilde{\mathrm{occ}}\left(\pi, \sigma_{n}\right)\right)_{\pi}$ converges (jointly) to some $\left(\Lambda_{\pi}\right)_{\pi}$ in distribution, then there exists a permuton $\boldsymbol{\mu}$ such that $\left(\sigma_{n}\right)$ converges to $\boldsymbol{\mu}$ and $(\widetilde{\mathrm{occ}}(\pi, \mu))_{\pi} \stackrel{(d)}{=}\left(\Lambda_{\pi}\right)_{\pi}$.


## Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random permutations in permutation classes.

Framework: Express these limit shape results in the framework of permutons.

## Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random permutations in permutation classes.

Framework: Express these limit shape results in the framework of permutons.

Key tools:

- Permuton convergence is the convergence of all pattern probabilities;
- Thanks to their substitution decomposition, permutations are trees and their patterns are subtrees;


## Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random permutations in permutation classes.

Framework: Express these limit shape results in the framework of permutons.

Key tools:

- Permuton convergence is the convergence of all pattern probabilities;
- Thanks to their substitution decomposition, permutations are trees and their patterns are subtrees;
- Limit shape results on random trees

OR

- Singularity analysis of generating functions for trees.


## Substitution decomposition

Ingredients:

- A way of building bigger permutations from smaller ones $\rightsquigarrow$ substitution or inflation;
- "Building blocks" allowing to build all permutations $\rightsquigarrow$ simple permutations.

Essential property:

- For every permutation $\sigma$, there exists a unique way of obtaining it recursively using inflations of simple permutations.


## Substitution decomposition

Ingredients:

- A way of building bigger permutations from smaller ones $\rightsquigarrow$ substitution or inflation;
- "Building blocks" allowing to build all permutations $\rightsquigarrow$ simple permutations.

Essential property:

- For every permutation $\sigma$, there exists a unique way of obtaining it recursively using inflations of simple permutations.

Outcome:

- Bijection between permutations and decomposition trees.
- (Some) permutation classes are (nice) families of trees:
- easiest case: substitution-closed classes;
- beyond those: classes with a finite combinatorial specification.


## Separable permutations

 and the Brownian separable permuton
## Separable permutations

They are equivalently described as

- $\operatorname{Av}(2413,3142)$;
- the substitution-closed class with set of simple permutations $\emptyset$.



Theorem:
Uniform random separable permutations converge to a genuinely random permuton: the Brownian separable permuton.

## Decomposition trees of separable permutations

- A Schröder tree of size $n$ is a rooted plane tree with $n$ leaves whose internal vertices have at least two children.



## Decomposition trees of separable permutations

- A Schröder tree of size $n$ is a rooted plane tree with $n$ leaves whose internal vertices have at least two children.

- Decomposition trees of separable permutations are signed Schröder trees, as above with additional signs $\oplus$ and $\ominus$ on the internal vertices, which alternate on any path from the root to a leaf (i.e. the sign of the root determines all others).


## The combinatorial specification of separable permutations

Up to the "right binarization"

(and same with $\ominus$ ), the decomposition trees of separable permutations are generated by the following combinatorial specification:

$$
\begin{aligned}
& \mathcal{T}_{\text {sep }}=\{\bullet\} \biguplus \underset{\mathcal{T}_{\text {sep }}^{\text {not } \oplus}}{\oplus} \mathcal{T}_{\text {sep }} \biguplus_{\substack{\mathcal{T}_{\text {sep }}^{\text {not }}}}^{\ominus} \mathcal{\mathcal { T }}_{\text {sep }} ; \\
& \begin{array}{l}
\mathcal{T}_{\text {sep }}^{\text {not } \oplus}=\{\bullet\} \biguplus \\
\mathcal{T}_{\text {sep }}^{\text {not }}=\{\bullet\} \biguplus
\end{array} \\
& \mathcal{T}_{\text {sep }}^{\text {not }} \mathcal{T}_{\text {sep }} \text {; }
\end{aligned}
$$

Starting point of the "analytic combinatorics" proof, discussed later.

