Operators of equivalent sorting power and related Wilf-equivalences

Definitions: Permutation Patterns, Reverse, Stack Sorting

Permutation patterns

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists $i_{1}<\ldots<i_{k}$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic to π.

Reverse

Stack sorting

Algorithmic description: Try to sort with a stack satisfying the Hanoi condition.

Equivalent recursive description:
$\left\{\begin{array}{l}\mathbf{S}(\varepsilon)=\varepsilon\end{array}\right.$ $\{\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n$ where $n=\max (L n R)$
s and Enumeration
$\operatorname{Av}(\pi, \tau, \ldots)$ is the set of permutations that do not contain any occurrence of the patterns π, τ, \ldots

Sorting with one stack

Permutations sortable by \mathbf{S} $=\operatorname{Av}(231)$
Enumeration by Catalan
numbers $\frac{1}{n+1}\binom{2 n}{n}$ [Knuth 1973]

With two stacks

Permutations sortable by $\mathbf{S} \circ \mathbf{S}$ $=\operatorname{Av}(2341,35241)$
Enumeration by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$ [West 1993, Zeilberger 1992,. .]

With three stacks

Permutations sortable by $\mathbf{S} \circ \mathbf{S} \circ \mathbf{S}$ are characterized by the avoidance of (generalized) patterns.
[Claesson, Úlfarsson 2012]
But no enumeration result is known.

Abstract

\section*{With stacks and reverse}

Bijection between permutations sortable by $\mathbf{S} \circ \mathbf{R} \circ$ \mathbf{S} and those sortable by $\mathbf{S} \circ \mathbf{S}$. [Bouvel, Guibert 2012] Similar enumeration results with other symmetries instead of \mathbf{R} (inverse, complement, ...).

tacks and Reverse

Equivalent statement

For any operator \mathbf{A} which is a composition of operators \mathbf{S} and \mathbf{R}, there is a size-preserving bijection between

- permutations of $\operatorname{Av}(231)$ that belong to the image of \mathbf{A}, and
- permutations of $\operatorname{Av}(132)$ that belong to the image of \mathbf{A}, that preserves the number of preimages under \mathbf{A}.

Proof: Some Ingredients; and Sketch of Proof

$\mathrm{T}_{\text {in }}(\operatorname{LnR})=\mathrm{K}_{\mathrm{in}(L)} \mathrm{T}_{\mathrm{T}(\mathrm{n}}$ where
$n=\max (\operatorname{Ln} R)$, and $\mathrm{T}_{\text {in }}(\varepsilon)=\emptyset$

Preimages under S and trees [Bousquet-Mélou 2000]
In-order trees are recursively defined by: Canonical trees: a tree is canonical when

Stack sorting on trees: Stack sorting θ is equivalent to post-order reading $\mathrm{T}_{\text {in }}(\theta)$, i.e. $\mathbf{S}(\theta)=\boldsymbol{\operatorname { P o s t }}\left(\mathrm{T}_{\text {in }}(\theta)\right)$
for all x, z such that $x^{0}{ }^{z}$ in the tree, there exists $\measuredangle \neq \emptyset$ and y such that

Lemma: For π in the image of \mathbf{S}, there is a unique canonical tree \mathcal{T}_{π} such that $\operatorname{Post}\left(\mathcal{T}_{\pi}\right)=\pi$.

Theorem: All trees $\mathrm{T}_{\text {in }}(\theta)$ for θ such that $\mathbf{S}(\theta)=\pi$ may be recovered from \mathcal{T}_{π} by re-rootings. Consequence: \mathcal{T}_{π} determines $\mathbf{S}^{-1}(\pi)$. Moreover $\left|\mathbf{S}^{-1}(\pi)\right|$ is determined only by the shape of \mathcal{T}_{π}.

The bijections Φ_{A}

For $\pi \in \operatorname{Av}(231)$, write $P(\pi) \in \operatorname{Av}(132)$ as $P(\pi)=\lambda_{\pi} \circ \pi$.
For θ sortable by $\mathbf{S} \circ \mathbf{A}$, set $\pi=\mathbf{A}(\theta)$. Because $\pi \in \operatorname{Av}(231)$, we may define $\Phi_{\mathbf{A}}(\theta)=\lambda_{\pi} \circ \theta$.
Theorem: $\Phi_{\mathbf{A}}$ is a bijection between permutation sortable by $\mathbf{S} \circ \mathbf{A}$ and those sortable by $\mathbf{S} \circ \mathbf{R} \circ \mathbf{A}$.

Bijection P between $\operatorname{Av}(231)$ and $\operatorname{Av}(132)$
[Dokos, Dwyer, Johnson, Sagan, Selsor 2012] Sum and skew sum of permutations, on their diagrams:

$$
\alpha \oplus \beta=\sqrt{\beta} \text { and } \alpha \ominus \beta=\frac{\alpha}{\beta}
$$

Bijection P from $\operatorname{Av}(231)$ to $\operatorname{Av}(132)$ is recursively defined as:

- if $\pi=\alpha \oplus(1 \ominus \beta)$ then $P(\pi)=(P(\alpha) \oplus 1) \ominus P(\beta)$
- or equivalently,

Some properties of $P: P$ is the identity map on $\operatorname{Av}(231,132)$ P preserves the shape of in-order trees

Statistics preserved by Φ_{A}

Φ_{A} preserves the shape of in-order trees, hence

- the number and positions of the right-to-left maxima,
- the number and positions of the left-to-right maxima,
- the up-down word.

Other statistics preserved:

- Zeilberger's statistics when $\mathbf{A}=\mathbf{A}_{0} \circ \mathbf{S}$:
$\operatorname{zeil}(\theta)=\max \{k \mid n(n-1) \ldots(n-k+1)$ is a subword of $\theta\}$
- the reversed Zeilberger's statistics when $\mathbf{A}=\mathbf{A}_{0} \circ \mathbf{S}$ and
\mathbf{A}_{0} contains at least a composition $\mathbf{S} \circ \mathbf{R}$:
$\operatorname{Rzeil}(\theta)=\max \{k \mid(n-k+1) \ldots(n-1) n$ is a subword of $\theta\}$

More properties of P : Related Wilf-equivalences

> The families $\left(\lambda_{n}\right)$ and $\left(\rho_{n}\right)$
> $\lambda_{1}=\rho_{1}=1, \lambda_{n}=1 \ominus \rho_{n-1}$ and $\rho_{n}=\lambda_{n-1} \oplus 1$ i.e. $\lambda_{1}=\rho_{1}=\bullet, \lambda_{n}=\rho_{n-1}$ and $\rho_{n}=\lambda_{n-1}$; Examples: $\quad \lambda_{6}=\because$ and $\rho_{6}=\because \because$

Patterns π such that $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$
Theorem: $\operatorname{Av}(231, \pi)$ and
$\operatorname{Av}(132, P(\pi))$ are in bijection via P if and only if $\pi=\lambda_{k} \oplus\left(1 \ominus \rho_{n-k-1}\right)$.

In this case, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are Wilf-equivalent.

Generating function of $\operatorname{Av}(231, \pi)$
Define $F_{1}(t)=1$ and $F_{n+1}(t)=\frac{1}{1-t F_{n}(t)}$
Theorem: When $\operatorname{Av}(231, \pi) \stackrel{P}{\longleftrightarrow} \operatorname{Av}(132, P(\pi))$, denoting $n=|\pi|$, the GF of $\operatorname{Av}(231, \pi)$ is F_{n}. Consequence: For all such π of the same size, $\{231, \pi\}$ and $\{132, P(\pi)\}$ are all Wilf-equivalent.

