Pin-Permutations and Structure in Permutation Classes

Frédérique Bassino Mathilde Bouvel Dominique Rossin

Journées de Combinatoire de Bordeaux, feb. 2009

LIAFA

Main result of the talk

Conjecture[Brignall, Ruškuc, Vatter]:
The pin-permutation class has a rational generating function.
Theorem: The generating function of the pin-permutation class is

$$
P(z)=z \frac{8 z^{6}-20 z^{5}-4 z^{4}+12 z^{3}-9 z^{2}+6 z-1}{8 z^{8}-20 z^{7}+8 z^{6}+12 z^{5}-14 z^{4}+26 z^{3}-19 z^{2}+8 z-1}
$$

Technique for the proof:

- Characterize the decomposition trees of pin-permutations
- Compute the generating function of simple pin-permutations

■ Put things together to compute the generating function of pin-permutations

Outline of the talk

1 Finding structure in permutation classes

2 Definition of pin-permutations

3 Substitution decomposition and decomposition trees

4 Characterization of the decomposition trees of pin-permutations

5 Generating function of the pin-permutation class

6 Conclusion and discussion on the basis

Finding structure in permutation classes

Representations of permutations

Permutation: Bijective map from [1..n] to itself

- One-line representation:

$$
\sigma=18364257
$$

- Two-line representation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- Cyclic representation:

$$
\sigma=(1)(287546)(3)
$$

■ Graphical representation:

Patterns in permutations

Pattern relation $\preccurlyeq:$

$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ when $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. We write $\pi \preccurlyeq \sigma$.

Equivalently: Normalizing $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.

Patterns in permutations

Pattern relation $\preccurlyeq:$

$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ when $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π.
We write $\pi \preccurlyeq \sigma$.

Equivalently: Normalizing $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq Equivalently: $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$
$S(B)$: the class of permutations avoiding all the patterns in the basis B.
\qquad

Finding structure in permutation classes

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq Equivalently: $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$
$S(B)$: the class of permutations avoiding all the patterns in the basis B.

Prop.: Every class \mathcal{C} is characterized by its basis:

$$
\mathcal{C}=S(B) \text { for } B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma \text { with } \pi \neq \sigma, \pi \in \mathcal{C}\}
$$

Basis may be finite or infinite.
Enumeration[Stanley-Wilf, Marcus-Tardos]: $\left|S_{n}(B)\right| \leq c_{B}^{n}$

Studying classes of permutations

Pattern-avoidance point of view:
Definition by a basis of excluded patterns.
■ Enumeration

- Exhaustive generation

Structure in permutation classes:
Definition by a property stable for patterns.

- Characterization of the permutations
\hookrightarrow with excluded patterns
\hookrightarrow with a recursive description
- Properties of the generating function

■ Algorithms for membership

Examples:

- $S(213,312)$
- $S(4231)$
- $S(12 \ldots k)$

Examples:

- Stack sortable
= S(231)
- Separable
$=S(2413,3142)$
- Pin-permutations

Simple permutations

Interval $=$ window of elements of σ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and σ Example: 3174625 is simple. Smallest ones: 12,21,2413,3142

Pin-permutations: used for deciding whether \mathcal{C} contains finitely many simple permutations
Thm[Albert Atkinson]: \mathcal{C} contains finitely many simple permutations $\Rightarrow \mathcal{C}$ has an algebraic generating function

Decomposition trees: formalize the idea that simple permutations are "building blocks" for all permutations

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\infty \times p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\infty \times p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\infty \times p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
p_{1} \cdots p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\ggg \\
p_{1} \cdots p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\infty \times p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

- the separation condition

$$
\begin{gathered}
p_{i-1} p_{i} \\
\ggg \\
p_{1} \cdots p_{i-2}
\end{gathered}
$$

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ such that each p_{i} satisfies

Example:

Definition of pin-permutations

Non-uniqueness of pin representation

Definition of pin-permutations

Active points

Active point of σ :
p_{1} for some pin representation p of σ

Example:

Definition of pin-permutations

Active points

Active point of σ :
p_{1} for some pin representation p of σ

Remark:
Not every point is an active point.

Example:

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation $=$ that has a pin representation.