## The combinatorial specification of separable permutations

Up to the "right binarization"

(and same with $\ominus$ ), the decomposition trees of separable permutations are generated by the following combinatorial specification:

$$
\begin{aligned}
& \mathcal{T}_{\text {sep }}=\{\bullet\} \biguplus \underset{\mathcal{T}_{\text {sep }}^{\text {not } \oplus}}{\oplus}{\underset{\mathcal{T}}{\text { sep }}}_{\oplus}^{+} \stackrel{\mathcal{T}_{\text {sep }}^{\text {not } \ominus}}{\ominus} \underset{\mathcal{T}_{\text {sep }}}{\ominus} ; \\
& \left\{\begin{array}{l}
\mathcal{T}_{\text {sep }}^{\text {not } \oplus}=\{\bullet\} \biguplus \\
\mathcal{T}_{\text {sep }}^{\text {not }}=\{\bullet\} \biguplus
\end{array}\right. \\
& \mathcal{T}_{\text {sep }}^{\text {not }} \mathcal{T}_{\text {sep }} \text {; }
\end{aligned}
$$

Starting point of the "analytic combinatorics" proof, discussed later. For now, we present the "random trees" proof.

## Contours and their limits

The contour of a uniform random Schröder tree converges to the Brownian excursion.

## Contours and their limits

The contour of a uniform random Schröder tree converges to the Brownian excursion.

We can define signed contours of signed Schröder trees:

- Peaks $\leftrightarrow$ leaves.
- Local minima with signs $\leftrightarrow$ signed internal nodes.



## Contours and their limits

The contour of a uniform random Schröder tree converges to the Brownian excursion.

We can define signed contours of signed Schröder trees:

- Peaks $\leftrightarrow$ leaves.
- Local minima with signs $\leftrightarrow$ signed internal nodes.


We can define a signed version of the Brownian excursion:

- Local minima carry balanced independent signs.


## Contours and their limits

The contour of a uniform random Schröder tree converges to the Brownian excursion.

We can define signed contours of signed Schröder trees:

- Peaks $\leftrightarrow$ leaves.
- Local minima with signs $\leftrightarrow$ signed internal nodes.


We can define a signed version of the Brownian excursion:

- Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the signed Brownian excursion?

## Contours and their limits

The contour of a uniform random Schröder tree converges to the Brownian excursion.

We can define signed contours of signed Schröder trees:

- Peaks $\leftrightarrow$ leaves.
- Local minima with signs $\leftrightarrow$ signed internal nodes.


We can define a signed version of the Brownian excursion:

- Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the signed Brownian excursion? But...

## Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern $\pi$ of size $k$ from a separable permutation $\sigma$

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ Extracting a signed subtree (induced by $k$ leaves) in a signed Schröder tree of $\sigma$

$\equiv$ Extracting a signed tree from a set of $k$ peaks in a signed contour of $\sigma$


## Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern $\pi$ of size $k$ from a separable permutation $\sigma$

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ Extracting a signed subtree (induced by $k$ leaves) in a signed Schröder tree of $\sigma$

$\qquad$
$\equiv$ Extracting a signed tree from a set of $k$ peaks in a signed contour of $\sigma$


## In the limit:



Extracting a signed tree from a set of $k$ uniformly chosen points in the signed Brownian excursion $\mathbf{e}_{ \pm}$

## Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern $\pi$ of size $k$ from a separable permutation $\sigma$

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ Extracting a signed subtree (induced by $k$ leaves) in a signed Schröder tree of $\sigma$

$\equiv$ Extracting a signed tree from a set of $k$ peaks in a signed contour of $\sigma$


In the limit:
This characterizes the probabilities of all
subtrees extracted from
$\mathbf{e}_{ \pm}$,

Extracting a signed tree from a set of $k$ uniformly chosen points in the signed Brownian excursion $\mathbf{e}_{ \pm}$

## Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern $\pi$ of size $k$ from a separable permutation $\sigma$

$$
\sigma=3214576 \longmapsto \pi=123
$$

$\equiv$ Extracting a signed subtree (induced by $k$ leaves) in a signed Schröder tree of $\sigma$

$\equiv$ Extracting a signed tree from a set of $k$ peaks in a signed contour of $\sigma$


In the limit:
This characterizes the probabilities of all subtrees extracted from $\mathbf{e}_{ \pm}$, hence of all patterns extracted from the Brownian separable permuton (so defined).

$$
\Uparrow
$$

Extracting a signed tree from a set of $k$ uniformly chosen points in the signed Brownian excursion $\mathbf{e}_{ \pm}$

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top



## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is the common ancestor of $x$ and $y$ (as leaves).

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{V}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is the common ancestor of $x$ and $y$ (as leaves).

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is the common ancestor of $x$ and $y$ (as leaves).

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is the common ancestor of $x$ and $y$ (as leaves).

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is a local minimum between $x$ and $y$ (as peaks).

