Pin-Permutations and Structure in Permutation Classes

Frédérique Bassino <u>Mathilde Bouvel</u> Dominique Rossin

Séminaire des thèsards Liafa-PPS, février 2009

LIAFA

Main result of the talk

Conjecture[Brignall, Ruškuc, Vatter]:

The pin-permutation class has a rational generating function.

Theorem: The generating function of the pin-permutation class is

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

Technique for the proof:

- Characterize the decomposition trees of pin-permutations
- Compute the generating function of *simple* pin-permutations
- Put things together to compute the generating function of pin-permutations

					Generating function	
000	00000	0000	00000	0000	00000	000

1 Generating functions in combinatorics

- 2 Finding structure in permutation classes
- **3** Definition of pin-permutations
- 4 Substitution decomposition and decomposition trees
- **5** Characterization of the decomposition trees of pin-permutations
- 6 Generating function of the pin-permutation class

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
000						
Conorati	ng functions in	combinatorics				

Generating function of a combinatorial class

Combinatorial class \mathcal{C} , with a notion of size

 C_n = objects of size *n* in CRequirement: C_n is a finite set

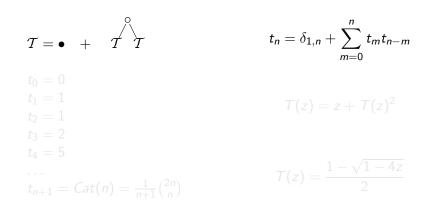
Enumeration: $c_n = |C_n|$ Generating function: $C(z) = \sum c_n z^n$

Two aspects of generating functions:

- Formal series capturing the enumeration
- Use tools from complex analysis

Basics ○●○	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Generati	ng functions in o	combinatorics				

Example: binary trees



Mathilde Bouvel

Basics ○●○	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Generati	ng functions in a	combinatorics				

Example: binary trees

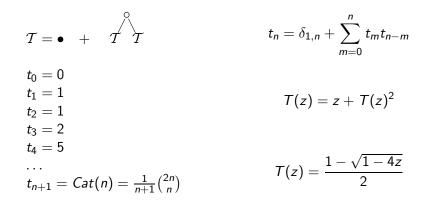
$$T = \bullet + T T \qquad t_n = \delta_{1,n} + \sum_{m=0}^n t_m t_{n-m}$$

$$t_0 = 0
t_1 = 1
t_2 = 1
t_3 = 2
t_4 = 5
...
$$t_{n+1} = Cat(n) = \frac{1}{n+1} {2n \choose n} \qquad T(z) = \frac{1 - \sqrt{1 - 4z}}{2}$$$$

Mathilde Bouvel

Basics ○●○	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Generati	ng functions in o	combinatorics				

Example: binary trees



Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
000						
Generati	ng functions in a	combinatorics				

Dictionnary between classes and generating functions

	Combinatorial class	Generating function
Care m	ϵ	1
Analytic	•	Ζ
Combinatorics	$\mathcal{A} + \mathcal{B}$	A(z) + B(z)
	disjoint union	
Philippe Flajolet and	$\mathcal{A} imes \mathcal{B}$	A(z)B(z)
Robert Sedgewick	cartesian product	
555	$Seq(\mathcal{A})$	$\frac{1}{1-A(z)}$
	tuples of elements of ${\cal A}$	- · ·(-)

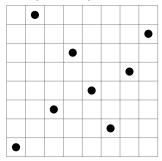
Basics	Introduction ●0000	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding s	structure in pern	nutation classes				

Representations of permutations

Permutation: Bijective map from [1..n] to itself

- One-line representation: $\sigma = 1 \ 8 \ 3 \ 6 \ 4 \ 2 \ 5 \ 7$
- Two-line representation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{pmatrix}$
- Cyclic representation:
 σ = (1) (2 8 7 5 4 6) (3)

Graphical representation:



Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding	structure in pern	nutation classes				

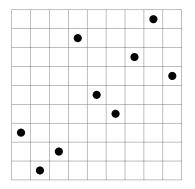
Patterns in permutations

Pattern relation \preccurlyeq :

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1...k] yields π .

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.



Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding	structure in pern	nutation classes				

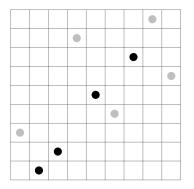
Patterns in permutations

Pattern relation \preccurlyeq :

 $\pi \in S_k$ is a pattern of $\sigma \in S_n$ when $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . We write $\pi \preccurlyeq \sigma$.

<u>Equivalently</u>: Normalizing $\sigma_{i_1} \dots \sigma_{i_k}$ on [1...k] yields π .

Example: $1234 \preccurlyeq 312854796$ since $1257 \equiv 1234$.



Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding	structure in pern	nutation classes				

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq *Equivalently*: $\sigma \in C$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in C$

S(B): the class of permutations avoiding all the patterns in the basis B.

Prop.: Every class C is characterized by its basis:

 $\mathcal{C} = \mathcal{S}(B)$ for $B = \{ \sigma \notin \mathcal{C} : \forall \pi \preccurlyeq \sigma \text{ with } \pi \neq \sigma, \pi \in \mathcal{C} \}$

Basis may be finite or infinite.

Enumeration[Stanley-Wilf, Marcus-Tardos]: $|S_n(B)| \le c_B^n$

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Finding	structure in pern	nutation classes				

Classes of permutations

Class of permutations: set downward closed for \preccurlyeq *Equivalently*: $\sigma \in C$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in C$

S(B): the class of permutations avoiding all the patterns in the basis B.

Prop.: Every class C is characterized by its basis:

 $\mathcal{C} = \mathcal{S}(B)$ for $B = \{ \sigma \notin \mathcal{C} : \forall \pi \preccurlyeq \sigma \text{ with } \pi \neq \sigma, \pi \in \mathcal{C} \}$

Basis may be finite or infinite.

Enumeration[Stanley-Wilf, Marcus-Tardos]: $|S_n(B)| \le c_B^n$

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
000	00000	0000	00000	0000	00000	000
Finding	structure in nerr	nutation classes				

Studying classes of permutations

Pattern-avoidance point of view:

Definition by a basis of excluded patterns.

- Enumeration
- Exhaustive generation

Structure in permutation classes:

Definition by a property stable for patterns.

- Characterization of the permutations
 - \hookrightarrow with excluded patterns
 - $\,\hookrightarrow\,$ with a recursive description
- Properties of the generating function
- Algorithms for membership

Examples:

- *S*(213, 312)
- *S*(4231)
- *S*(12...*k*)

Examples:

- Stack sortable
- = S(231)
- Separable
- = S(2413, 3142)
- Pin-permutations

Basics	Introduction 0000●	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion	
Finding structure in permutation classes							

Simple permutations

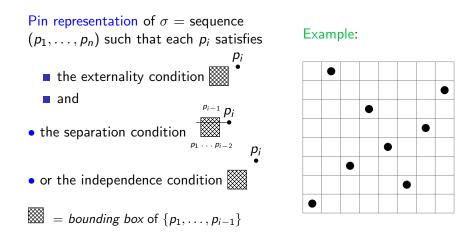
Interval = window of elements of σ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation = has no interval except 1, 2, ..., n and σ Example: 3174625 is simple. *Smallest ones*: 12,21,2413,3142

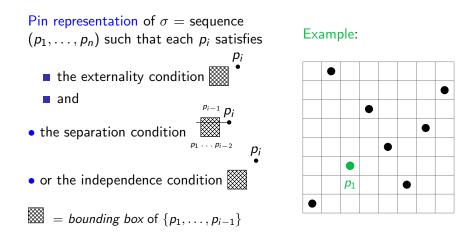
Pin-permutations: used for deciding whether C contains finitely many simple permutations Thm[Albert Atkinson]: C contains finitely many simple permutations $\Rightarrow C$ has an algebraic generating function

Decomposition trees: formalize the idea that simple permutations are "building blocks" for all permutations

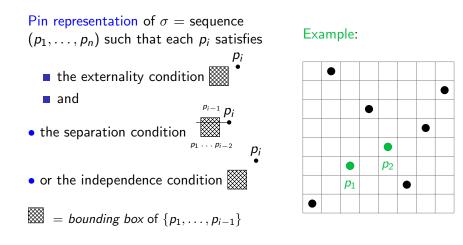
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							



