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What are permutations? (in this talk)

A permutation of size n is a bijection from {1, 2, . . . , n} to itself.

We often write a permutation σ of size n as the word σ(1)σ(2) . . . σ(n).

For the purpose of this talk, we represent permutations by their
permutation matrices, or rather their diagram.

Example: the diagram of σ = 596741283 is
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What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10 size 100 size 1 000

size 10 000 size 100 000

Mathilde Bouvel (I-Math, UZH) Limits of permutations 3 / 31
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Diagrams of permutations of various sizes picked uniformly at random:

size 10 size 100 size 1 000
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What are random permutations (and their limit shapes)?

Diagrams of permutations of various sizes picked uniformly at random:

size 10 size 100 size 1 000

size 10 000 size 100 000 in the limit

Goal of the talk: Describe limit shapes of (the diagrams of)
pattern-avoiding permutations.
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Patterns in permutations

A permutation π of size k is a pattern of a permutation σ of size n if
there exist 1 ≤ i1 < . . . < ik ≤ n such that σ(i1) . . . σ(ik) is in the same
relative order (≡) as π.

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6 since 3 1 5 7 ≡ 2 1 3 4.
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Patterns in permutations

A permutation π of size k is a pattern of a permutation σ of size n if
there exist 1 ≤ i1 < . . . < ik ≤ n such that σ(i1) . . . σ(ik) is in the same
relative order (≡) as π.

Example: 2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6 since 3 1 5 7 ≡ 2 1 3 4.

Permutation classes are sets of permutations defined by the avoidance of
patterns. They are denoted Av(B) for B a set of excluded patterns.
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Uniform random permutations in Av(τ) for τ of size 3

Av(231)

Av(321)

from Miner-Pak (2013) from Hoffman-Rizzolo-Slivken (2015)
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Uniform random permutations in Av(τ) for τ of size 3

Av(231)

Av(321)

from Miner-Pak (2013) from Hoffman-Rizzolo-Slivken (2015)

Miner-Pak, also Madras with Atapour, Liu and Pehlivan: very precise
local description of the average asymptotic shape

Hoffman-Rizzolo-Slivken: scaling limits and link with the Brownian
excursion (for the fluctuations around the main diagonal)
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ?
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutations in Av(2413, 3142), the class of separable
permutations, also described as the substitution-closed class with set of
simple permutations ∅:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutations in the substitution-closed class with set of
simple permutations {2413, 3142, 24153}:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical large permutation in the substitution-closed class with (infinite)
set of simple permutations Av(321) ∩ {Simples}, i.e. in the substitution
closure of Av(321):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutations in Av(2413, 1243, 2341, 41352, 531642):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in Av(2413, 3142, 2143, 3412),
called the X-class and denoted X later:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutation in Av(2413, 3142, 2143, 34512):
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutations in the downward closure of ⊕[X ,X ]:
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Diagrams of uniform random permutations in classes

At first order, the limit of the diagram of a uniform random permutation in
Av(τ) for τ = 231 or 321 is just .

So, is first order interesting ? Yes!

Typical (large) permutations in the downward closure of ⊕[X ,X ]:

How can we explain these pictures?
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What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform
marginals,
i.e. the total mass on any vertical or horizontal strip of width x is x .
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What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform
marginals,
i.e. the total mass on any vertical or horizontal strip of width x is x .

With its diagram, every permutation σ can be viewed as a permuton µσ.

=⇒
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What type of objects are the limiting diagrams?

A permuton is a probability measure on the unit square with uniform
marginals,
i.e. the total mass on any vertical or horizontal strip of width x is x .

With its diagram, every permutation σ can be viewed as a permuton µσ.

=⇒

Informally, permuton can represent permutations of finite size,
but also “permutations of infinite size”.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Permuton convergence is characterized by the convergence of probabilities
of all patterns.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Permuton convergence is characterized by the convergence of probabilities
of all patterns.

õcc(π, σ) = probability of occurrence of the pattern π in σ

õcc(π, µ) = probability of occurrence of the pattern π in µ
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Permuton convergence is characterized by the convergence of probabilities
of all patterns.

õcc(π, σ) = probability of occurrence of the pattern π in σ

õcc(π, µ) = probability of occurrence of the pattern π in µ

More precisely, with π = k

õcc(π, σ) = probability that k points picked uniformly at random in σ
form an occurrence of the pattern π = number of occurrences of π in σ

(|σ|k )
.