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 1 / 2$

This was described by Mickaël Maazoun.
Idea: Imitate the discrete construction " $\sigma$ as a word $\mapsto$ permuton of $\sigma$ using trees and contours" on the continuous objects.

In the discrete case: $\sigma$ is given by the pair of orders $<_{h},<_{v}$ where

- $<_{h}$ is left-to-right
- $<_{v}$ is bottom-to-top


Equivalently, for $x<_{h} y, x<_{v} y$ iff $\operatorname{sign}(m)=\oplus$ where $m$ is a local minimum between $x$ and $y$ (as peaks).

In the continuous:
Consider two orders $<_{h},<_{V}$ on $[0,1]$ :

- $<_{h}$ is the natural order $<$
- $x<_{v} y$ when
$\left\{\begin{array}{l}x<_{h} y \text { and } \operatorname{sign}(m)=\oplus \\ y<_{h} x \text { and } \operatorname{sign}(m)=\ominus\end{array}\right.$
where $m$ is the (a.s. unique) local minimum of $\mathbf{e}_{ \pm}$between $x$ and $y$.


## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 2 / 2$

In the discrete case:

- Denoting $i$ the rank of $x$ for $<_{h}, \sigma(i)$ is
$\sigma(i)=\#\left\{y\right.$ s.t. $\left.y \leq_{v} x\right\}$.


In the continuous:

## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 2 / 2$

In the discrete case:

- Denoting $i$ the rank of $x$ for $<_{h}, \sigma(i)$ is $\sigma(i)=\#\left\{y\right.$ s.t. $\left.y \leq_{v} x\right\}$.


In the continuous:

- Define the function
$\phi:[0,1] \rightarrow[0,1]$ by
$\phi(t)=\lambda\left(\left\{u \in[0,1]\right.\right.$ s.t. $\left.\left.u \leq_{v} t\right\}\right)$, where $\lambda$ is the Lebesgue measure on $[0,1]$.


## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 2 / 2$

In the discrete case:

- Denoting $i$ the rank of $x$ for $<_{h}, \sigma(i)$ is $\sigma(i)=\#\left\{y\right.$ s.t. $\left.y \leq_{v} x\right\}$.

- The diagram of $\sigma$ is the set of points at coordinates (i, $\sigma(i)$ )


## In the continuous:

- Define the function
$\phi:[0,1] \rightarrow[0,1]$ by $\phi(t)=\lambda\left(\left\{u \in[0,1]\right.\right.$ s.t. $\left.\left.u \leq_{v} t\right\}\right)$, where $\lambda$ is the Lebesgue measure on $[0,1]$.


## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 2 / 2$

In the discrete case:

- Denoting $i$ the rank of $x$ for $<_{h}, \sigma(i)$ is $\sigma(i)=\#\left\{y\right.$ s.t. $\left.y \leq_{v} x\right\}$.

- The diagram of $\sigma$ is the set of points at coordinates (i, $\sigma(i)$ )


## In the continuous:

- Define the function
$\phi:[0,1] \rightarrow[0,1]$ by
$\phi(t)=\lambda\left(\left\{u \in[0,1]\right.\right.$ s.t. $\left.\left.u \leq_{v} t\right\}\right)$,
where $\lambda$ is the Lebesgue measure on $[0,1]$.
- The Brownian separable permuton is the pushforward of the Lebesgue measure on $[0,1]$ by the function $x \mapsto(x, \phi(x))$.


## Building the Brownian separable permuton from $\mathbf{e}_{ \pm} \quad 2 / 2$

In the discrete case:

- Denoting $i$ the rank of $x$ for $<_{h}, \sigma(i)$ is $\sigma(i)=\#\left\{y\right.$ s.t. $\left.y \leq_{v} x\right\}$.

- The diagram of $\sigma$ is the set of points at coordinates (i, $\sigma(i)$ )


## In the continuous:

- Define the function
$\phi:[0,1] \rightarrow[0,1]$ by
$\phi(t)=\lambda\left(\left\{u \in[0,1]\right.\right.$ s.t. $\left.\left.u \leq_{v} t\right\}\right)$,
where $\lambda$ is the Lebesgue measure on $[0,1]$.
- The Brownian separable permuton is the pushforward of the Lebesgue measure on $[0,1]$ by the function $x \mapsto(x, \phi(x))$.

Consequences: genuinely random permuton, fractal behavior, Hausdorff dimension 1, ...

