Pin-Permutations and Structure in Permutation Classes

Frédérique Bassino <u>Mathilde Bouvel</u> Dominique Rossin

Journées de Combinatoire de Bordeaux, feb. 2009

LIAFA

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion

Main result of the talk

Conjecture[Brignall, Ruškuc, Vatter]:

The pin-permutation class has a rational generating function.

Theorem: The generating function of the pin-permutation class is

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

Technique for the proof:

- Characterize the decomposition trees of pin-permutations
- Compute the generating function of *simple* pin-permutations
- Put things together to compute the generating function of pin-permutations

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion

Outline of the talk

- 1 Finding structure in permutation classes
- **2** Definition of pin-permutations
- 3 Substitution decomposition and decomposition trees
- 4 Characterization of the decomposition trees of pin-permutations
- **5** Generating function of the pin-permutation class
- 6 Conclusion and discussion on the basis

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
00000					
Finding structure	in permutation classes				

Representations of permutations

Permutation: Bijective map from [1..n] to itself

- One-line representation: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$
- Two-line representation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{pmatrix}$
- Cyclic representation:
 σ = (1) (2 8 7 5 4 6) (3)

Graphical representation:

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding structure	in permutation classes				

Patterns in permutations

Pattern relation \preccurlyeq :

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1...k] yields π .

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding structure	in permutation classes				

Patterns in permutations

Pattern relation \preccurlyeq :

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1...k] yields π .

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.

Mathilde Bouvel

Introduction 00●00	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding structur	e in permutation classe	25			
	c .				

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq *Equivalently*: $\sigma \in C$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in C$

S(B): the class of permutations avoiding all the patterns in the basis B.

Prop.: Every class C is characterized by its basis:

 $\mathcal{C} = \mathcal{S}(B)$ for $B = \{ \sigma \notin \mathcal{C} : \forall \pi \preccurlyeq \sigma \text{ with } \pi \neq \sigma, \pi \in \mathcal{C} \}$

Basis may be finite or infinite.

Enumeration[Stanley-Wilf, Marcus-Tardos]: $|S_n(B)| \le c_B^n$

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding structur	re in permutation classe	25			
	c				

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq *Equivalently*: $\sigma \in C$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in C$

S(B): the class of permutations avoiding all the patterns in the basis B.

Prop.: Every class C is characterized by its basis:

 $\mathcal{C} = \mathcal{S}(B)$ for $B = \{ \sigma \notin \mathcal{C} : \forall \pi \preccurlyeq \sigma \text{ with } \pi \neq \sigma, \pi \in \mathcal{C} \}$

Basis may be finite or infinite.

Enumeration[Stanley-Wilf, Marcus-Tardos]: $|S_n(B)| \leq c_B^n$

Introduction 000●0	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding structure	in permutation classes				

Studying classes of permutations

Pattern-avoidance point of view:

Definition by a basis of excluded patterns.

- Enumeration
- Exhaustive generation

Structure in permutation classes:

Definition by a property stable for patterns.

- Characterization of the permutations
 - \hookrightarrow with excluded patterns
 - $\,\hookrightarrow\,$ with a recursive description
- Properties of the generating function
- Algorithms for membership

Examples:

- *S*(213, 312)
- *S*(4231)
- *S*(12...*k*)

Examples:

- Stack sortable
- = S(231)
- Separable
- = S(2413, 3142)
- Pin-permutations

Introduction 0000●	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
Finding structure in permutation classes							

Simple permutations

Interval = window of elements of σ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation = has no interval except 1, 2, ..., n and σ Example: 3174625 is simple. *Smallest ones*: 12,21,2413,3142

Pin-permutations: used for deciding whether C contains finitely many simple permutations Thm[Albert Atkinson]: C contains finitely many simple permutations $\Rightarrow C$ has an algebraic generating function

Decomposition trees: formalize the idea that simple permutations are "building blocks" for all permutations

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin	-permutations				

Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	-permutations				

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
	0000				
Definition of pin-	permutations				

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
	000				
Definition of pin-	-permutations				

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
	0000						
Definition of pin-permutations							

Non-uniqueness of pin representation

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion			
00000	0000	00000	0000	00000	000			
Definition of pin-permutations								

Active points

Active point of σ :

 p_1 for some pin representation p of σ

Example:

Mathilde Bouvel

Introduction	Pin-permutations ○○●○	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	-permutations				

Active points

Active point of σ :

 p_1 for some pin representation p of σ

Remark:

Not every point is an active point.

