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Plan for the talk (1/2)

The problem:

Consider a class C of permutations or graphs defined by the avoidance
of substructures (patterns or induced subgraphs).

For any n, let σn or Gn be an object of size n in C, taken uniformly at
random among objects of size n in C.

We would like to describe the typical global behavior of σn or Gn as n
tends to ∞, through its permuton or graphon limit.

Permutation matrix of a typical large Adjacency matrix of typical
permutation avoiding 2413 and 3142 large graph with no induced P4
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Plan for the talk (2/2)

The proof strategy:

Permutons and graphons describe global limits of permutations and
graphs. But permuton and graphon convergence are characterized by
convergence of the densities of substructures.

Using the substitution or modular decomposition, we can represent
permutations or graphs by trees (decorated on their internal nodes).

Substructures in permutations or graphs correspond to induced
subtrees in these trees (subtrees induced by a set of leaves).

We write functional equations for the generating functions counting
decomposition trees, possibly with specified induced subtrees.

Using analytic combinatorics, we derive the limiting densities of
substructures in our permutations or graphs, proving permuton or
graphon convergence.
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A caveat

Only some classes of permutations or graphs are amenable to the
presented strategy:
when the substitution/modular decomposition is “nice”.

These represent very few cases in the whole landscape of permutation
classes/hereditary families of graphs.

But it still covers quite many classes compared to what was previously
known (especially in the permutation case).

The talk will mainly discuss the simplest case in the graph setting: the
family of cographs, avoiding an induced P4 (the path on 4 vertices).

We will also discuss briefly its permutation analogue: the family of
separable permutations, avoiding the patterns 2413 and 3142, as well as
hint at some generalizations.
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Induced subgraphs,

and a biased view of
graphon convergence



Induced subgraphs and hereditary families of graphs

g is an induced subgraph of G when

g = 4 G =

In words, the subgraph of G = (V ,E ) induced by V ′ ⊂ V is the
graph with vertex set V ′ and edge set E ∩ (V ′ × V ′).
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Induced subgraphs and hereditary families of graphs

g is an induced subgraph of G when

g = 4 G =

In words, the subgraph of G = (V ,E ) induced by V ′ ⊂ V is the
graph with vertex set V ′ and edge set E ∩ (V ′ × V ′).

A hereditary family of graphs is a set of graphs C such that for every
G ∈ C , if g is an induced subgraph of G , then g ∈ C.

Examples include the families of cographs, comparability graphs,
permutation graphs, circle graphs, parity graphs, . . .

Equivalently, hereditary families of graphs are characterized as sets of
graphs whose induced subgraphs avoid a prescribed set (which may
be finite or infinite).
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Densities of induced subgraphs

Definition: The density of an induced subgraph g in G is

Dens(g ,G ) = P(SubGraphk(G ) = g)

where k is the number of vertices of g and
SubGraphk(G ) is the (random) subgraph of G induced by a k-tuple
of i.i.d. uniform random vertices of G .
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Densities of induced subgraphs

Definition: The density of an induced subgraph g in G is

Dens(g ,G ) = P(SubGraphk(G ) = g)

where k is the number of vertices of g and
SubGraphk(G ) is the (random) subgraph of G induced by a k-tuple
of i.i.d. uniform random vertices of G .

Variant: The “injective density” is defined by

Densinj(g ,G ) = P(SubGraphinj
k (G ) = g),

where SubGraphinj
k (G ) is the (random) subgraph of G induced by a

uniform random k-tuple of distinct vertices of G .

Fact: For Gn a sequence of random graphs of size tending to infinity,
E[Dens(g ,Gn)]→ ∆g iff E[Densinj(g ,Gn)]→ ∆g .
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What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G −→ MG (symmetric) −→ wG : [0, 1]2 → [0, 1]


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0



The graphon WG associated with G is the equivalence class of wG under
the action of permuting rows and columns of MG .
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What is (informally) a graphon?