## Substitution-closed classes

 and universalityof the Brownian separable permuton

## Separable permutations and substitution-closed classes

The class of separable permutations is the one whose decomposition trees are described by the combinatorial specification

$$
\mathcal{T}_{\text {sep }}=\{\bullet\} \biguplus \underset{\mathcal{T}_{\text {sep }}^{\text {not } \oplus}}{\ominus}{\underset{\mathcal{T}}{\text { sep }}}_{\oplus} \biguplus \underset{\mathcal{T}_{\text {sep }}^{\text {not }}}{\ominus} \mathcal{\mathcal { T }}_{\text {sep }}
$$

## Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described by a combinatorial specification of the form
where $\mathcal{S}$ is the set of simple permutations in the class $\mathcal{C}_{\mathcal{S}}$ considered.

## Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described by a combinatorial specification of the form
where $\mathcal{S}$ is the set of simple permutations in the class $\mathcal{C}_{\mathcal{S}}$ considered.
Theorem:
Under an analytic condition on the generating function $S(z)$ of $\mathcal{S}$, uniform random permutations in the substitution-closed class $\mathcal{C}_{\mathcal{S}}$ converge to a biased Brownian separable permuton.

## The biased Brownian separable permuton of parameter $p$

- Biased version of the signed Brownian excursion (for $p \in[0,1]$ ): in $\mathbf{e}_{ \pm, p}$, local minima carry independent signs, but not balanced; instead, + with probability $p,-$ with probability $1-p$.
- The biased Brownian separable permuton $\boldsymbol{\mu}_{p}$ of parameter $p$ is characterized as above but starting from $\mathbf{e}_{ \pm, p}$ instead of $\mathbf{e}_{ \pm}$.


## The biased Brownian separable permuton of parameter $p$

- Biased version of the signed Brownian excursion (for $p \in[0,1]$ ): in $\mathbf{e}_{ \pm, p}$, local minima carry independent signs, but not balanced; instead, + with probability $p,-$ with probability $1-p$.
- The biased Brownian separable permuton $\boldsymbol{\mu}_{p}$ of parameter $p$ is characterized as above but starting from $\mathbf{e}_{ \pm, p}$ instead of $\mathbf{e}_{ \pm}$.

The higher $p$ is, the more drift there is towards the direction of the main diagonal in $\mu_{p}$.

simulations of $\mu_{p}$ for $p=0.2,0.45,0.5$.

## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.

## Statement and examples

Theorem:
Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$,

## Statement and examples

Theorem:
Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

Example 1: Separable permutations, i.e. $\mathcal{C}_{\emptyset}, \quad \Rightarrow p=0.5$


## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

Example 2: $\mathcal{C}_{\mathcal{S}}$ with $\mathcal{S}=\{2413,3142,24153\}, \quad \Rightarrow p=0.5$


## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$.
Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive)
radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

Example 3: $\mathcal{C}_{\mathcal{S}}$ with $\mathcal{S}=\operatorname{Av}(321) \cap\{$ Simples $\}, \quad \Rightarrow p \in[0.577,0.622]$


## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$. Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive) radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

Further examples: All substitution-closed classes

- with finitely many simple permutations,
- or more generally such that $R_{S}=1$,
- or such that $S^{\prime}$ diverges at $R_{S}$ (in particular for $S$ rational, or in case of square root singularity for $S, \ldots$ ).
This covers all substitution-closed classes whose simple permutations have been enumerated.


## Statement and examples

## Theorem:

Let $\mathcal{C}_{\mathcal{S}}$ be the substitution-closed class with set of simple permutations $\mathcal{S}$.
Let $S(z)$ be the generating function of $\mathcal{S}$, and let $R_{S}$ be its (positive)
radius of convergence.
Assuming that $\lim _{\substack{r \rightarrow R_{S} \\ r<R_{S}}} S^{\prime}(r)>\frac{2}{\left(1+R_{S}\right)^{2}}-1$, uniform random permutations in $\mathcal{C}_{\mathcal{S}}$ converge to the biased Brownian separable permuton $\boldsymbol{\mu}_{p}$, where $p$ is explicit in terms of (the generating function of) the number of occurrences of patterns 12 and 21 in permutations of $\mathcal{S}$.

Non-example: $\operatorname{Av}(2413)$
Limit not known.
It is "degenerate": typical permutations in $\operatorname{Av}(2413)$ look like typical simple permutations in $\operatorname{Av}(2413)$.
But we don't know the limit of simple permutations in $\operatorname{Av}(2413)$.