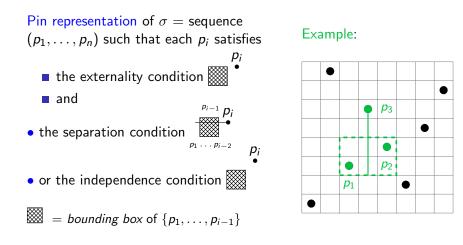
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion		
Definitio	Definition of pin-permutations							



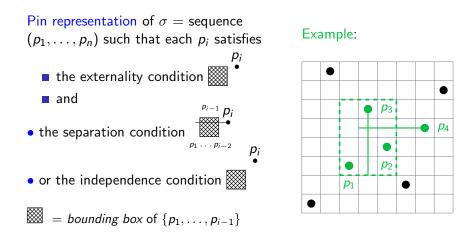
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion		
Definitio	Definition of pin-permutations							



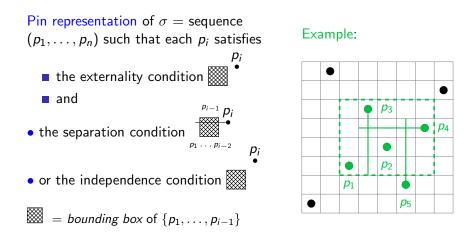
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion		
Definitio	Definition of pin-permutations							



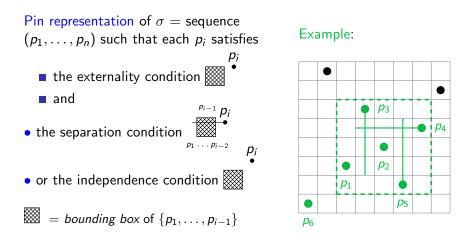
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							



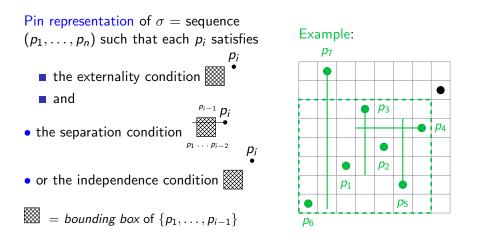
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							



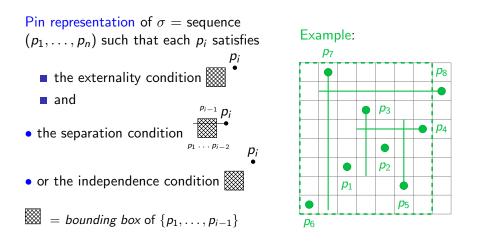
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							



Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							

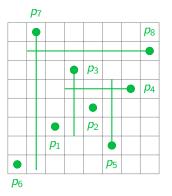


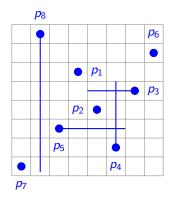
Basics	Introduction	Pin-permutations ●○○○	Decomposition tree	Characterization	Generating function	Conclusion	
Definition of pin-permutations							



Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion		
		0000						
Definition of nin-nermutations								

Non-uniqueness of pin representation





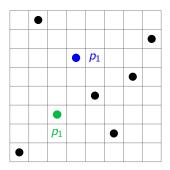
Basics	Introduction	Pin-permutations ○○●○	Decomposition tree	Characterization	Generating function	Conclusion
Definitio	on of pin-permuta	ations				

Active points

Active point of σ :

 p_1 for some pin representation p of σ

Example:



Mathilde Bouvel

Basics	Introduction	Pin-permutations ○○●○	Decomposition tree	Characterization	Generating function	Conclusion
Definitio	on of pin-permuta	ations				

Active points

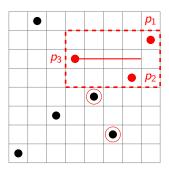
Active point of σ :

 p_1 for some pin representation p of σ

Remark:

Not every point is an active point.