õcc(π, µ) = the probability that k points of the unit square picked at
random according to µ induce the pattern π.
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Permuton convergence is characterized by the convergence of probabilities
of all patterns.

õcc(π, σ) = probability of occurrence of the pattern π in σ

õcc(π, µ) = probability of occurrence of the pattern π in µ

(σn) converges to µ ⇔ (õcc(π,σn))π converges to (õcc(π,µ))π in
distribution (jointly for all patterns π).
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Permuton convergence

We say that a sequence of permutations (σn) converges to a permuton µ
when the sequence of permutons (µσn) converges to µ (for the weak
convergence of measures).

This extends to sequences of random permutations (σn), converging to a
(a priori random) permuton µ.

Permuton convergence is characterized by the convergence of probabilities
of all patterns.

õcc(π, σ) = probability of occurrence of the pattern π in σ

õcc(π, µ) = probability of occurrence of the pattern π in µ

(σn) converges to µ ⇔ (õcc(π,σn))π converges to (õcc(π,µ))π in
distribution (jointly for all patterns π).

If (õcc(π,σn))π converges (jointly) to some (Λπ)π in distribution,
then there exists a permuton µ such that (σn) converges to µ

and (õcc(π,µ))π
(d)
= (Λπ)π.
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Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random
permutations in permutation classes.

Framework: Express these limit shape results in the framework of
permutons.
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Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random
permutations in permutation classes.

Framework: Express these limit shape results in the framework of
permutons.

Key tools:

Permuton convergence is the convergence of all pattern probabilities;

Thanks to their substitution decomposition, permutations are trees
and their patterns are subtrees;
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Summary so far, and what comes next

Goal: Prove limit shape results for the diagrams of uniform random
permutations in permutation classes.

Framework: Express these limit shape results in the framework of
permutons.

Key tools:

Permuton convergence is the convergence of all pattern probabilities;

Thanks to their substitution decomposition, permutations are trees
and their patterns are subtrees;

Limit shape results on random trees

OR

Singularity analysis of generating functions for trees.
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Substitution decomposition

Ingredients:

A way of building bigger permutations from smaller ones
 substitution or inflation;

“Building blocks” allowing to build all permutations
 simple permutations.

Essential property:

For every permutation σ, there exists a unique way of obtaining it
recursively using inflations of simple permutations.
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Substitution decomposition

Ingredients:

A way of building bigger permutations from smaller ones
 substitution or inflation;

“Building blocks” allowing to build all permutations
 simple permutations.

Essential property:

For every permutation σ, there exists a unique way of obtaining it
recursively using inflations of simple permutations.

Outcome:

Bijection between permutations and decomposition trees.

(Some) permutation classes are (nice) families of trees:

easiest case: substitution-closed classes;
beyond those: classes with a finite combinatorial specification.
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Separable permutations
and the Brownian separable permuton



Separable permutations

They are equivalently described as

Av(2413, 3142);

the substitution-closed class with set of simple permutations ∅.

Theorem:
Uniform random separable permutations converge to a genuinely random
permuton: the Brownian separable permuton.
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Decomposition trees of separable permutations

A Schröder tree of size n is a rooted plane tree with n leaves whose
internal vertices have at least two children.

◦

• ◦

• • ◦

• • •

• •

• ◦

◦

• • •

•
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Decomposition trees of separable permutations

A Schröder tree of size n is a rooted plane tree with n leaves whose
internal vertices have at least two children.

⊕

• 	

• • ⊕

• • •

• •

• 	

⊕

• • •

•

Decomposition trees of separable permutations are signed Schröder
trees, as above with additional signs ⊕ and 	 on the internal vertices,
which alternate on any path from the root to a leaf (i.e. the sign of
the root determines all others).

Mathilde Bouvel (I-Math, UZH) Limits of permutations 13 / 31



The combinatorial specification of separable permutations

Up to the “right binarization”
⊕

T1 T2
. . . Tk

7→ ⊕
T1 ⊕

T2 ⊕
. . . Tk(and same with 	),

the decomposition trees of separable permutations are generated by the
following combinatorial specification:

Tsep = {•}
⊎ ⊕

T not⊕
sep Tsep

⊎ 	

T not	
sep Tsep

;

T not⊕
sep = {•}

⊎ 	

T not	
sep Tsep

;

T not	
sep = {•}

⊎ ⊕

T not⊕
sep Tsep

.