## Proof schema $\quad 1 / 2$

$\sigma_{n}=$ uniform random permutation of size $n$ in $\mathcal{C}_{\mathcal{S}}$.

- The law of $\left(\widetilde{\mathrm{occ}}\left(\pi, \sigma_{n}\right)\right)_{\pi}$ is determined by its moments.
- These moments are all determined by $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{\pi}$.
$\Rightarrow$ It is enough to prove the convergence of $\left(\mathbb{E}\left[\widetilde{\circ C C}\left(\pi, \sigma_{n}\right)\right]\right)_{n}$ for all $\pi$.


## Proof schema $\quad 1 / 2$

$\sigma_{n}=$ uniform random permutation of size $n$ in $\mathcal{C}_{\mathcal{S}}$.

- The law of $\left(\widetilde{\operatorname{occ}}\left(\pi, \sigma_{n}\right)\right)_{\pi}$ is determined by its moments.
- These moments are all determined by $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{\pi}$.
$\Rightarrow$ It is enough to prove the convergence of $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{n}$ for all $\pi$.
By definition, $\mathbb{E}\left[\widetilde{\mathrm{OCC}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right]=\frac{\text { total number of occ. of } \pi \text { in } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}{\binom{n}{|\pi|} \times \text { number of } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}$.


## Proof schema $\quad 1 / 2$

$\sigma_{n}=$ uniform random permutation of size $n$ in $\mathcal{C}_{\mathcal{S}}$.

- The law of $\left(\widetilde{\mathrm{occ}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right)_{\pi}$ is determined by its moments.
- These moments are all determined by $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{\pi}$.
$\Rightarrow$ It is enough to prove the convergence of $\left(\mathbb{E}\left[\widetilde{\mathrm{OCC}}\left(\pi, \sigma_{n}\right)\right]\right)_{n}$ for all $\pi$. By definition, $\mathbb{E}\left[\widetilde{\mathrm{OCC}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right]=\frac{\text { total number of occ. of } \pi \text { in } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}{\binom{n}{|\pi|} \times \text { number of } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}$.
- Numerator and denominator are expressed as coefficients of generating series of trees (possibly with marked leaves).
- The combinatorial specification for $\mathcal{C}_{\mathcal{S}}$ yields equations for these tree series.


## Proof schema $\quad 1 / 2$

$\sigma_{n}=$ uniform random permutation of size $n$ in $\mathcal{C}_{\mathcal{S}}$.

- The law of $\left(\widetilde{\mathrm{occ}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right)_{\pi}$ is determined by its moments.
- These moments are all determined by $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{\pi}$.
$\Rightarrow$ It is enough to prove the convergence of $\left(\mathbb{E}\left[\widetilde{\circ C c}\left(\pi, \sigma_{n}\right)\right]\right)_{n}$ for all $\pi$. By definition, $\mathbb{E}\left[\widetilde{\mathrm{Occ}}\left(\pi, \sigma_{n}\right)\right]=\frac{\text { total number of occ. of } \pi \text { in } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}{\left(\begin{array}{l}n|\pi|\end{array}\right) \times \text { number of } \sigma \text { of size } n \text { in } \mathcal{C}_{\mathcal{S}}}$.
- Numerator and denominator are expressed as coefficients of generating series of trees (possibly with marked leaves).
- The combinatorial specification for $\mathcal{C}_{\mathcal{S}}$ yields equations for these tree series.
- Estimate their coefficients with analytic combinatorics.


## Proof schema $\quad 2 / 2$

- Determine the singular behavior of the trees series.

They all depend on the one of $T_{\text {not } \oplus}$ satisfying

$$
T_{\mathrm{not} \oplus}(z)=z+\Lambda\left(T_{\mathrm{not} \oplus}(z)\right)
$$

where $\Lambda$ is explicit, involving $S$ and rational series.

## Proof schema $\quad 2 / 2$

- Determine the singular behavior of the trees series.

They all depend on the one of $T_{\text {not } \oplus}$ satisfying

$$
T_{\mathrm{not} \oplus}(z)=z+\Lambda\left(T_{\mathrm{not} \oplus}(z)\right)
$$

where $\Lambda$ is explicit, involving $S$ and rational series.

- Rk: If $\Lambda^{\prime}$ is $>1$ at its radius of convergence (equivalent to the condition of our theorem), then $T_{\text {not } \oplus}(z)$ has a square root singularity.


## Proof schema $\quad 2 / 2$

- Determine the singular behavior of the trees series.

