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Main result of the talk

Conjecture[Brignall, Ruškuc, Vatter]:
The pin-permutation class has a rational generating function.

Theorem: The generating function of the pin-permutation class is

P(z) = z
8z6 − 20z5 − 4z4 + 12z3 − 9z2 + 6z − 1

8z8 − 20z7 + 8z6 + 12z5 − 14z4 + 26z3 − 19z2 + 8z − 1

Technique for the proof:

Characterize the decomposition trees of pin-permutations

Compute the generating function of simple pin-permutations

Put things together to compute the generating function of
pin-permutations
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Outline of the talk

1 Finding structure in permutation classes

2 Definition of pin-permutations

3 Substitution decomposition and decomposition trees

4 Characterization of the decomposition trees of pin-permutations

5 Generating function of the pin-permutation class

6 Conclusion and discussion on the basis
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Finding structure in permutation classes

Representations of permutations

Permutation: Bijective map from [1..n] to itself

One-line representation:
σ = 1 8 3 6 4 2 5 7

Two-line representation:

σ =

(

1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)

Cyclic representation:
σ = (1) (2 8 7 5 4 6) (3)

Graphical representation:

Mathilde Bouvel
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Finding structure in permutation classes

Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn when
∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order-isomorphic to π.
We write π 4 σ.

Equivalently: Normalizing σi1 . . . σik

on [1..k] yields π.

Example: 1 2 3 4 4 31 2 85 47 9 6
since 1 2 5 7 ≡ 1 2 3 4.
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Finding structure in permutation classes

Classes of permutations

Class of permutations: set downward closed for 4

Equivalently: σ ∈ C and π 4 σ ⇒ π ∈ C

S(B): the class of permutations avoiding all the patterns in the
basis B .

Prop.: Every class C is characterized by its basis:

C = S(B) for B = {σ /∈ C : ∀π 4 σ with π 6= σ, π ∈ C}

Basis may be finite or infinite.

Enumeration[Stanley-Wilf, Marcus-Tardos]: |Sn(B)| ≤ cn
B

Mathilde Bouvel
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Finding structure in permutation classes

Studying classes of permutations

Pattern-avoidance point of view:
Definition by a basis of excluded patterns.

Enumeration

Exhaustive generation

Structure in permutation classes:
Definition by a property stable for patterns.

Characterization of the permutations

→֒ with excluded patterns
→֒ with a recursive description

Properties of the generating function

Algorithms for membership

Examples:
• S(213, 312)
• S(4231)
• S(1 2 . . . k)

Examples:
• Stack sortable
= S(231)
• Separable
= S(2413, 3142)
• Pin-permutations

Mathilde Bouvel
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Finding structure in permutation classes

Simple permutations

Interval = window of elements of σ whose values form a range
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = has no interval except 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple. Smallest ones: 1 2, 2 1, 2 4 1 3, 3 1 4 2

Pin-permutations: used for deciding whether C contains finitely
many simple permutations
Thm[Albert Atkinson]: C contains finitely many simple permutations

⇒ C has an algebraic generating function

Decomposition trees: formalize the idea that simple permutations
are “building blocks” for all permutations

Mathilde Bouvel

Pin-Permutations



Introduction Pin-permutations Decomposition tree Characterization Generating function Conclusion

Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p3

p2
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p3

p2

p4
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:
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p1

p3
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Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p6

p7

p1

p3

p2

p5

p4

Mathilde Bouvel

Pin-Permutations



Introduction Pin-permutations Decomposition tree Characterization Generating function Conclusion

Definition of pin-permutations

Pin representations

Pin representation of σ = sequence
(p1, . . . , pn) such that each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p6

p7

p1

p3

p2

p5

p4

p8
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Definition of pin-permutations

Non-uniqueness of pin representation

p6

p7

p1

p3

p2

p5

p4

p8

p7

p8

p5

p1

p2

p4

p3

p6
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Definition of pin-permutations

Active points

Active point of σ:
p1 for some pin representation p
of σ

Example:

p1

p1
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Definition of pin-permutations

Active points

Active point of σ:
p1 for some pin representation p
of σ

Remark:
Not every point is an active point.