Starting point of the “analytic combinatorics” proof, discussed later.
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The combinatorial specification of separable permutations

Up to the “right binarization”
⊕

T1 T2
. . . Tk

7→ ⊕
T1 ⊕

T2 ⊕
. . . Tk(and same with 	),

the decomposition trees of separable permutations are generated by the
following combinatorial specification:

Tsep = {•}
⊎ ⊕

T not⊕
sep Tsep

⊎ 	

T not	
sep Tsep

;

T not⊕
sep = {•}

⊎ 	

T not	
sep Tsep

;

T not	
sep = {•}

⊎ ⊕

T not⊕
sep Tsep

.

Starting point of the “analytic combinatorics” proof, discussed later.
For now, we present the “random trees” proof.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +

We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +

We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the
signed Brownian excursion?
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Contours and their limits

The contour of a uniform random Schröder tree converges to the
Brownian excursion.

We can define signed contours of signed Schröder trees:

Peaks ↔ leaves.

Local minima with signs ↔ signed internal nodes.

+

–

–
– –

+ –

+
+ +0,12,14,20

1,9,11

2,4,6,8

3 5 7

10

13

15,17,19

16 18

+ +

We can define a signed version of the Brownian excursion:

Local minima carry balanced independent signs.

Not known: Do signed contours of signed Schröder trees converge to the
signed Brownian excursion? But. . .
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

This characterizes the
probabilities of all
subtrees extracted from
e±, hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

In the limit:

This characterizes the
probabilities of all
subtrees extracted from
e±, hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑

→ ⊕

	

Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

In the limit:
This characterizes the
probabilities of all
subtrees extracted from
e±,

hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑

Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±
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Convergence of the extracted patterns/subtrees

On finite objects:
Extracting a pattern π of size k from a
separable permutation σ

σ = 3214576 7−→ π = 123

≡ Extracting a signed subtree (induced by
k leaves) in a signed Schröder tree of σ

123

4

+

–

–
5

67

+

+

+

2 4

6

≡ Extracting a signed tree from a set of k
peaks in a signed contour of σ

– –

+ –

+ ++ +
+

+ 123

In the limit:
This characterizes the
probabilities of all
subtrees extracted from
e±, hence of all
patterns extracted from
the Brownian separable
permuton (so defined).

⇑

Extracting a signed tree
from a set of k
uniformly chosen points
in the signed Brownian
excursion e±
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.

In the discrete case: σ is given by the
pair of orders <h, <v where

<h is left-to-right

<v is bottom-to-top
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.

In the discrete case: σ is given by the
pair of orders <h, <v where

<h is left-to-right

<v is bottom-to-top

	

⊕

	

••

••

•

Equivalently, for x <h y , x <v y iff
sign(m) = ⊕ where m is the common
ancestor of x and y (as leaves).
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Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.

In the discrete case: σ is given by the
pair of orders <h, <v where

<h is left-to-right

<v is bottom-to-top

	

⊕
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••
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sign(m) = ⊕ where m is the common
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.

In the discrete case: σ is given by the
pair of orders <h, <v where

<h is left-to-right

<v is bottom-to-top

	

⊕

	

••

••

•

Equivalently, for x <h y , x <v y iff
sign(m) = ⊕ where m is a local
minimum between x and y (as peaks).
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Building the Brownian separable permuton from e± 1/2

This was described by Mickaël Maazoun.

Idea: Imitate the discrete construction “σ as a word 7→ permuton of σ
using trees and contours” on the continuous objects.

In the discrete case: σ is given by the
pair of orders <h, <v where

<h is left-to-right

<v is bottom-to-top

	

⊕

	

••

••

•

Equivalently, for x <h y , x <v y iff
sign(m) = ⊕ where m is a local
minimum between x and y (as peaks).

In the continuous:
Consider two orders <h, <v on
[0, 1]:

<h is the natural order <

x <v y when{
x <h y and sign(m) = ⊕
y <h x and sign(m) = 	

where m is the (a.s.
unique) local minimum of
e± between x and y .
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Building the Brownian separable permuton from e± 2/2

In the discrete case:

Denoting i the rank of x
for <h, σ(i) is
σ(i) = #{y s.t. y ≤v x}.