They all depend on the one of $T_{\text {not } \oplus}$ satisfying

$$
T_{\mathrm{not} \oplus}(z)=z+\Lambda\left(T_{\mathrm{not} \oplus}(z)\right)
$$

where $\Lambda$ is explicit, involving $S$ and rational series.

- Rk: If $\Lambda^{\prime}$ is $>1$ at its radius of convergence (equivalent to the condition of our theorem), then $T_{\text {not } \oplus}(z)$ has a square root singularity.
- All generating series have the same radius of convergence $\rho$, and we can compute their expansions at $\rho$.


## Proof schema $\quad 2 / 2$

- Determine the singular behavior of the trees series.

They all depend on the one of $T_{\text {not } \oplus}$ satisfying

$$
T_{\mathrm{not} \oplus}(z)=z+\Lambda\left(T_{\mathrm{not} \oplus}(z)\right)
$$

where $\Lambda$ is explicit, involving $S$ and rational series.

- Rk: If $\Lambda^{\prime}$ is $>1$ at its radius of convergence (equivalent to the condition of our theorem), then $T_{\text {not } \oplus}(z)$ has a square root singularity.
- All generating series have the same radius of convergence $\rho$, and we can compute their expansions at $\rho$.
- Transfer theorem gives an asymptotic estimate of their coefficients, and hence of $\mathbb{E}\left[\widetilde{\circ \mathrm{occ}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right]$.


## Proof schema $\quad 2 / 2$

- Determine the singular behavior of the trees series.

They all depend on the one of $T_{\text {not } \oplus}$ satisfying

$$
T_{\mathrm{not} \oplus}(z)=z+\Lambda\left(T_{\mathrm{not} \oplus}(z)\right)
$$

where $\Lambda$ is explicit, involving $S$ and rational series.

- Rk: If $\Lambda^{\prime}$ is $>1$ at its radius of convergence (equivalent to the condition of our theorem), then $T_{\text {not } \oplus}(z)$ has a square root singularity.
- All generating series have the same radius of convergence $\rho$, and we can compute their expansions at $\rho$.
- Transfer theorem gives an asymptotic estimate of their coefficients, and hence of $\mathbb{E}\left[\widetilde{\circ \mathrm{occ}}\left(\pi, \boldsymbol{\sigma}_{n}\right)\right]$.

Rk: The limit of $\mathbb{E}\left[\widetilde{\circ C C}\left(\pi, \sigma_{n}\right)\right]$ is non-zero if and only if $\pi$ is separable.

# Finitely generated classes, not necessarily substitution-closed 

## Combinatorial specifications of classes

- For substitution-closed classes: there is always a combinatorial specification for the associated decomposition trees.
- For other classes, there is sometimes a combinatorial specification for the associated decomposition trees.
- It is always the case when the number of simple permutations in the class is finite. Moreover, in this case, the specification is automatically produced.


## Combinatorial specifications of classes

- For substitution-closed classes: there is always a combinatorial specification for the associated decomposition trees.
- For other classes, there is sometimes a combinatorial specification for the associated decomposition trees.
- It is always the case when the number of simple permutations in the class is finite. Moreover, in this case, the specification is automatically produced.



## Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a class $\mathcal{C}=\mathcal{T}_{0}$ where the families $\left(\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{k}\right)$ appear.

## Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a class $\mathcal{C}=\mathcal{T}_{0}$ where the families $\left(\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{k}\right)$ appear.

Define that $\mathcal{T}_{i}$ is critical when its generating function has minimal radius of convergence among all those of the $\left(\mathcal{T}_{j}\right)_{j}$ (which is that of $\mathcal{T}_{0}$ ).

## Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a class $\mathcal{C}=\mathcal{T}_{0}$ where the families $\left(\mathcal{T}_{0}, \mathcal{T}_{1}, \ldots, \mathcal{T}_{k}\right)$ appear.

Define that $\mathcal{T}_{i}$ is critical when its generating function has minimal radius of convergence among all those of the $\left(\mathcal{T}_{j}\right)_{j}$ (which is that of $\mathcal{T}_{0}$ ).

The limiting behavior of uniform permutations in $\mathcal{C}$ is determined by:

- the strongly connected components of the specification restricted to critical families;
- whether the restriction of the specification to each strongly connected component is linear or branching.


## Essentially branching specifications

The restriction of the specification to critical families is strongly connected, and contains a product.
$\Rightarrow$ The limiting permuton of the class is a biased Brownian separable permuton (of parameter $p$ possibly 0 or 1 ).

