Pin-Permutations:

Characterization and Generating Function

Frédérique Bassino <u>Mathilde Bouvel</u> Dominique Rossin

Journées Permutations et Combinatoire, Projet ANR GAMMA, Nov. 2008

Characterization

Main result of the talk

Pin-permutations

Introduction

Conjecture[Brignall, Ruškuc, Vatter]:

The pin-permutation class has a rational generating function.

Theorem: The generating function of the pin-permutation class is

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

Technique for the proof:

- Characterize the decomposition trees of pin-permutations
- Compute the generating function of *simple* pin-permutations
- Put things together to compute the generating function of pin-permutations

Outline of the talk

Introduction

- 1 Context for studying pin-permutations
- 2 Definition of pin-permutations
- 3 Substitution decomposition and decomposition trees
- 4 Characterization of the decomposition trees of pin-permutations
- **5** Generating function of the pin-permutation class
- 6 Conclusion and discussion on the basis

Context for studying pin-permutations

Introduction

Patterns and classes

Pin-permutations

Pattern relation \leq :

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \dots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \leq \sigma$.

Equivalently: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $1234 \le 312854796$ since $1257 \equiv 1234$.

Class of permutation: set downward closed for \leq Equivalently: $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$

S(B): the class of permutations avoiding all the patterns in the basis B.

Introduction

Classes of permutations

Pattern-avoidance point of view:

Definition by a basis of excluded patterns.

- Enumeration
- Exhaustive generation

Structure in permutation classes:

Definition by a property stable for patterns.

- Characterization of the permutations
 - with excluded patterns
 - with a recursive description
- Properties of the generating function
- Algorithms for membership

Examples:

- S(12...k)
- S(12...k,231)
- S(13-2)

- Stack sortable
- = S(231)
- Separable
- = S(2413, 3142)
- Pin-permutations

Context for studying pin-permutations

Introduction

Simple permutations

Pin-permutations

Interval = window of elements of σ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation = has no interval except 1, 2, ..., n and σ Example: 3174625 is simple. *Smallest ones*: 12, 21, 2413, 3142

Pin-permutations: used for deciding whether $\mathcal C$ contains finitely many simple permutations

Thm[Albert Atkinson]: $\mathcal C$ contains finitely many simple permutations $\Rightarrow \mathcal C$ has an algebraic generating function

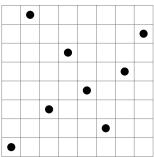
Decomposition trees: formalize the idea that simple permutations are "building blocks" for all permutations

Introduction

Graphical representation of permutations

Pin-permutations: a class defined by a property on the **graphical representation** of permutations.

Example: $\sigma = 18364257$



Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

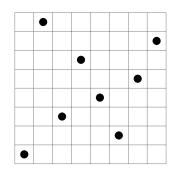
■ the externality condition 💹

and

• the separation condition

or the independence condition

 \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



Pin representations

Definition of pin-permutations

Introduction

Pin representation of $\sigma =$ sequence

 (p_1, \ldots, p_n) such that each p_i satisfies

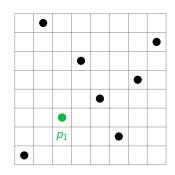
■ the externality condition 💹

and

• the separation condition

or the independence condition

 \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

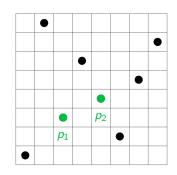
■ the externality condition

and

• the separation condition

or the independence condition

 \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



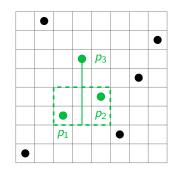
Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

■ the externality condition

- and
- the separation condition
- or the independence condition
- \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$

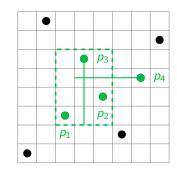


Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

- the externality condition
- and
- the separation condition
- or the independence condition
- \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



Introduction

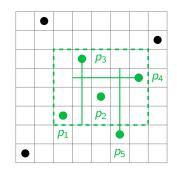
Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

■ the externality condition

and

- the separation condition
- or the independence condition
- \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



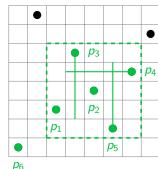
Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

- the externality condition
- and

- the separation condition
- or the independence condition
- \bigotimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



Introduction

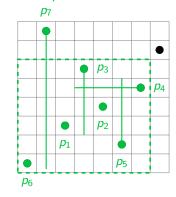
Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

■ the externality condition

and

- the separation condition
- or the independence condition
- \boxtimes = bounding box of $\{p_1, \ldots, p_{i-1}\}$



Introduction

Pin representations

Pin representation of $\sigma =$ sequence (p_1, \ldots, p_n) such that each p_i satisfies