•x

i

σ(i)

In the continuous:
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Building the Brownian separable permuton from e± 2/2

In the discrete case:

Denoting i the rank of x
for <h, σ(i) is
σ(i) = #{y s.t. y ≤v x}.

•x

i

σ(i)

In the continuous:

Define the function
φ : [0, 1]→ [0, 1] by
φ(t) = λ({u ∈ [0, 1] s.t. u ≤v t}),
where λ is the Lebesgue measure
on [0, 1].
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Denoting i the rank of x
for <h, σ(i) is
σ(i) = #{y s.t. y ≤v x}.

•x

i

σ(i)

The diagram of σ is the
set of points at
coordinates (i , σ(i))

In the continuous:

Define the function
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where λ is the Lebesgue measure
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Building the Brownian separable permuton from e± 2/2

In the discrete case:

Denoting i the rank of x
for <h, σ(i) is
σ(i) = #{y s.t. y ≤v x}.

•x

i

σ(i)

The diagram of σ is the
set of points at
coordinates (i , σ(i))

In the continuous:

Define the function
φ : [0, 1]→ [0, 1] by
φ(t) = λ({u ∈ [0, 1] s.t. u ≤v t}),
where λ is the Lebesgue measure
on [0, 1].

The Brownian separable permuton
is the pushforward of the Lebesgue
measure on [0, 1] by the function
x 7→ (x , φ(x)).
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Building the Brownian separable permuton from e± 2/2

In the discrete case:

Denoting i the rank of x
for <h, σ(i) is
σ(i) = #{y s.t. y ≤v x}.

•x

i

σ(i)

The diagram of σ is the
set of points at
coordinates (i , σ(i))

In the continuous:

Define the function
φ : [0, 1]→ [0, 1] by
φ(t) = λ({u ∈ [0, 1] s.t. u ≤v t}),
where λ is the Lebesgue measure
on [0, 1].

The Brownian separable permuton
is the pushforward of the Lebesgue
measure on [0, 1] by the function
x 7→ (x , φ(x)).

Consequences: genuinely random permuton, fractal behavior, Hausdorff
dimension 1, . . .
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Substitution-closed classes
and universality

of the Brownian separable permuton



Separable permutations and substitution-closed classes

The class of separable permutations is the one whose decomposition trees
are described by the combinatorial specification

Tsep = {•}
⊎ ⊕

T not⊕
sep Tsep

⊎ 	

T not	
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

;

T not⊕
sep = {•}

⊎ 	

T not	
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

;

T not	
sep = {•}

⊎ ⊕

T not⊕
sep Tsep

⊎ ⊎
π∈S

π

T . . . T

.
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Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described
by a combinatorial specification of the form

T = {•}
⊎ ⊕

T not⊕ T

⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊕ = {•}
⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not	 = {•}
⊎ ⊕

T not⊕ T

⊎ ⊎
π∈S

π

T . . . T
.

where S is the set of simple permutations in the class CS considered.
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Separable permutations and substitution-closed classes

Substitution-closed classes are those whose decomposition trees described
by a combinatorial specification of the form

T = {•}
⊎ ⊕

T not⊕ T

⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊕ = {•}
⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not	 = {•}
⊎ ⊕

T not⊕ T

⊎ ⊎
π∈S

π

T . . . T
.

where S is the set of simple permutations in the class CS considered.

Theorem:
Under an analytic condition on the generating function S(z) of S, uniform
random permutations in the substitution-closed class CS converge to a
biased Brownian separable permuton.
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The biased Brownian separable permuton of parameter p

Biased version of the signed Brownian excursion (for p ∈ [0, 1]):
in e±,p, local minima carry independent signs, but not balanced;
instead, + with probability p, − with probability 1− p.

The biased Brownian separable permuton µp of parameter p is
characterized as above but starting from e±,p instead of e±.
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The biased Brownian separable permuton of parameter p

Biased version of the signed Brownian excursion (for p ∈ [0, 1]):
in e±,p, local minima carry independent signs, but not balanced;
instead, + with probability p, − with probability 1− p.