## Essentially branching specifications

The restriction of the specification to critical families is strongly connected, and contains a product.
$\Rightarrow$ The limiting permuton of the class is a biased Brownian separable permuton (of parameter $p$ possibly 0 or 1 ).

Example 1: $\operatorname{Av}(132)$, with critical families in blue.

The limit is the Brownian separable permuton of parameter $p=0$.

## Essentially branching specifications

The restriction of the specification to critical families is strongly connected, and contains a product.
$\Rightarrow$ The limiting permuton of the class is a biased Brownian separable permuton (of parameter $p$ possibly 0 or 1 ).

Example 2: $\operatorname{Av}(2413,31452,41253,41352,531246)$, with critical families in blue.

$$
\left\{\begin{array}{l}
\mathcal{T}_{0}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{0}\right] \uplus \ominus\left[\mathcal{T}_{2}, \mathcal{T}_{0}\right] \uplus 3142\left[\mathcal{T}_{0}, \mathcal{T}_{3}, \mathcal{T}_{3}, \mathcal{T}_{0}\right] \\
\mathcal{T}_{1}=\{\bullet\} \uplus \ominus\left[\mathcal{T}_{2}, \mathcal{T}_{0}\right] \uplus 3142\left[\mathcal{T}_{0}, \mathcal{T}_{3}, \mathcal{T}_{3}, \mathcal{T}_{0}\right] \\
\mathcal{T}_{2}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{0}\right] \uplus 3142\left[\mathcal{T}_{0}, \mathcal{T}_{3}, \mathcal{T}_{3}, \mathcal{T}_{0}\right] \\
\mathcal{T}_{3}=\{\bullet\} \uplus \ominus\left[\mathcal{T}_{4}, \mathcal{T}_{3}\right] \\
\mathcal{T}_{4}=\{\bullet\}
\end{array}\right.
$$

The limit is the Brownian separable permuton of parameter $p \approx 0.4748692376 \ldots$ (only real root of a certain polynomial of degree 9 ).

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate). Example 1: $\operatorname{Av}(2413,3142,2143,3412)$, a.k.a. the X-class, with critical families in red and blue (for two strongly connected components).

$$
\left\{\begin{array}{l}
\mathcal{T}_{0}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{5}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{5}\right] \\
\mathcal{T}_{1}=\{\bullet\} \\
\mathcal{T}_{2}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \\
\mathcal{T}_{3}=\oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{5}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{5}\right] \\
\mathcal{T}_{4}=\ominus\left[\mathcal{T}_{1}, \mathcal{T}_{5}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{5}\right] \\
\mathcal{T}_{5}=\{\bullet\} \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{5}\right] \\
\mathcal{T}_{6}=\oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{5}\right] \\
\mathcal{T}_{7}=\oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right]
\end{array}\right.
$$

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

Example 1: $\operatorname{Av}(2413,3142,2143,3412)$, a.k.a. the X -class, with critical families in red and blue (for two strongly connected components).


The limit is the centered X -permuton (of parameter $(1 / 4,1 / 4,1 / 4,1 / 4)$ ).

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

Example 2: $\operatorname{Av}(2413,3142,2143,34512)$, with critical families in red and blue (for two strongly connected components).

$$
\begin{cases}\mathcal{T}_{0}= & \{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{1}= & \{\bullet\} \\ \mathcal{T}_{2}= & \{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \\ \mathcal{T}_{3}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{4}= & \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{5}= & \{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{1}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{9}\right] \uplus \oplus\left[\mathcal{T}_{9}, \mathcal{T}_{1}\right] \\ \mathcal{T}_{6}= & \{\bullet\} \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{7}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{8}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{11}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{12}\right] \uplus \oplus\left[\mathcal{T}_{13}, \mathcal{T}_{11}\right] \uplus \oplus\left[\mathcal{T}_{9}, \mathcal{T}_{11}\right] \uplus \oplus\left[\mathcal{T}_{13}, \mathcal{T}_{1}\right] \\ \mathcal{T}_{9}= & \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{10}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{1}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{9}\right] \uplus \oplus\left[\mathcal{T}_{9}, \mathcal{T}_{1}\right] \\ \mathcal{T}_{11}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \\ \mathcal{T}_{12}= & \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] \\ \mathcal{T}_{13}= & \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{6}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{1}, \mathcal{T}_{7}\right] \uplus \ominus\left[\mathcal{T}_{8}, \mathcal{T}_{6}\right] .\end{cases}
$$

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

Example 2: $\operatorname{Av}(2413,3142,2143,34512)$, with critical families in red and blue (for two strongly connected components).