In the discrete setting:

(Unlabeled) Adjacency matrix Function
graph G −→ MG (symmetric) −→ wG : [0, 1]2 → [0, 1]


0 1 1 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
0 0 0 1 0



The graphon WG associated with G is the equivalence class of wG under
the action of permuting rows and columns of MG .

Continuous extension:
In general, a graphon is obtained as above, from a symmetric matrix M,
possibly with a continuum of rows and columns, and with values in [0, 1].

It is an equivalence class of symmetric functions from [0, 1]2 → [0, 1] under
the action of permuting rows and columns of M.
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Subgraph densities in graphons

Fix g a graph with k vertices, unlabeled.

Reminder of the discrete case:
For a graph G , Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .

Continuous generalization:
For a graphon W , Dens(g ,W ) = P(Samplek(W ) = g),
where Samplek(W ) is the (random) graph with k vertices v1, . . . , vk
such that vi and vj are connected with probability w(xi , xj),
for x1, . . . , xk i.i.d. uniform random variables in [0, 1]
and w : [0, 1]2 → [0, 1] a representative of W .
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Subgraph densities in graphons

Fix g a graph with k vertices, unlabeled.

Reminder of the discrete case:
For a graph G , Dens(g ,G ) = P(SubGraphk(G ) = g),
where SubGraphk(G ) is the (random) subgraph of G
induced by a k-tuple of i.i.d. uniform random vertices of G .

Continuous generalization:
For a graphon W , Dens(g ,W ) = P(Samplek(W ) = g),
where Samplek(W ) is the (random) graph with k vertices v1, . . . , vk
such that vi and vj are connected with probability w(xi , xj),
for x1, . . . , xk i.i.d. uniform random variables in [0, 1]
and w : [0, 1]2 → [0, 1] a representative of W .

Remark: For any graph G , Dens(g ,WG ) = Dens(g ,G ).
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Characterization of (deterministic) graphon convergence

(Non-)definition:
The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wn)n≥0 to a graphon W (for this cut-distance). We write Wn →W .
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So, it makes sense to study convergence of a sequence of graphons
(Wn)n≥0 to a graphon W (for this cut-distance). We write Wn →W .

Typically, Wn = WGn , the graphon associated to a graph Gn, with the
sequence of graphs (Gn) such that the size of Gn grows to infinity with n.
In this case, we also write Gn →W .
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Characterization of (deterministic) graphon convergence

(Non-)definition:
The space of graphons is (up to technicalities) metric, for the cut-distance
(and in addition is compact).

So, it makes sense to study convergence of a sequence of graphons
(Wn)n≥0 to a graphon W (for this cut-distance). We write Wn →W .

Typically, Wn = WGn , the graphon associated to a graph Gn, with the
sequence of graphs (Gn) such that the size of Gn grows to infinity with n.
In this case, we also write Gn →W .

Combinatorial characterization of convergence:
For (Wn) a sequence of graphons and W a graphon, Wn →W iff
for any (finite) graph g , Dens(g ,Wn)→ Dens(g ,W ).
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Characterization of graphon convergence: the random case

Reminder: Gn →W iff Dens(g ,Gn)→ Dens(g ,W ) for all g , for (Gn) a
sequence of (deterministic) graphs and W a (deterministic) graphon.
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Characterization of graphon convergence: the random case

Reminder: Gn →W iff Dens(g ,Gn)→ Dens(g ,W ) for all g , for (Gn) a
sequence of (deterministic) graphs and W a (deterministic) graphon.

What if we take (Gn) random? (Dens(g ,Gn) being then a real r.v.)
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Characterization of graphon convergence: the random case

Reminder: Gn →W iff Dens(g ,Gn)→ Dens(g ,W ) for all g , for (Gn) a
sequence of (deterministic) graphs and W a (deterministic) graphon.

What if we take (Gn) random? (Dens(g ,Gn) being then a real r.v.)