Example:

p1

p2

p3
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Definition of pin-permutations

The class of pin-permutations

Fact: Not every permutation
admits pin representations.

Def: Pin-permutation = that has
a pin representation.

Example 1:

Mathilde Bouvel
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Definition of pin-permutations

The class of pin-permutations

Fact: Not every permutation
admits pin representations.

Def: Pin-permutation = that has
a pin representation.

Thm: Pin-permutations are a
permutation class.

Idea of the proof: σ has a pin
representation p ⇒ for τ ≺ σ
remove the same points in p.

Example 2:

p6

p7

p1

p3

p2

p5

p4

p8
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Substitution decomposition and decomposition trees

Substitution decomposition

Definitions

Inflation:
π[α1, α2, . . . , αk ]

Example:
213[21, 312, 4123] =
54 312 9678

Mathilde Bouvel
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Substitution decomposition and decomposition trees

Substitution decomposition

Results
Prop.[Albert Atkinson]: ∀σ,∃ a unique simple permutation π and
unique αi such that σ = π[α1, . . . , αk ].
If π = 12 (21), for unicity, α1 is plus (minus) -indecomposable.

Thm [Albert Atkinson]: (Wreath-closed) class C containing finitely
many simple permutations ⇒

C is finitely based.

C has an algebraic generating function.

Mathilde Bouvel
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Substitution decomposition and decomposition trees

Strong interval decomposition

Special case on permutations of the modular decomposition on
graphs.

Thm: Every σ can be uniquely decomposed as

12 . . . k[α1, . . . , αk ], with the αi plus-indecomposable

k . . . 21[α1, . . . , αk ], with the αi minus-indecomposable

π[α1, . . . , αk ], with π simple of size ≥ 4

Remarks:

This decomposition is unique without any further restriction.

The αi are the maximal strong intervals of σ.

Decompose the αi recursively to get the decomposition tree.
Mathilde Bouvel
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Substitution decomposition and decomposition trees

Decomposition tree

Example: The substitution
decomposition tree of σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

⊖

⊖

⊕

2 4 1 5 3

⊖ ⊕

Notations and properties:
• ⊕ = 12 . . . k and ⊖ = k . . . 21
= linear nodes.
• π simple of size ≥ 4 = prime
nodes.
• No ⊕−⊕ or ⊖−⊖ egde.
• Decomposition trees of
permutations are ordered.
• N.B.: Modular decomposition
trees are unordered.

Bijection between decomposition trees and permutations.

Mathilde Bouvel
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Substitution decomposition and decomposition trees

On using decomposition trees

Algorithms:

Computation in linear time

Used in “efficient” algorithms for

→֒ Longest common pattern problem
→֒ Sorting by reversal
→֒ Computing perfect DCJ rearrangements

Examples in combinatorics: Use the bijective correspondance
between decomposition trees and permutations.

Wreath-closed classes: all trees on a given set of nodes

Classes defined by a property: characterize the trees rather
than the permutations

→֒ Separable permutations
→֒ Pin-permutations

Mathilde Bouvel
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Characterization of the decomposition trees of pin-permutations

Theorem

σ is a pin-permutation iff its decomposition tree satifies:

Any linear node ⊕ (⊖) has at most one child that is not an
ascending (descending) weaving permutation

For any prime node labelled by π, π is a simple
pin-permutation and

• all of its children are leaves
• it has exactly one child that is not a leaf, and it inflates one

active point of π
• π is an ascending (descending) quasi-weaving permutation and

exactly two children are not leaves

→֒ one is 12 (21) inflating the auxiliary substitution point of π

→֒ the other one inflates the main substitution point of π

Mathilde Bouvel
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Characterization of the decomposition trees of pin-permutations

Definitions

Active point σ: there is a pin representation of σ starting with it.

Weaving permutation Quasi-weaving permutation

M

A

Both are ascending. Other are obtained by symmetry.
Enumeration: 4 (= 2 + 2) weaving and 8 (= 4 + 4) quasi-weaving
permutations of size n, except for small n.
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Characterization of the decomposition trees of pin-permutations

Theorem: more trees!