Example:



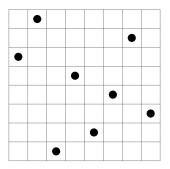
Basics	Introduction	Pin-permutations ○○○●	Decomposition tree	Characterization	Generating function	Conclusion
Definitio	n of pin-permut	ations				

The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Example 1:



Mathilde Bouvel

Basics	Introduction	Pin-permutations ○○○●	Decomposition tree	Characterization	Generating function	Conclusion
Definitio	on of pin-permuta	ations				

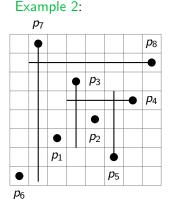
The class of pin-permutations

Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.



Basics	Introduction	Pin-permutations ○○○●	Decomposition tree	Characterization	Generating function	Conclusion
Definitio	on of pin-permuta	ations				

The class of pin-permutations

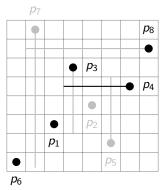
Fact: Not every permutation admits pin representations.

Def: Pin-permutation = that has a pin representation.

Thm: Pin-permutations are a permutation class.

Idea of the proof: σ has a pin representation $p \Rightarrow$ for $\tau \prec \sigma$ remove the same points in p.

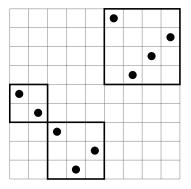
Example 2:



 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Substitution decomposition



Definitions

Inflation: $\pi[\alpha_1, \alpha_2, \dots, \alpha_k]$

Example: 213[21, 312, 4123] = 54 312 9678

Mathilde Bouvel

 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <td

Substitution decomposition

<u>Results</u>

Prop.[Albert Atkinson]: $\forall \sigma, \exists$ a unique simple permutation π and unique α_i such that $\sigma = \pi[\alpha_1, \ldots, \alpha_k]$. If $\pi = 12$ (21), for unicity, α_1 is plus (minus) -indecomposable.

Thm [Albert Atkinson]: (Wreath-closed) class C containing finitely many simple permutations \Rightarrow

- C is finitely based.
- \blacksquare C has an algebraic generating function.

 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <td

Strong interval decomposition

Special case on permutations of the modular decomposition on graphs.

Thm: Every σ can be uniquely decomposed as

- $12 \dots k[\alpha_1, \dots, \alpha_k]$, with the α_i plus-indecomposable
- $k \dots 21[\alpha_1, \dots, \alpha_k]$, with the α_i minus-indecomposable
- $\pi[\alpha_1, \ldots, \alpha_k]$, with π simple of size ≥ 4

Remarks:

- This decomposition is unique without any further restriction.
- The α_i are the maximal strong intervals of σ .

Decompose the α_i recursively to get the decomposition tree.

Mathilde Bouvel

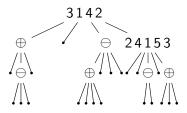
 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Decomposition tree

Example: The substitution decomposition tree of $\sigma =$

 $10\ 13\ 12\ 11\ 14\ 1\ 18\ 19\ 20\ 21\ 17\ 16\ 15\ 4\ 8\ 3\ 2\ 9\ 5\ 6\ 7$



Notations and properties:

• $\oplus = 12 \dots k$ and $\ominus = k \dots 21$

= linear nodes.

- π simple of size $\ge 4 =$ prime nodes.
- No $\oplus \oplus$ or $\ominus \ominus$ egde.
- Decomposition trees of permutations are ordered.
- N.B.: Modular decomposition trees are unordered.

Bijection between decomposition trees and permutations.

Mathilde	Bouvel
Din Down	

 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 <td

On using decomposition trees

Algorithms:

- Computation in linear time
- Used in "efficient" algorithms for
 - \hookrightarrow Longest common pattern problem
 - \hookrightarrow Sorting by reversal
 - $\, \hookrightarrow \,$ Computing perfect DCJ rearrangements

Examples in combinatorics: Use the bijective correspondance between decomposition trees and permutations.