Theorem [Diaconis-Janson, 2008]:
The distribution of a random graphon W is characterized by all expected
subgraph densities E[Dens(g ,W )] (for all g).

Theorem [Diaconis-Janson, 2008]:
Let (Gn) be a sequence of random graphs. TFAE:

Gn tends in distribution to some random graphon, W .

For all g , E[Dens(g ,Gn)] converges to some value ∆g ∈ [0, 1].

If this holds, in addition we have:
for all g , E[Dens(g ,W )] = ∆g , so that (∆g )g characterizes W .
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Summary so far

Graphs:

Definition of induced subgraphs

Definition of hereditary classes of graphs

Notion of graphon as a “rescaled adjacency matrix”

Combinatorial characterization of graphon convergence:
by the convergence of the densities of induced subgraphs
(in expectation in the random case)

Analogue notions for permutations:

Induced subgraphs correspond to patterns

Hereditary families are called permutation classes

Notion of permuton as a “rescaled permutation matrix”

Combinatorial characterization of permuton convergence:
by the convergence of the frequencies of patterns
(in expectation in the random case)
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Decomposition trees



Modular decomposition of graphs

A module in a graph G = (V ,E ) is a set S ⊆ V of vertices which
cannot be distinguished by vertices outside of S :

for every v ∈ V \ S, either {v , s} ∈ E for all s ∈ S
or {v , s} /∈ E for all s ∈ S

Given a partition of V into modules, G can be described
the subgraph induced keeping exactly one vertex in each module
(sometimes called quotient)
the subgraph induced by each module (sometimes called factors)

Repeating this construction inside the modules, we obtain a modular
decomposition tree of G (which is rooted, non planar, with internal
vertices labeled by quotient graphs, and leaves corresponding to V ).
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Modular decomposition trees

The trivial modules of G are ∅, V , and {v} for any v ∈ V .

A graph G is prime if it contains no non-trivial module.

Theorem: Every graph has a unique modular decomposition tree whose
vertices are either cliques (denoted 1), or independent sets (denoted 0), or
prime graphs (denoted P), and with no 0− 0 nor 1− 1 edges.
We call it canonical and denote it T (G ).

T (G ) is obtained considering recursively the quotients resulting from the
partition of V into maximal modules different from V (in the prime case,
with special cases for cliques and independent sets).
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Induced subgraphs in decomposition trees

Let G be a graph. Let S be a subset of its vertices.

Consider the subgraph of G induced by S .

Let T (G ) be its canonical modular decomposition tree.

0

11

0

Fact: A decomposition tree for the induced subgraph of G corresponding
to S is obtained considering the subtree of T (G ) induced by the set of
leaves corresponding to S .

Remark: The induced tree is not necessarily the canonical tree of the
induced subgraph (e.g. it may contain 0− 0 edges).
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Permutation analogues

A module in a graph corresponds to an interval in a permutation.

A permutation can be decomposed into quotients and factors via the
substitution decomposition.

2 1 4 6 5 3 = = = 1 3 2[2 1, 1 3 2, 1]

The trees recording these decompositions are called (substitution)
decomposition trees.

There exists a unique canonical decomposition tree.

Patterns correspond to subtrees induced by leaves.

Remark: For a permutation σ, consider its inversion graph G . Up to
planarity and adapting the decorations, it holds that T (σ) = T (G ).
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Graphon limit of (labeled) cographs



Cographs and their modular decomposition trees

Cographs are defined by the avoidance of P4 (induced path on 4
vertices, which is the smallest prime graph).

Equivalently, cographs are all graphs whose modular decomposition
trees involve only 0 (indep. set) and 1 (clique) nodes (no prime
node). We call cotrees their modular decomposition trees.

Therefore, labeled1 cographs can be described from the combinatorial
specification:

L = • ] Set≥2(L) i .e., .

Indeed, via its canonical modular decomposition tree, a cograph
correspond to a tree of L with a label 0 or 1 on the root (propagating
labels alternating between 0 and 1 along each edge).