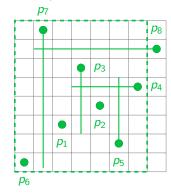
■ the externality condition

and

• the separation condition

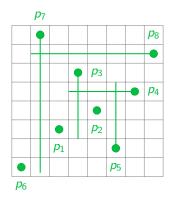
or the independence condition

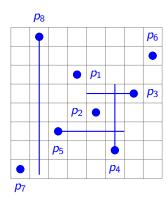
= bounding box of $\{p_1, \ldots, p_{i-1}\}$



Introduction

Non-uniqueness of pin representation



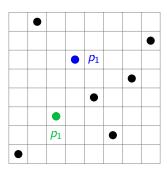


Introduction

Active points

Active point of σ :

 p_1 for some pin representation pof σ



Introduction

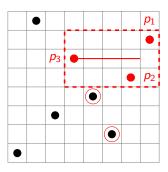
Active points

Active point of σ :

 p_1 for some pin representation p of σ

Remark:

Not every point is an active point.



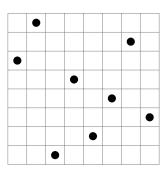
Introduction

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Example 1:



Introduction

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

Example 2:



Introduction

The class of pin-permutations

Fact: Not every permutation admits pin representations.

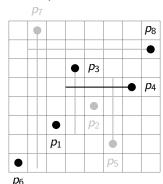
Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

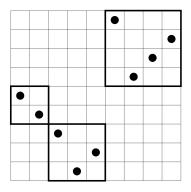
Example 2:

Characterization



Introduction

Substitution decomposition



Definitions

Inflation:

$$\pi[\alpha_1,\alpha_2,\ldots,\alpha_k]$$

$$213[21, 312, 4123] = 543129678$$

Characterization

Substitution decomposition and decomposition trees

Substitution decomposition

Results

Introduction

Prop.[Albert Atkinson]: $\forall \sigma, \exists$ a unique simple permutation π and unique α_i such that $\sigma = \pi[\alpha_1, \dots, \alpha_k]$.

If $\pi = 12$ (21), for unicity, α_1 is plus (minus) -indecomposable.

Thm [Albert Atkinson]: (Wreath-closed) class \mathcal{C} containing finitely many simple permutations \Rightarrow

- lacksquare C is finitely based.
- C has an algebraic generating function.

Introduction

Strong interval decomposition

Special case on permutations of the modular decomposition on graphs.

Thm: Every σ can be uniquely decomposed as

- 12... $k[\alpha_1, \ldots, \alpha_k]$, with the α_i plus-indecomposable
- $k \dots 21[\alpha_1, \dots, \alpha_k]$, with the α_i minus-indecomposable
- $\blacksquare \pi[\alpha_1,\ldots,\alpha_k]$, with π simple of size ≥ 4

Remarks:

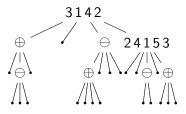
- This decomposition is unique without any further restriction.
- The α_i are the maximal strong intervals of σ .

Decompose the α_i recursively to get the decomposition tree.

Decomposition tree

Introduction

Example: The substitution decomposition tree of $\sigma =$ 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7



Notations and properties:

- $\oplus = 12 \dots k$ and $\ominus = k \dots 21$ = linear nodes.
- π simple of size \geq 4 = prime nodes.
- No \oplus \oplus or \ominus \ominus egde.
- Decomposition trees of permutations are ordered.
- N.B.: Modular decomposition trees are unordered.

Bijection between decomposition trees and permutations.

On using decomposition trees

Algorithms:

Introduction

- Computation in linear time
- Used in "efficient" algorithms for

 - Sorting by reversal

Examples in combinatorics: Use the bijective correspondance between decomposition trees and permutations.

- Wreath-closed classes: all trees on a given set of nodes
- Classes defined by a property: characterize the trees rather than the permutations
 - Separable permutations

Characterization of the decomposition trees of pin-permutations

Theorem

Introduction

σ is a pin-permutation iff its decomposition tree satisfies:

- Any linear node \oplus (\ominus) has at most one child that is not an ascending (descending) weaving permutation
- \blacksquare For any prime node labelled by $\pi,\,\pi$ is a simple pin-permutation and
 - all of its children are leaves
 - it has exactly one child that is not a leaf, and it inflates one active point of $\boldsymbol{\pi}$
 - \bullet π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
 - \hookrightarrow one is 12 (21) inflating the auxiliary substitution point of π
 - \hookrightarrow the other one inflates the main substitution point of π

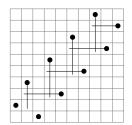
Characterization of the decomposition trees of pin-permutations

Definitions

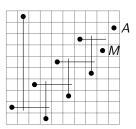
Introduction

Active point σ : there is a pin representation of σ starting with it.