The limit is the X -permuton of parameter $\approx(0.2003,0.2003,0.4313,0.1681)$.

## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

Example 3: $\operatorname{Av}(2413,1243,2341,531642,41352)$, with critical families in red and blue (for two strongly connected components).

```
\(\left(\begin{array}{ll}\mathcal{T}_{0}= & \{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{5}, \mathcal{T}_{0}\right] \uplus 3142\left[\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{6}\right]\end{array}\right.\)
    \(\mathcal{T}_{1}=\{\bullet\} \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{1}\right]\)
    \(\mathcal{T}_{2}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{7}, \mathcal{T}_{2}\right]\)
    \(\mathcal{T}_{3}=\oplus\left[\mathcal{T}_{8}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{9}, \mathcal{T}_{6}\right]\)
    \(\mathcal{T}_{4}=\ominus\left[\mathcal{T}_{10}, \mathcal{T}_{11}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{1}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{11}\right] \uplus 3142\left[\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{6}\right]\)
    \(\mathcal{T}_{5}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{1}\right] \uplus 3142\left[\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}\right]\)
    \(\mathcal{T}_{6}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{12}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{9}, \mathcal{T}_{6}\right]\)
    \(\mathcal{T}_{7}=\{\bullet\}\)
    \(\mathcal{T}_{8}=\ominus\left[\mathcal{T}_{9}, \mathcal{T}_{6}\right]\)
    \(\mathcal{T}_{9}=\{\bullet\} \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{7}\right]\)
    \(\mathcal{T}_{10}=\oplus\left[\mathcal{T}_{1}, \mathcal{T}_{1}\right] \uplus 3142\left[\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}\right]\)
    \(\mathcal{T}_{11}=\oplus\left[\mathcal{T}_{1}, \mathcal{T}_{2}\right] \uplus \oplus\left[\mathcal{T}_{1}, \mathcal{T}_{3}\right] \uplus \oplus\left[\mathcal{T}_{4}, \mathcal{T}_{2}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{11}\right] \uplus \ominus\left[\mathcal{T}_{10}, \mathcal{T}_{1}\right] \uplus \ominus\left[\mathcal{T}_{7}, \mathcal{T}_{11}\right] \uplus 3142\left[\mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{1}, \mathcal{T}_{6}\right]\)
    \(\mathcal{T}_{12}=\{\bullet\} \uplus \ominus\left[\mathcal{T}_{9}, \mathcal{T}_{6}\right]\)
```


## Essentially linear specifications

The restriction of the specification to critical families is strongly connected, and contains no product.
$\Rightarrow$ The limiting permuton of the class is the X-permuton of parameter $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ (not necessarily centered, possibly degenerate).

Example 3: $\operatorname{Av}(2413,1243,2341,531642,41352)$, with critical families in red and blue (for two strongly connected components).


The limit is the X -permuton of parameter $(0,0,1-p, p)$ with $p \approx 0.81863$.

## Several strongly connected components

Assume the specification for $\mathcal{C}$ restricted to critical families has several strongly connected components.

- Limit shape in each strongly connected component: as above.
- Sometimes, the limit shape of $\mathcal{C}$ is a combination of those in each component.


## Several strongly connected components

Assume the specification for $\mathcal{C}$ restricted to critical families has several strongly connected components.

- Limit shape in each strongly connected component: as above.
- Sometimes, the limit shape of $\mathcal{C}$ is a combination of those in each component.

Example: the downward closure of $\oplus[\mathcal{X}, \mathcal{X}]$ :



## Summary of the described limit shapes

(Biased) Brownian separable permuton:

- Separable permutations;
- Substitution-closed class under an analytic condition on $S(z)$;
- Classes with a specification that is essentially strongly connected and essentially branching.
(Parametrized) X-permuton:
- Classes with a specification that is essentially strongly connected and essentially linear.

A mix of the above:

- Classes with a specification that is not essentially strongly connected.


## Summary of the described limit shapes

(Biased) Brownian separable permuton:

- Separable permutations;
- Substitution-closed class under an analytic condition on $S(z)$;
- Classes with a specification that is essentially strongly connected and essentially branching.
(Parametrized) X-permuton:
- Classes with a specification that is essentially strongly connected and essentially linear.

A mix of the above:

- Classes with a specification that is not essentially strongly connected.

Thank you!