P = + +

W
+
W

+ . . . W
+

+ +

W
+ . . .

N
+

. . . W
+

+ −

W
−

W
− . . . W

−

+ −

W
− . . .

N
−

. . . W
−

+ α

. . .

+ α

. . .

P \ { }

. . .

+ β+

. . .

P \ { }

. . .12

+ β−

. . .

P \ { }

. . .21
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Generating function of the pin-permutation class

Basic generating functions involved

Weaving permutations: W +(z) = W−(z) = W (z) = z+z3

1−z
.

Remark: W+ ∩W− = {1, 2431, 3142}

Quasi-weaving permutations:
QW +(z) = QW−(z) = QW (z) = 4z4

1−z
.

Trees N+ and N−: pin-permutations except ascending
(descending) weaving permutations and those whose root is ⊕ (⊖).

N+(z) = N−(z) = N(z) = (z3+2z−1)(z3+P(z)z3+2P(z)z+z−P(z))
1−2z+z2

P(z) = generating function of pin-permutations.
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Generating function of the pin-permutation class

Theorem: more trees!
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+ . . .
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− . . .
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Generating function of the pin-permutation class

Generating functions of simple pin-permutations

Enumerate pin representations encoding simple
pin-permutations.

Characterize how many pin representations for a simple
pin-permutation.

Describe number of active points in simple pin-permutations.

Simple pin representations: SiRep(z) = 8z4 + 32z5

1−2z − 16z5

1−z

Simple pin-permutations: Si(z) = 2z4 + 6z5 + 32z6 + 128z7

1−2z − 28z7

1−z

Simple pin-permutations with multiplicity = number of active
points: SiMult(z) = 8z4 + 26z5 + 84z6 + 256z7

1−2z − 40z7

1−z
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Generating function of the pin-permutation class

Theorem: more trees!
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Generating function of the pin-permutation class

The rational generating function of pin-permutations

Equation on trees ⇒ equation on generating functions:

P(z) = z +
W

+(z)2

1 − W +(z)
+

2W +(z) − W
+(z)2

(1 − W +(z))2
N

+(z)

+
W−(z)2

1 − W−(z)
+

2W−(z) − W−(z)2

(1 − W−(z))2
N

−(z) + Si(z)

+ SiMult(z)
“

P(z) − z

z

”

+ QW
+(z)

“

z
P(z) − z

z

”

+ QW
−(z)

“

z
P(z) − z

z

”

Generating function of pin-permutations:

P(z) = z
8z6−20z5−4z4+12z3−9z2+6z−1

8z8−20z7+8z6+12z5−14z4+26z3−19z2+8z−1

First terms: 1, 2, 6, 24, 120, 664, 3596, 19004, 99596, 521420, . . .
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Conclusion and discussion on the basis

Conclusion and open question

Overview of the results:

Class of pin-permutations define by a graphical property

Characterization of the associated decomposition trees

Enumeration of simple pin-permutations

⇒ Generating function of the pin-permutation class

Rationality of the generating function

Characterization of the pin-permutation class:

X by a recursive description

? by a (finite?) basis of excluded patterns

This basis is infinite, but yet unknown.
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Conclusion and discussion on the basis

Infinite antichain in the basis

Prop. σ is in the basis ⇔ σ is not a pin-permutation
but any strict pattern of σ is.

We describe (σn) an infinite antichain in the basis:

Mathilde Bouvel
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Conclusion and discussion on the basis

Perspectives

Thm[Brignall et al.]: C a class given by its finite basis B . It is
decidable whether C contains infinitely many simple permutations

Procedure: Check whether C contains arbitrarily long
• parallel alternations Easy, Polynomial
• wedge simple permutations Easy, Polynomial
• proper pin-permutations Difficult, Complexity?

Analysis of the procedure for proper pin-permutations
⇒ Polynomial construction using automata techniques except last
step (Determinization of a transducer)
⇒ makes the construction exponential

Better knowlegde of pin-permutations ⇒ improve this complexity ?
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