- Wreath-closed classes: all trees on a given set of nodes
- Classes defined by a property: characterize the trees rather than the permutations
 - \hookrightarrow Separable permutations
 - \hookrightarrow Pin-permutations

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization ●○○○	Generating function	Conclusion
Charact	erization of the o	lecomposition trees o	f pin-permutations			

Theorem

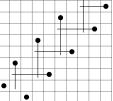
σ is a pin-permutation iff its decomposition tree satifies:

- Any linear node \oplus (\ominus) has at most one child that is not an ascending (descending) weaving permutation
- For any prime node labelled by π , π is a simple pin-permutation and
 - all of its children are leaves
 - it has exactly one child that is not a leaf, and it inflates one active point of π
 - π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
 - $\,\hookrightarrow\,$ one is 12 (21) inflating the auxiliary substitution point of π
 - $\,\hookrightarrow\,$ the other one inflates the main substitution point of π

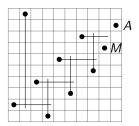
Definitions

Active point σ : there is a pin representation of σ starting with it.

Weaving permutation



Quasi-weaving permutation



Both are ascending. Other are obtained by symmetry. Enumeration: 4 (= 2 + 2) weaving and 8 (= 4 + 4) quasi-weaving permutations of size n, except for small n.

Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization 00●0	Generating function	Conclusion
Characte	erization of the o	lecomposition trees o	f pin-permutations			

Theorem

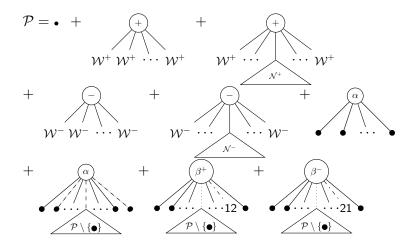
σ is a pin-permutation iff its decomposition tree satifies:

- Any linear node ⊕ (⊖) has at most one child that is not an ascending (descending) weaving permutation
- For any prime node labelled by π , π is a simple pin-permutation and
 - all of its children are leaves
 - it has exactly one child that is not a leaf, and it inflates one active point of π
 - π is an ascending (descending) quasi-weaving permutation and exactly two children are not leaves
 - $\,\hookrightarrow\,$ one is 12 (21) inflating the auxiliary substitution point of π
 - $\hookrightarrow\,$ the other one inflates the main substitution point of $\pi\,$

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
				0000		
Character	and a set of a set of a set of a	In a second s	6			

Characterization of the decomposition trees of pin-permutations

Theorem: more trees!



Mathilde Bouvel

 Basics
 Introduction
 Pin-permutations
 Decomposition tree
 Characterization
 Generating function
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Generating function of the pin-permutation class

Basic generating functions involved

Weaving permutations: $W^+(z) = W^-(z) = W(z) = \frac{z+z^3}{1-z}$. Remark: $W^+ \cap W^- = \{1, 2431, 3142\}$

Quasi-weaving permutations: $QW^+(z) = QW^-(z) = \frac{QW(z)}{1-z}$.

Trees \mathcal{N}^+ and \mathcal{N}^- : pin-permutations except ascending (descending) weaving permutations and those whose root is \oplus (\ominus).

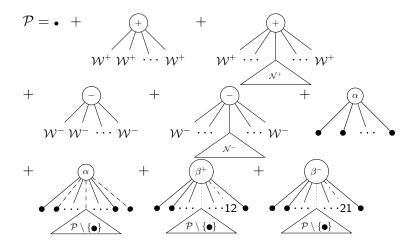
$$N^+(z) = N^-(z) = \frac{N(z)}{1-2z+z^2} = \frac{(z^3+2z-1)(z^3+2P(z)z^3+2P(z)z+z-P(z))}{1-2z+z^2}$$

P(z) = generating function of pin-permutations.

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Conorati	ng function of t	he nin normutation d	200			

Generating function of the pin-permutation class

Theorem: more trees!



Mathilde Bouvel

Generating functions of simple pin-permutations

- Enumerate pin representations encoding simple pin-permutations.
- Characterize how many pin representations for a simple pin-permutation.
- Describe number of active points in simple pin-permutations.