The biased Brownian separable permuton µp of parameter p is
characterized as above but starting from e±,p instead of e±.

The higher p is, the more drift there is towards the direction of the main
diagonal in µp.

simulations of µp for p = 0.2, 0.45, 0.5.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.

Example 1: Separable permutations, i.e. C∅, ⇒ p = 0.5
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.

Example 2: CS with S = {2413, 3142, 24153}, ⇒ p = 0.5
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.

Example 3: CS with S = Av(321) ∩ {Simples}, ⇒ p ∈ [0.577, 0.622]
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.

Further examples: All substitution-closed classes

with finitely many simple permutations,

or more generally such that RS = 1,

or such that S ′ diverges at RS (in particular for S rational, or in case
of square root singularity for S , . . . ).

This covers all substitution-closed classes whose simple permutations have
been enumerated.
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Statement and examples

Theorem:
Let CS be the substitution-closed class with set of simple permutations S.
Let S(z) be the generating function of S, and let RS be its (positive)
radius of convergence.
Assuming that lim r→RS

r<RS

S ′(r) > 2
(1+RS )2

− 1, uniform random permutations

in CS converge to the biased Brownian separable permuton µp,
where p is explicit in terms of (the generating function of) the number of
occurrences of patterns 12 and 21 in permutations of S.

Non-example: Av(2413)

Limit not known.

It is “degenerate”: typical permutations in Av(2413) look like typical
simple permutations in Av(2413).

But we don’t know the limit of simple permutations in Av(2413).
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Proof schema 1/2

σn = uniform random permutation of size n in CS .

The law of (õcc(π,σn))π is determined by its moments.

These moments are all determined by (E [õcc(π,σn)])π.

⇒ It is enough to prove the convergence of
(
E [õcc(π,σn)]

)
n

for all π.
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Proof schema 1/2

σn = uniform random permutation of size n in CS .

The law of (õcc(π,σn))π is determined by its moments.

These moments are all determined by (E [õcc(π,σn)])π.

⇒ It is enough to prove the convergence of
(
E [õcc(π,σn)]

)
n

for all π.

By definition, E [õcc(π,σn)] = total number of occ. of π in σ of size n in CS
( n
|π|)× number of σ of size n in CS

.
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Proof schema 1/2

σn = uniform random permutation of size n in CS .

The law of (õcc(π,σn))π is determined by its moments.

These moments are all determined by (E [õcc(π,σn)])π.

⇒ It is enough to prove the convergence of
(
E [õcc(π,σn)]

)
n

for all π.

By definition, E [õcc(π,σn)] = total number of occ. of π in σ of size n in CS
( n
|π|)× number of σ of size n in CS

.

Numerator and denominator are expressed as coefficients of
generating series of trees (possibly with marked leaves).

The combinatorial specification for CS yields equations for these tree
series.
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Proof schema 1/2

σn = uniform random permutation of size n in CS .

The law of (õcc(π,σn))π is determined by its moments.

These moments are all determined by (E [õcc(π,σn)])π.

⇒ It is enough to prove the convergence of
(
E [õcc(π,σn)]

)
n

for all π.

By definition, E [õcc(π,σn)] = total number of occ. of π in σ of size n in CS
( n
|π|)× number of σ of size n in CS

.

Numerator and denominator are expressed as coefficients of
generating series of trees (possibly with marked leaves).

The combinatorial specification for CS yields equations for these tree
series.

Estimate their coefficients with analytic combinatorics.
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Proof schema 2/2

Determine the singular behavior of the trees series.

They all depend on the one of Tnot⊕ satisfying

Tnot⊕(z) = z + Λ(Tnot⊕(z))

where Λ is explicit, involving S and rational series.

Mathilde Bouvel (I-Math, UZH) Limits of permutations 24 / 31



Proof schema 2/2

Determine the singular behavior of the trees series.

They all depend on the one of Tnot⊕ satisfying

Tnot⊕(z) = z + Λ(Tnot⊕(z))

where Λ is explicit, involving S and rational series.

Rk: If Λ′ is > 1 at its radius of convergence (equivalent to the
condition of our theorem), then Tnot⊕(z) has a square root
singularity.
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Proof schema 2/2

Determine the singular behavior of the trees series.