1meaning vertices are labeled by the integers from 1 to n; in the unlabeled case, we
need to consider Multiset, and hence later Polya operators for the GF

Mathilde Bouvel (Loria, CNRS) Limits of permutations 19 / 35



Expressing E[Densinj(g ,Gn)]

Notation:
Let Gn be a uniform random labeled cograph with n vertices.

Reminder:
Knowing E[Densinj(g ,Gn)] for all g characterizes the graphon limit of Gn.

Notation:
for all n, and all k ≤ n,
t(n) is a uniform random labeled canonical cotree of size n, and
t(n)k is the subtree of t(n) induced by a uniform k-tuple of distinct leaves.

Observation:
For any cograph g , we have:

E[Densinj(g ,Gn)] = P(SubGraphinj
k (Gn) = g)=

∑
P(t(n)k = t0),

where the sum runs over all cotrees t0 corresponding to g .
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Expressing P(t(n)
k = t0)

Observation: P(t(n)k = t0) =
n![zn]Mt0 (z)

n![zn]M(z)×n(n−1)...(n−k+1) , where

M is the set of labeled canonical cotrees

for any cotree t0 with k leaves, Mt0 is the set of labeled canonical
cotrees with a marked k-tuple of distinct leaves, which induce t0,

M(z) and Mt0(z) are the corresponding exponential generating
functions

as usual, [zn]F (z) denotes the coefficient of zn in the generating
function F (z)

Next: Use symbolic and analytic combinatorics to compute the
asymptotic behavior of the numerator and the denominator in

n![zn]Mt0(z)

n![zn]M(z)× n(n − 1) . . . (n − k + 1)
.
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Estimating the denominator

Recall that L = • ] Set≥2(L).

Let L(z) be the exponential generating function of L.

From [Flajolet-Sedgewick] (rather a variant on trees counted by
leaves), L(z) satisfies L(z) = z + exp(L(z))− 1− L(z).

The generating function of cographs is M(z) = 2L(z)− z .

L(z) and M(z) have the same radius of convergence ρ = 2 log(2)− 1
and are ∆-analytic.

Near z = ρ, L(z) = log(2)−√ρ
√

1− z/ρ+O(1− z/ρ)

and M(z) = 1− 2
√
ρ
√

1− z/ρ+O(1− z/ρ).

From the transfer theorem,

n(n − 1) . . . (n − k + 1)[zn]M(z) ∼
n→+∞

nk−3/2

ρn−1/2
√
π

.
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Estimating the numerator

Prop.: If t0 with k leaves has nv internal vertices, n= edges of the form
0− 0 or 1− 1, and n6= edges of the form 0− 1 or 1− 0, then

Mt0 = (L′)(exp(L))nv (L•)k(Lodd)n=(Leven)n6= ,
these series being variations on L(z) whose singular behavior results from
that of L(z).
Proof:

?

. . .

. . .

odd even

even

10

0

0

0

1

0

0

1 1

0

Counted by Leven

Counted by Lodd

Counted by eL

Counted by L′

Counted by L•

`5 `1

`4 `2

`3

5 1

2 4

3
. . .

. . .1 1

111 1
0 0 0

1 1 1 1

r
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Corollary: Like before, we obtain

the behavior at ρ of Mt0(z),

and the asymptotic estimate of [zn]Mt0(z).
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Corollary: Like before, we obtain

the behavior at ρ of Mt0(z),

and the asymptotic estimate of [zn]Mt0(z).

More precisely, we have

[zn]Mt0(z) ∼
n→+∞

(k − 1)!