Example:

Introduction	Pin-permutations ○○○●	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	permutations				

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Example 1:

Introduction	Pin-permutations 000●	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	permutations				

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

Introduction	Pin-permutations 000●	Decomposition tree	Characterization	Generating function	Conclusion
Definition of pin-	permutations				

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

Example 2:

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion	
Substitution decomposition and decomposition trees						

Substitution decomposition

Definitions

Inflation: $\pi[\alpha_1, \alpha_2, \dots, \alpha_k]$

Example: 213[21, 312, 4123] = 54 312 9678

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
Substitution decomposition and decomposition trees							

Substitution decomposition

<u>Results</u>

Prop.[Albert Atkinson]: $\forall \sigma, \exists$ a unique simple permutation π and unique α_i such that $\sigma = \pi[\alpha_1, \ldots, \alpha_k]$. If $\pi = 12$ (21), for unicity, α_1 is plus (minus) -indecomposable.

Thm [Albert Atkinson]: (Wreath-closed) class C containing finitely many simple permutations \Rightarrow

- C is finitely based.
- C has an algebraic generating function.

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
Substitution decomposition and decomposition trees							

Strong interval decomposition

Special case on permutations of the modular decomposition on graphs.

Thm: Every σ can be uniquely decomposed as

- $12 \dots k[\alpha_1, \dots, \alpha_k]$, with the α_i plus-indecomposable
- $k \dots 21[\alpha_1, \dots, \alpha_k]$, with the α_i minus-indecomposable
- $\pi[\alpha_1, \ldots, \alpha_k]$, with π simple of size ≥ 4

Remarks:

- This decomposition is unique without any further restriction.
- The α_i are the maximal strong intervals of σ .

Decompose the α_i recursively to get the decomposition tree.

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree ○○○●○	Characterization	Generating function	Conclusion		
Substitution decomposition and decomposition trees							

Decomposition tree

Example: The substitution decomposition tree of $\sigma =$

 $10\ 13\ 12\ 11\ 14\ 1\ 18\ 19\ 20\ 21\ 17\ 16\ 15\ 4\ 8\ 3\ 2\ 9\ 5\ 6\ 7$

Notations and properties:

• $\oplus = 12 \dots k$ and $\ominus = k \dots 21$

= linear nodes.

- π simple of size $\ge 4 =$ prime nodes.
- No $\oplus \oplus$ or $\ominus \ominus$ egde.
- Decomposition trees of permutations are ordered.
- N.B.: Modular decomposition trees are unordered.

Bijection between decomposition trees and permutations.

Mathilde	Bouvel
Din Dame	

Introduction	Pin-permutations	Decomposition tree 0000●	Characterization	Generating function	Conclusion	
Substitution decomposition and decomposition trees						

On using decomposition trees

Algorithms:

- Computation in linear time
- Used in "efficient" algorithms for
 - \hookrightarrow Longest common pattern problem
 - \hookrightarrow Sorting by reversal
 - \hookrightarrow Computing perfect DCJ rearrangements

Examples in combinatorics: Use the bijective correspondance between decomposition trees and permutations.

- Wreath-closed classes: all trees on a given set of nodes
- Classes defined by a property: characterize the trees rather than the permutations
 - \hookrightarrow Separable permutations
 - \hookrightarrow Pin-permutations

Introduction	Pin-permutations	Decomposition tree	Characterization ●○○○	Generating function	Conclusion			
Characterization	Characterization of the decomposition trees of pin-permutations							

Theorem

σ is a pin-permutation iff its decomposition tree satifies:

- Any linear node ⊕ (⊖) has at most one child that is not an ascending (descending) weaving permutation
- For any prime node labelled by π , π is a simple pin-permutation and
 - all of its children are leaves
 - it has exactly one child that is not a leaf, and it inflates one active point of π
 - π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
 - $\,\hookrightarrow\,$ one is 12 (21) inflating the auxiliary substitution point of π
 - $\hookrightarrow\,$ the other one inflates the main substitution point of $\pi\,$

Definitions

Active point σ : there is a pin representation of σ starting with it.

Weaving permutation

Quasi-weaving permutation

Both are ascending. Other are obtained by symmetry. Enumeration: 4 (= 2 + 2) weaving and 8 (= 4 + 4) quasi-weaving permutations of size n, except for small n.

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization ○○●○	Generating function	Conclusion
Characterization	of the decomposition	trees of pin-permutations			

Theorem

$\boldsymbol{\sigma}$ is a pin-permutation iff its decomposition tree satifies:

- Any linear node \oplus (\ominus) has at most one child that is not an ascending (descending) weaving permutation
- For any prime node labelled by π , π is a simple pin-permutation and
 - all of its children are leaves
 - it has exactly one child that is not a leaf, and it inflates one active point of π
 - π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
 - $\,\hookrightarrow\,$ one is 12 (21) inflating the auxiliary substitution point of π
 - $\hookrightarrow\,$ the other one inflates the main substitution point of $\pi\,$

Introduction	Pin-permutations	Decomposition tree	Characterization 000●	Generating function	Conclusion		
Characterization of the decomposition trees of nin-nermutations							

Theorem: more trees!