Weaving permutation



Quasi-weaving permutation



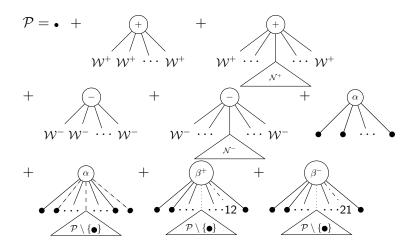
Both are ascending. Other are obtained by symmetry.

Enumeration: 4 (= 2 + 2) weaving and 8 (= 4 + 4) quasi-weaving permutations of size n, except for small n.

Characterization of the decomposition trees of pin-permutations

Theorem: more trees!

Introduction



Characterization

Generating function of the pin-permutation class

Pin-permutations

Introduction

Basic generating functions involved

Weaving permutations:
$$W^+(z) = W^-(z) = \frac{W(z)}{1-z} = \frac{z+z^3}{1-z}$$
. Remark: $W^+ \cap W^- = \{1, 2431, 3142\}$

Quasi-weaving permutations:

$$QW^{+}(z) = QW^{-}(z) = \frac{QW(z)}{1-z}$$

Trees \mathcal{N}^+ and \mathcal{N}^- : pin-permutations except ascending (descending) weaving permutations and those whose root is \oplus (\ominus).

$$N^+(z) = N^-(z) = \frac{(z^3 + 2z - 1)(z^3 + P(z)z^3 + 2P(z)z + z - P(z))}{1 - 2z + z^2}$$

P(z) = generating function of pin-permutations.

Generating function of the pin-permutation class

Pin-permutations

Introduction

Generating functions of **simple** pin-permutations

- Enumerate pin representations encoding simple pin-permutations.
- Characterize how many pin representations for a simple pin-permutation.
- Describe number of active points in simple pin-permutations.

Simple pin representations:
$$SiRep(z) = 8z^4 + \frac{32z^5}{1-2z} - \frac{16z^5}{1-z}$$

Simple pin-permutations:
$$Si(z) = 2z^4 + 6z^5 + 32z^6 + \frac{128z^7}{1-2z} - \frac{28z^7}{1-z}$$

Simple pin-permutations with multiplicity = number of active points:
$$SiMult(z) = 8z^4 + 26z^5 + 84z^6 + \frac{256z^7}{1-2z} - \frac{40z^7}{1-z}$$

Pin-permutations

Introduction

The rational generating function of pin-permutations

Equation on trees \Rightarrow equation on generating functions:

$$P(z) = z + \frac{W^{+}(z)^{2}}{1 - W^{+}(z)} + \frac{2W^{+}(z) - W^{+}(z)^{2}}{(1 - W^{+}(z))^{2}} N^{+}(z)$$

$$+ \frac{W^{-}(z)^{2}}{1 - W^{-}(z)} + \frac{2W^{-}(z) - W^{-}(z)^{2}}{(1 - W^{-}(z))^{2}} N^{-}(z) + Si(z)$$

$$+ SiMult(z) \left(\frac{P(z) - z}{z}\right) + QW^{+}(z) \left(z\frac{P(z) - z}{z}\right) + QW^{-}(z) \left(z\frac{P(z) - z}{z}\right)$$

Generating function of pin-permutations:

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

First terms: 1, 2, 6, 24, 120, 664, 3596, 19004, 99596, 521420, . . .

Introduction

Conclusion and open question

Overview of the results:

Pin-permutations

Class of pin-permutations define by a graphical property

Characterization

- Characterization of the associated decomposition trees
- Enumeration of simple pin-permutations
- ⇒ Generating function of the pin-permutation class
 - Rationality of the generating function

Characterization of the pin-permutation class:

- √ by a recursive description
 - ? by a (finite?) basis of excluded patterns

This basis is infinite, but yet unknown.

Conclusion and discussion on the basis

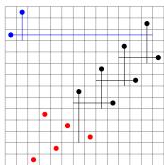
Introduction

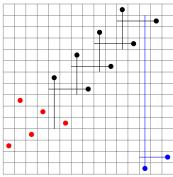
Infinite antichain in the basis

Pin-permutations

Prop. σ is in the basis \Leftrightarrow σ is not a pin-permutation but any strict pattern of σ is.

We describe (σ_n) an infinite antichain in the basis:





Characterization

Pin-permutations

Perspectives

Introduction

Thm[Brignall et al.]: \mathcal{C} a class given by its finite basis B. It is decidable whether $\mathcal C$ contains infinitely many simple permutations

Procedure: Check whether C contains arbitrarily long

 parallel alternations Easy, Polynomial

wedge simple permutations Easy, Polynomial

proper pin-permutations Difficult, Complexity?

Analysis of the procedure for proper pin-permutations

⇒ Polynomial construction using automata techniques except last step (Determinization of a transducer)

⇒ makes the construction exponential

Better knowlegde of pin-permutations ⇒ improve this complexity?