(2k − 2)!

nk−3/2

ρn−1/2
√
π

,

if t0 is binary (which implies nv = k − 1 and n= + n6= = k − 2).
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Conclusion of the proof

Notation (reminder):

t(n): uniform random labeled canonical cotree of size n

t(n)k : subtree of t(n) induced by a uniform k-tuple of distinct leaves

t0: cotree with k leaves

What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .
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Notation (reminder):

t(n): uniform random labeled canonical cotree of size n

t(n)k : subtree of t(n) induced by a uniform k-tuple of distinct leaves

t0: cotree with k leaves

What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .

Remark: (k−1)!
(2k−2)! = 1

number of binary cotrees with k leaves .

Consequence: If t0 is not binary, then lim
n→∞

P(t(n)k = t0) = 0.
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Conclusion of the proof

Notation (reminder):

t(n): uniform random labeled canonical cotree of size n

t(n)k : subtree of t(n) induced by a uniform k-tuple of distinct leaves

t0: cotree with k leaves

What we proved: If t0 is binary, then lim
n→∞

P(t(n)k = t0) = (k−1)!
(2k−2)! .

Remark: (k−1)!
(2k−2)! = 1

number of binary cotrees with k leaves .

Consequence: If t0 is not binary, then lim
n→∞

P(t(n)k = t0) = 0.

Remark/reminder:
Summing over all t0 encoding a cograph g , this gives lim

n→∞
E[Dens(g ,Gn)].

These quantities characterize the graphon limit of cographs.
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The Brownian cographon

Starting from a Brownian excursion, whose local minima receive
unbiased decorations by 0 and 1, we can build the Brownian
cographon of parameter 1/2, denoted W 1/2.

We can compute ∆g = E[Dens(g ,W 1/2)] for all cographs g .

But this is a story for another time...

We observe that
lim
n→∞

E[Dens(g ,Gn)] = ∆g for all g .

Therefore, not only do we prove existence
of a graphon limit for uniform random
cographs, but we also provide a
construction of this limit.

The limiting graphon is a genuinely
random and fractal object.
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From cographs to separable permutations

Separable permutations are those avoiding the patterns 2413 and
3142 (the two smallest simple permutations).

Equivalently, it is the family of all permutations whose decomposition
trees involve only ⊕ and 	 nodes (no simple permutations).

Separable permutations are therefore the permutation analogue of
cographs.

From a combinatorial specification for the decomposition trees of
separable permutations, and using analytic combinatorics as before,
we obtain the limiting behavior of E[õcc(π,σn)] for π any pattern,
and σn a uniform random separable permutation of size n. These
quantities characterize the permuton limit of separable permutations.

Again, we have an explicit construction of the limiting object µ1/2

(called the Brownian separable permuton of parameter 1/2) from a
Brownian excursion with decorations.
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From cographs to separable permutations

Separable permutations are those avoiding the patterns 2413 and
3142 (the two smallest simple permutations).
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More classes of permutations



Transposing the proof strategy to a more general setting

Idea of the method:

Assume that you know a combinatorial specification for the
decomposition trees of permutations in some class C.

It translates into a system of equations for the GF of C.

We can in addition “track patterns” in these equations.

IF the method of analytic combinatorics goes through, we obtain
convergence to a certain permuton, as for separable permutations.

Some results:

Convergence to Brownian separable permutons of parameters
p ∈ [0, 1] for substitution-closed classes, under some analytic
condition on the GF of the simple permutations in the class.

Dichotomy for classes for which a specification is known (in
particular: whenever they contain finitely many simple permutations):
(random) Brownian permutons VS (deterministic) X-permutons.
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Substitution-closed classes

Their specification adds some simple permutations to that of
separable permutations. We denote by S the set of allowed simple
permutations.

Limit permutons are (biased) Brownian separable permutons.



T = {•}
⊎ ⊕

T not⊕ T

⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not⊕ = {•}
⊎ 	

T not	 T

⊎ ⊎
π∈S

π

T . . . T
;

T not	 = {•}
⊎ ⊕

T not⊕ T

⊎ ⊎
π∈S

π

T . . . T
.