They all depend on the one of Tnot⊕ satisfying

Tnot⊕(z) = z + Λ(Tnot⊕(z))

where Λ is explicit, involving S and rational series.

Rk: If Λ′ is > 1 at its radius of convergence (equivalent to the
condition of our theorem), then Tnot⊕(z) has a square root
singularity.

All generating series have the same radius of convergence ρ, and we
can compute their expansions at ρ.
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Proof schema 2/2

Determine the singular behavior of the trees series.

They all depend on the one of Tnot⊕ satisfying

Tnot⊕(z) = z + Λ(Tnot⊕(z))

where Λ is explicit, involving S and rational series.

Rk: If Λ′ is > 1 at its radius of convergence (equivalent to the
condition of our theorem), then Tnot⊕(z) has a square root
singularity.

All generating series have the same radius of convergence ρ, and we
can compute their expansions at ρ.

Transfer theorem gives an asymptotic estimate of their coefficients,
and hence of E [õcc(π,σn)].
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Proof schema 2/2

Determine the singular behavior of the trees series.

They all depend on the one of Tnot⊕ satisfying

Tnot⊕(z) = z + Λ(Tnot⊕(z))

where Λ is explicit, involving S and rational series.

Rk: If Λ′ is > 1 at its radius of convergence (equivalent to the
condition of our theorem), then Tnot⊕(z) has a square root
singularity.

All generating series have the same radius of convergence ρ, and we
can compute their expansions at ρ.

Transfer theorem gives an asymptotic estimate of their coefficients,
and hence of E [õcc(π,σn)].

Rk: The limit of E [õcc(π,σn)] is non-zero if and only if π is separable.
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Finitely generated classes,
not necessarily substitution-closed



Combinatorial specifications of classes

For substitution-closed classes: there is always a combinatorial
specification for the associated decomposition trees.

For other classes, there is sometimes a combinatorial specification for
the associated decomposition trees.

It is always the case when the number of simple permutations in the
class is finite.
Moreover, in this case, the specification is automatically produced.
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Combinatorial specifications of classes

For substitution-closed classes: there is always a combinatorial
specification for the associated decomposition trees.

For other classes, there is sometimes a combinatorial specification for
the associated decomposition trees.

It is always the case when the number of simple permutations in the
class is finite.
Moreover, in this case, the specification is automatically produced.

Example: Av(132)


T = {•}
⊎ ⊕
T not⊕ T〈21〉

⊎ 	
T not	 T

T not⊕ = {•}
⊎ 	
T not	 T

T not	 = {•}
⊎ ⊕
T not⊕ T〈21〉

T〈21〉 = {•}
⊎ ⊕
T not⊕
〈21〉 T〈21〉

T not⊕
〈21〉 = {•}.
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.

Define that Ti is critical when its generating function has minimal radius
of convergence among all those of the (Tj)j (which is that of T0).
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Relevant properties of the specifications

Consider a specification for the decomposition trees of permutations in a
class C = T0 where the families (T0, T1, . . . , Tk) appear.

Define that Ti is critical when its generating function has minimal radius
of convergence among all those of the (Tj)j (which is that of T0).

The limiting behavior of uniform permutations in C is determined by:

the strongly connected components of the specification restricted to
critical families;

whether the restriction of the specification to each strongly connected
component is linear or branching.

Mathilde Bouvel (I-Math, UZH) Limits of permutations 27 / 31



Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).
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Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 1: Av(132), with critical families in blue.

T = {•}
⊎ ⊕
T not⊕ T〈21〉

⊎ 	
T not	 T

T not⊕ = {•}
⊎ 	
T not	 T

T not	 = {•}
⊎ ⊕
T not⊕ T〈21〉

T〈21〉 = {•}
⊎ ⊕
T not⊕
〈21〉 T〈21〉

T not⊕
〈21〉 = {•}.

The limit is the Brownian separable permuton of parameter p = 0.

Mathilde Bouvel (I-Math, UZH) Limits of permutations 28 / 31



Essentially branching specifications

The restriction of the specification to critical families is strongly
connected, and contains a product.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 2: Av(2413, 31452, 41253, 41352, 531246), with critical families
in blue. 