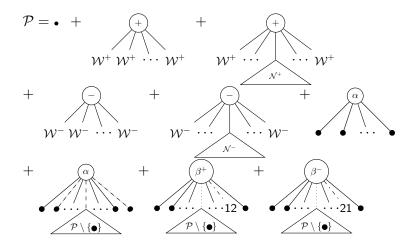
Simple pin representations: $SiRep(z) = 8z^4 + \frac{32z^5}{1-2z} - \frac{16z^5}{1-z}$

Simple pin-permutations: $Si(z) = 2z^4 + 6z^5 + 32z^6 + \frac{128z^7}{1-2z} - \frac{28z^7}{1-z}$

Simple pin-permutations with multiplicity = number of active points: $SiMult(z) = 8z^4 + 26z^5 + 84z^6 + \frac{256z^7}{1-2z} - \frac{40z^7}{1-z}$

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion
Conorati	ng function of t	he pip permutation of	200			

Theorem: more trees!



Mathilde Bouvel

Basics Introduction **Pin-permutations** Decomposition tree Characterization Generating function Conclusion 00000

Generating function of the pin-permutation class

The rational generating function of pin-permutations

Equation on trees \Rightarrow equation on generating functions:

$$P(z) = z + \frac{W^{+}(z)^{2}}{1 - W^{+}(z)} + \frac{2W^{+}(z) - W^{+}(z)^{2}}{(1 - W^{+}(z))^{2}}N^{+}(z) + \frac{W^{-}(z)^{2}}{1 - W^{-}(z)} + \frac{2W^{-}(z) - W^{-}(z)^{2}}{(1 - W^{-}(z))^{2}}N^{-}(z) + Si(z) + SiMult(z) \Big(\frac{P(z) - z}{z}\Big) + QW^{+}(z) \Big(z\frac{P(z) - z}{z}\Big) + QW^{-}(z) \Big(z\frac{P(z) - z}{z}\Big)$$

Generating function of pin-permutations:

$$P(z) = z \frac{8z^6 - 20z^5 - 4z^4 + 12z^3 - 9z^2 + 6z - 1}{8z^8 - 20z^7 + 8z^6 + 12z^5 - 14z^4 + 26z^3 - 19z^2 + 8z - 1}$$

First terms: 1, 2, 6, 24, 120, 664, 3596, 19004, 99596, 521420, ...

Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion ●○○
Conclusi	on and discussio	n on the basis				

Conclusion and open question

Overview of the results:

- Class of pin-permutations define by a graphical property
- Characterization of the associated decomposition trees
- Enumeration of simple pin-permutations
- \Rightarrow Generating function of the pin-permutation class
 - Rationality of the generating function

Characterization of the pin-permutation class:

- \checkmark by a recursive description
- ? by a (finite?) basis of excluded patterns

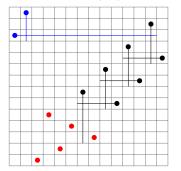
This basis is infinite, but yet unknown.

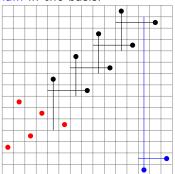
Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion ○●○			
Conclusion and discussion on the basis									

Infinite antichain in the basis

 $\begin{array}{lll} \mathsf{Prop.} & \sigma \text{ is in the basis } \Leftrightarrow & \sigma \text{ is not a pin-permutation} \\ & & \mathsf{but any strict pattern of } \sigma \text{ is.} \end{array}$

We describe (σ_n) an infinite antichain in the basis:





Mathilde Bouvel

Basics	Introduction	Pin-permutations	Decomposition tree	Characterization	Generating function	Conclusion ○○●					
Conclusion and discussion on the basis											
Pord	nective	c									

Thm[Brignall et al.]: C a class given by its finite basis B. It is decidable whether C contains infinitely many simple permutations

Procedure: Check whether C contains arbitrarily long

- parallel alternations Easy, Polynomial
- wedge simple permutations Easy, Polynomial
- proper pin-permutations
 Difficult, Complexity?

Analysis of the procedure for proper pin-permutations

 \Rightarrow Polynomial construction using automata techniques except last step (Determinization of a transducer)

 \Rightarrow makes the construction exponential

Better knowlegde of pin-permutations \Rightarrow improve this complexity ?

Mathilde Bouvel