Mathilde Bouvel (Loria, CNRS) Limits of permutations 29 / 35



Substitution-closed classes

Their specification adds some simple permutations to that of
separable permutations. We denote by S the set of allowed simple
permutations.

Limit permutons are (biased) Brownian separable permutons.

simulations of µp for p = 0.2, 0.45, 0.5.
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Substitution-closed classes

Their specification adds some simple permutations to that of
separable permutations. We denote by S the set of allowed simple
permutations.

Limit permutons are (biased) Brownian separable permutons.

Example 1: Separable permutations, i.e. S = ∅, ⇒ p = 0.5
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Substitution-closed classes

Their specification adds some simple permutations to that of
separable permutations. We denote by S the set of allowed simple
permutations.

Limit permutons are (biased) Brownian separable permutons.

Example 2: S = {2413, 3142, 24153}, ⇒ p = 0.5
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Substitution-closed classes

Their specification adds some simple permutations to that of
separable permutations. We denote by S the set of allowed simple
permutations.

Limit permutons are (biased) Brownian separable permutons.

Example 3: S = Av(321) ∩ {Simples} (infinite), ⇒ p ∈ [0.577, 0.622]
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Brownian case of the dichotomy

When the specification contains a product of critical families.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).
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Brownian case of the dichotomy

When the specification contains a product of critical families.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 1: Av(132), with critical families in blue.

T = {•}
⊎ ⊕
T not⊕ T〈21〉

⊎ 	
T not	 T

T not⊕ = {•}
⊎ 	
T not	 T

T not	 = {•}
⊎ ⊕
T not⊕ T〈21〉

T〈21〉 = {•}
⊎ ⊕
T not⊕
〈21〉 T〈21〉

T not⊕
〈21〉 = {•}.

The limit is the Brownian separable permuton of parameter p = 0.
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Brownian case of the dichotomy

When the specification contains a product of critical families.

⇒ The limiting permuton of the class is a biased Brownian separable
permuton (of parameter p possibly 0 or 1).

Example 2: Av(2413, 31452, 41253, 41352, 531246), with critical families
in blue. 

T0 = {•} ] ⊕[T1, T0] ] 	[T2, T0] ] 3142[T0, T3, T3, T0]
T1 = {•} ] 	[T2, T0] ] 3142[T0, T3, T3, T0]
T2 = {•} ] ⊕[T1, T0] ] 3142[T0, T3, T3, T0]
T3 = {•} ] 	[T4, T3]
T4 = {•}

The limit is the Brownian separable permuton of parameter
p ≈ 0.4748692376... (only real root of a certain polynomial of degree 9).
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in blue.



T0 = {•} ] ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T1 = {•}
T2 = {•} ] ⊕[T1, T2]
T3 = ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T4 = 	[T1, T5] ] 	[T1, T6] ] 	[T7, T5]
T5 = {•} ] 	[T1, T5]
T6 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2] ] 	[T1, T6] ] 	[T7, T5]
T7 = ⊕[T1, T2] ] ⊕[T1, T3] ] ⊕[T4, T2].
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 1: Av(2413, 3142, 2143, 3412), a.k.a. the X-class, with critical
families in blue.

The limit is the centered X-permuton.
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in blue.

T0 = {•} ] ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T1 = {•}
T2 = {•} ] ⊕[T1,T2]
T3 = ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T4 = 	[T5,T6] ] 	[T5,T7] ] 	[T8,T6]
T5 = {•} ] ⊕[T1,T1] ] ⊕[T1,T9] ] ⊕[T9,T1]
T6 = {•} ] 	[T1,T6]
T7 = ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6]
T8 = ⊕[T1,T11] ] ⊕[T1,T12] ] ⊕[T13,T11] ] ⊕[T9,T11] ] ⊕[T13,T1]
T9 = 	[T1,T6]
T10 = ⊕[T1,T1] ] ⊕[T1,T9] ] ⊕[T9,T1]
T11 = ⊕[T1,T2]
T12 = ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6]
T13 = 	[T10,T6] ] 	[T10,T7] ] 	[T1,T7] ] 	[T8,T6].
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 2: Av(2413, 3142, 2143, 34512), with critical families in blue.