Example 1:

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

Example 2:

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

Example 2:

p_{7}

p_{6}

Substitution decomposition and decomposition trees

Substitution decomposition

Definitions

Inflation:
$\pi\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right]$
Example:
$213[21,312,4123]=$ 543129678

Substitution decomposition

Results

Prop.[Albert Atkinson]: $\forall \sigma, \exists$ a unique simple permutation π and unique α_{i} such that $\sigma=\pi\left[\alpha_{1}, \ldots, \alpha_{k}\right]$.
If $\pi=12$ (21), for unicity, α_{1} is plus (minus) -indecomposable.
Thm [Albert Atkinson]: (Wreath-closed) class \mathcal{C} containing finitely many simple permutations \Rightarrow

- \mathcal{C} is finitely based.
- \mathcal{C} has an algebraic generating function.

Strong interval decomposition

Special case on permutations of the modular decomposition on graphs.

Thm: Every σ can be uniquely decomposed as
■ $12 \ldots k\left[\alpha_{1}, \ldots, \alpha_{k}\right]$, with the α_{i} plus-indecomposable
■ $k \ldots 21\left[\alpha_{1}, \ldots, \alpha_{k}\right]$, with the α_{i} minus-indecomposable
■ $\pi\left[\alpha_{1}, \ldots, \alpha_{k}\right]$, with π simple of size ≥ 4

Remarks:
■ This decomposition is unique without any further restriction.
■ The α_{i} are the maximal strong intervals of σ.

Decompose the α_{i} recursively to get the decomposition tree.

Decomposition tree

Example: The substitution decomposition tree of $\sigma=$

 101312111411819202117161548329567

Notations and properties:

- $\oplus=12 \ldots k$ and $\ominus=k \ldots 21$
= linear nodes.
- π simple of size $\geq 4=$ prime nodes.
- No $\oplus-\oplus$ or $\ominus-\ominus$ egde.
- Decomposition trees of permutations are ordered.
- N.B.: Modular decomposition trees are unordered.

Bijection between decomposition trees and permutations.

On using decomposition trees

Algorithms:

- Computation in linear time

■ Used in "efficient" algorithms for
\hookrightarrow Longest common pattern problem
\hookrightarrow Sorting by reversal
\hookrightarrow Computing perfect DCJ rearrangements
Examples in combinatorics: Use the bijective correspondance between decomposition trees and permutations.

■ Wreath-closed classes: all trees on a given set of nodes

- Classes defined by a property: characterize the trees rather than the permutations
\hookrightarrow Separable permutations
\hookrightarrow Pin-permutations

Theorem

σ is a pin-permutation iff its decomposition tree satifies:

- Any linear node $\oplus(\ominus)$ has at most one child that is not an ascending (descending) weaving permutation
■ For any prime node labelled by π, π is a simple pin-permutation and
- all of its children are leaves
- it has exactly one child that is not a leaf, and it inflates one active point of π
- π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
\hookrightarrow one is 12 (21) inflating the auxiliary substitution point of π
\hookrightarrow the other one inflates the main substitution point of π

Definitions

Active point σ : there is a pin representation of σ starting with it.

Weaving permutation

Quasi-weaving permutation

Both are ascending. Other are obtained by symmetry.
Enumeration: $4(=2+2)$ weaving and $8(=4+4)$ quasi-weaving permutations of size n, except for small n.

Theorem

σ is a pin-permutation iff its decomposition tree satifies:

- Any linear node $\oplus(\ominus)$ has at most one child that is not an ascending (descending) weaving permutation
■ For any prime node labelled by π, π is a simple pin-permutation and
- all of its children are leaves
- it has exactly one child that is not a leaf, and it inflates one active point of π
- π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
\hookrightarrow one is 12 (21) inflating the auxiliary substitution point of π
\hookrightarrow the other one inflates the main substitution point of π

Characterization of the decomposition trees of pin-permutations

Theorem: more trees!