T0 = {•} ] ⊕[T1, T0] ] 	[T2, T0] ] 3142[T0, T3, T3, T0]
T1 = {•} ] 	[T2, T0] ] 3142[T0, T3, T3, T0]
T2 = {•} ] ⊕[T1, T0] ] 3142[T0, T3, T3, T0]
T3 = {•} ] 	[T4, T3]
T4 = {•}

The limit is the Brownian separable permuton of parameter
p ≈ 0.4748692376... (only real root of a certain polynomial of degree 9).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in red and blue (for two strongly connected components).

T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T1 = {•}
T2 = {•} ] ⊕[T1, T2]
T3 = ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T4 = 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T5 = {•} ] 	[T1, T5]
T6 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T6] ] 	[T7, T5]
T7 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2].
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in red and blue (for two strongly connected components).

The limit is the centered X-permuton (of parameter (1/4, 1/4, 1/4, 1/4)).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in red and
blue (for two strongly connected components).

T0 = {•} ] ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T1 = {•}
T2 = {•} ] ⊕[T1,T2]
T3 = ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T4 = 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T5 = {•} ] ⊕[T1,T1] ] ⊕[T1,T9] ] ⊕[T9,T1]
T6 = {•} ] 	[T1,T6]
T7 = ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6]
T8 = ⊕[T1,T11] ] ⊕[T1,T12] ] ⊕[T13,T11] ] ⊕[T9,T11] ] ⊕[T13,T1]
T9 = 	[T1,T6]
T10 = ⊕[T1,T1] ] ⊕[T1,T9] ] ⊕[T9,T1]
T11 = ⊕[T1,T2]
T12 = ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6]
T13 = 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6].
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in red and
blue (for two strongly connected components).

The limit is the X-permuton of parameter ≈ (0.2003, 0.2003, 0.4313, 0.1681).
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
red and blue (for two strongly connected components).


T0 = {•} ] ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T0] ] 3142[T1,T1,T1,T6]
T1 = {•} ] 	[T7,T1]
T2 = {•} ] ⊕[T7,T2]
T3 = ⊕[T8,T2] ] 	[T9,T6]
T4 = 	[T10,T11] ] 	[T10,T1] ] 	[T7,T11] ] 3142[T1,T1,T1,T6]
T5 = {•} ] ⊕[T1,T1] ] 3142[T1,T1,T1,T1]
T6 = {•} ] ⊕[T12,T2] ] 	[T9,T6]
T7 = {•}
T8 = 	[T9,T6]
T9 = {•} ] ⊕[T1,T7]
T10 = ⊕[T1,T1] ] 3142[T1,T1,T1,T1]
T11 = ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T11] ] 	[T10,T1] ] 	[T7,T11] ] 3142[T1,T1,T1,T6]
T12 = {•} ] 	[T9,T6]
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Essentially linear specifications

The restriction of the specification to critical families is strongly
connected, and contains no product.

⇒ The limiting permuton of the class is the X-permuton of parameter
p = (p1, p2, p3, p4) (not necessarily centered, possibly degenerate).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
red and blue (for two strongly connected components).

The limit is the X-permuton of parameter (0, 0, 1− p, p) with p ≈ 0.81863.
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Several strongly connected components

Assume the specification for C restricted to critical families has several
strongly connected components.

Limit shape in each strongly connected component: as above.

Sometimes, the limit shape of C is a combination of those in each
component.
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Several strongly connected components

Assume the specification for C restricted to critical families has several
strongly connected components.

Limit shape in each strongly connected component: as above.

Sometimes, the limit shape of C is a combination of those in each
component.

Example: the downward closure of ⊕[X ,X ]:
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Summary of the described limit shapes

(Biased) Brownian separable permuton:

Separable permutations;

Substitution-closed class under an analytic condition on S(z);

Classes with a specification that is essentially strongly connected and
essentially branching.

(Parametrized) X-permuton:

Classes with a specification that is essentially strongly connected and
essentially linear.

A mix of the above:

Classes with a specification that is not essentially strongly connected.
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Summary of the described limit shapes

(Biased) Brownian separable permuton:

Separable permutations;

Substitution-closed class under an analytic condition on S(z);

Classes with a specification that is essentially strongly connected and
essentially branching.

(Parametrized) X-permuton:

Classes with a specification that is essentially strongly connected and
essentially linear.

A mix of the above:

Classes with a specification that is not essentially strongly connected.

Thank you!
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