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
				00000			
Generating function of the pin-permutation class							

Basic generating functions involved

Weaving permutations: $W^+(z) = W^-(z) = W(z) = \frac{z+z^3}{1-z}$. Remark: $W^+ \cap W^- = \{1, 2431, 3142\}$

Quasi-weaving permutations: $QW^+(z) = QW^-(z) = \frac{QW(z)}{1-z}$.

Trees \mathcal{N}^+ and \mathcal{N}^- : pin-permutations except ascending (descending) weaving permutations and those whose root is \oplus (\ominus).

$$N^+(z) = N^-(z) = \frac{N(z)}{1-2z+z^2} = \frac{(z^3+2z-1)(z^3+2P(z)z^3+2P(z)z+z-P(z))}{1-2z+z^2}$$

P(z) = generating function of pin-permutations.

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function ○●○○○	Conclusion		
Generating function of the pin-permutation class							

Theorem: more trees!

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
				00000			
Generating function of the nin-permutation class							

Generating functions of **simple** pin-permutations

- Enumerate pin representations encoding simple pin-permutations.
- Characterize how many pin representations for a simple pin-permutation.
- Describe number of active points in simple pin-permutations.

Simple pin representations: $SiRep(z) = 8z^4 + \frac{32z^5}{1-2z} - \frac{16z^5}{1-z}$

Simple pin-permutations: $Si(z) = 2z^4 + 6z^5 + 32z^6 + \frac{128z^7}{1-2z} - \frac{28z^7}{1-z}$

Simple pin-permutations with multiplicity = number of active points: $SiMult(z) = 8z^4 + 26z^5 + 84z^6 + \frac{256z^7}{1-2z} - \frac{40z^7}{1-z}$

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function ○○○●○	Conclusion		
Generating function of the pin-permutation class							

Theorem: more trees!

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
				00000			
Generating function of the nin-nermutation class							

The rational generating function of pin-permutations

Equation on trees \Rightarrow equation on generating functions:

$$P(z) = z + \frac{W^{+}(z)^{2}}{1 - W^{+}(z)} + \frac{2W^{+}(z) - W^{+}(z)^{2}}{(1 - W^{+}(z))^{2}}N^{+}(z) + \frac{W^{-}(z)^{2}}{1 - W^{-}(z)} + \frac{2W^{-}(z) - W^{-}(z)^{2}}{(1 - W^{-}(z))^{2}}N^{-}(z) + Si(z) + SiMult(z) \Big(\frac{P(z) - z}{z}\Big) + QW^{+}(z) \Big(z\frac{P(z) - z}{z}\Big) + QW^{-}(z) \Big(z\frac{P(z) - z}{z}\Big)$$

Generating function of pin-permutations:

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

First terms: 1, 2, 6, 24, 120, 664, 3596, 19004, 99596, 521420, ...

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion ●○○	
Conclusion and discussion on the basis						

Conclusion and open question

Overview of the results:

- Class of pin-permutations define by a graphical property
- Characterization of the associated decomposition trees
- Enumeration of simple pin-permutations
- \Rightarrow Generating function of the pin-permutation class
 - Rationality of the generating function

Characterization of the pin-permutation class:

- \checkmark by a recursive description
- ? by a (finite?) basis of excluded patterns

This basis is infinite, but yet unknown.

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion	
00000	0000	00000	0000	00000	000	
Conclusion and discussion on the basis						

Infinite antichain in the basis

Prop. σ is in the basis $\Leftrightarrow \sigma$ is not a pin-permutation but any strict pattern of σ is.

We describe (σ_n) an infinite antichain in the basis:

Mathilde Bouvel

Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion ○○●			
Conclusion and discussion on the basis								
Dercher	tivec							

Thm[Brignall et al.]: C a class given by its finite basis B. It is decidable whether C contains infinitely many simple permutations

Procedure: Check whether C contains arbitrarily long

- parallel alternations Easy, Polynomial
- wedge simple permutations Easy, Polynomial
- proper pin-permutations Difficult, Complexity?

Analysis of the procedure for proper pin-permutations

 \Rightarrow Polynomial construction using automata techniques except last step (Determinization of a transducer)

 \Rightarrow makes the construction exponential

Better knowlegde of pin-permutations \Rightarrow improve this complexity ?

Mathilde Bouvel