Mathilde Bouvel
Pin-Permutations

Basic generating functions involved

Weaving permutations: $W^{+}(z)=W^{-}(z)=W(z)=\frac{z+z^{3}}{1-z}$.
Remark: $\mathcal{W}^{+} \cap \mathcal{W}^{-}=\{1,2431,3142\}$
Quasi-weaving permutations:
$Q W^{+}(z)=Q W^{-}(z)=Q W(z)=\frac{4 z^{4}}{1-z}$.
Trees \mathcal{N}^{+}and \mathcal{N}^{-}: pin-permutations except ascending (descending) weaving permutations and those whose root is $\oplus(\ominus)$.
$N^{+}(z)=N^{-}(z)=N(z)=\frac{\left(z^{3}+2 z-1\right)\left(z^{3}+P(z) z^{3}+2 P(z) z+z-P(z)\right)}{1-2 z+z^{2}}$
$P(z)=$ generating function of pin-permutations.

Generating function of the pin-permutation class

Theorem: more trees!

Mathilde Bouvel
Pin-Permutations

Generating functions of simple pin-permutations

■ Enumerate pin representations encoding simple pin-permutations.
■ Characterize how many pin representations for a simple pin-permutation.
■ Describe number of active points in simple pin-permutations.
Simple pin representations: $\operatorname{SiRep}(z)=8 z^{4}+\frac{32 z^{5}}{1-2 z}-\frac{16 z^{5}}{1-z}$
Simple pin-permutations: $\operatorname{Si}(z)=2 z^{4}+6 z^{5}+32 z^{6}+\frac{128 z^{7}}{1-2 z}-\frac{28 z^{7}}{1-z}$
Simple pin-permutations with multiplicity $=$ number of active points: $\operatorname{SiMult}(z)=8 z^{4}+26 z^{5}+84 z^{6}+\frac{256 z^{7}}{1-2 z}-\frac{40 z^{7}}{1-z}$

Generating function of the pin-permutation class

0000

Theorem: more trees!

Mathilde Bouvel
Pin-Permutations

The rational generating function of pin-permutations

Equation on trees \Rightarrow equation on generating functions:

$$
\begin{aligned}
P(z) & =z+\frac{W^{+}(z)^{2}}{1-W^{+}(z)}+\frac{2 W^{+}(z)-W^{+}(z)^{2}}{\left(1-W^{+}(z)\right)^{2}} N^{+}(z) \\
& +\frac{W^{-}(z)^{2}}{1-W^{-}(z)}+\frac{2 W^{-}(z)-W^{-}(z)^{2}}{\left(1-W^{-}(z)\right)^{2}} N^{-}(z)+\operatorname{Si}(z) \\
& +\operatorname{SiMult}(z)\left(\frac{P(z)-z}{z}\right)+Q W^{+}(z)\left(z \frac{P(z)-z}{z}\right)+Q W^{-}(z)\left(z \frac{P(z)-z}{z}\right)
\end{aligned}
$$

Generating function of pin-permutations:

$$
P(z)=z \frac{8 z^{6}-20 z^{5}-4 z^{4}+12 z^{3}-9 z^{2}+6 z-1}{8 z^{8}-20 z^{7}+8 z^{6}+12 z^{5}-14 z^{4}+26 z^{3}-19 z^{2}+8 z-1}
$$

First terms: $1,2,6,24,120,664,3596,19004,99596,521420, \ldots$

Conclusion and open question

Overview of the results:

- Class of pin-permutations define by a graphical property
- Characterization of the associated decomposition trees

■ Enumeration of simple pin-permutations
\Rightarrow Generating function of the pin-permutation class

- Rationality of the generating function

Characterization of the pin-permutation class:
\checkmark by a recursive description
? by a (finite?) basis of excluded patterns
This basis is infinite, but yet unknown.

Conclusion and discussion on the basis

Infinite antichain in the basis

Prop. σ is in the basis $\Leftrightarrow \sigma$ is not a pin-permutation but any strict pattern of σ is.

We describe $\left(\sigma_{n}\right)$ an infinite antichain in the basis:

Perspectives

Thm[Brignall et al.]: \mathcal{C} a class given by its finite basis B. It is decidable whether \mathcal{C} contains infinitely many simple permutations

Procedure: Check whether \mathcal{C} contains arbitrarily long

- parallel alternations
- wedge simple permutations Easy, Polynomial
- proper pin-permutations Difficult, Complexity?

Analysis of the procedure for proper pin-permutations
\Rightarrow Polynomial construction using automata techniques except last step (Determinization of a transducer)
\Rightarrow makes the construction exponential

Better knowlegde of pin-permutations \Rightarrow improve this complexity ?