The limit is a non-centered X-permuton.
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
blue.



T0 = {•} ] ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T5,T0] ] 3142[T1,T1,T1,T6]
T1 = {•} ] 	[T7,T1]
T2 = {•} ] ⊕[T7,T2]
T3 = ⊕[T8,T2] ] 	[T9,T6]
T4 = 	[T10,T11] ] 	[T10,T1] ] 	[T7,T11] ] 3142[T1,T1,T1,T6]
T5 = {•} ] ⊕[T1,T1] ] 3142[T1,T1,T1,T1]
T6 = {•} ] ⊕[T12,T2] ] 	[T9,T6]
T7 = {•}
T8 = 	[T9,T6]
T9 = {•} ] ⊕[T1,T7]
T10 = ⊕[T1,T1] ] 3142[T1,T1,T1,T1]
T11 = ⊕[T1,T2] ] ⊕[T1,T3] ] ⊕[T4,T2] ] 	[T10,T11] ] 	[T10,T1] ] 	[T7,T11] ] 3142[T1,T1,T1,T6]
T12 = {•} ] 	[T9,T6]
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X case of the dichotomy

When the specification contains no product of critical families.

⇒ The limiting permuton of the class has a deterministic X shape (not
necessarily centered, possibly missing some of the 4 branches).

Example 3: Av(2413, 1243, 2341, 531642, 41352), with critical families in
blue.

The limit is a degenerate X-permuton.

Mathilde Bouvel (Loria, CNRS) Limits of permutations 31 / 35



Concluding remarks



Towards more classes of graphs

As in the permutation case, we can extend the study of cographs to
families of graphs whose modular decomposition trees are described
by a combinatorial specification.

Our analytic approach can only work with GF having positive radius
of convergence. This was necessary in permutation classes, but is an
additional requirement for hereditary graph classes.

This is the PhD topic of Théo Lenoir, who started working in
September 2021, supervised by Frédérique Bassino and Lucas Gerin.

The classes that he studied are the P4-blah graphs,
where blah ∈ {reducible, sparse, lite, extensible, tidy}.
All converge to the Brownian cographon.

Recall that cographs are P4-free graphs.
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An alternative proof strategy

Consider a class of graphs/permutations C, seen as trees.
For any n, let Gn be a uniform random object of size n in C.
Goal: Describe the graphon/permuton limit of Gn as n→∞.

The strategy I presented (in part):

Build the limiting graphon/permuton from a Brownian excursion

Compute the densities (∆g )g of substructures in it.

(∆g )g characterizes the graphon/permuton limit

Use a combinatorial specification for C and analytic combinatorics to
compute, for any g , the limiting behavior for n→∞ of the density of
g in Gn. Observe that it coincides with ∆g .

The “random trees” strategy

Compute densities of induced subtrees directly on the random tree of
Gn, using techniques from the random trees literature.
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A nice consequence of permuton/graphon limits

Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property,
answering a question of Kang, McDiarmid, Reed and Scott in 2014)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:

Convergence to the Brownian cographon

The independence number of the Brownian cographon W 1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit W p or a Brownian separable permuton.
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A nice consequence of permuton/graphon limits

Results:

The size of the largest independent set of a uniform random cograph
is sublinear.
(hence P4 does not have the asymptotic linear Erdős-Hajnal property,
answering a question of Kang, McDiarmid, Reed and Scott in 2014)

The length of the longest increasing subsequence of a uniform
random separable permutations is sublinear.

Main proof ingredients:

Convergence to the Brownian cographon

The independence number of the Brownian cographon W 1/2 is 0

Bonus: The sublinearity result applies to all classes with
graphon/permuton limit W p or a Brownian separable permuton.

Thank you for being there!
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