# Operators of equivalent sorting power and related Wilf-equivalences



Michael Albert and Mathilde Bouvel



### **Definitions:** Permutation Patterns, Reverse, Stack Sorting



### Some previous results: about Stack Sorting, Permutation Patterns and Enumeration



## Main result: A Bijection Between Two Sets of Permutations Sortable by Stacks and Reverse

#### Main theorem

For any operator A which is a composition of operators S and R, there are as many permutations of  $\mathfrak{S}_n$  sortable by  $S \circ A$  as permutations of  $\mathfrak{S}_n$  sortable by  $S \circ R \circ A$ .



Moreover, many permutation statistics are equidistributed across these two sets.

#### **Equivalent statement**

For any operator A which is a composition of operators S and R, there is a size-preserving bijection between
permutations of Av(231) that belong to the image of A, and

• permutations of Av(132) that belong to the image of **A**, that preserves the number of preimages under **A**.

### **Proof: Some Ingredients; and Sketch of Proof**

Preimages under In-order trees are recursively defined by:  $T_{in}(LnR) = \underbrace{\int_{T_{in}(L)}^{n} \int_{T_{in}(R)}^{n} where$  $n = max(LnR), \text{ and } T_{in}(\varepsilon) = \emptyset$ 

Stack sorting on trees: Stack sorting  $\theta$ is equivalent to post-order reading  $T_{in}(\theta)$ , *i.e.*  $S(\theta) = Post(T_{in}(\theta))$ 

Preimages under S and trees [Bousquet-Mélou 2000] cursively defined by: Canonical trees: a tree is canonical whenfor all <math>x, z such that  $x e^{-x}$  in the tree, there exists  $y \neq \emptyset$  and y such that for x = 0 for x = 0for

Lemma: For  $\pi$  in the image of **S**, there is a unique canonical tree  $\mathcal{T}_{\pi}$  such that  $\mathbf{Post}(\mathcal{T}_{\pi}) = \pi$ .

Theorem: All trees  $T_{in}(\theta)$  for  $\theta$  such that  $S(\theta) = \pi$  may be recovered from  $\mathcal{T}_{\pi}$  by re-rootings. Consequence:  $\mathcal{T}_{\pi}$  determines  $S^{-1}(\pi)$ . Moreover  $|S^{-1}(\pi)|$  is determined only by the shape of  $\mathcal{T}_{\pi}$ .

#### The bijections $\Phi_A$

For  $\pi \in Av(231)$ , write  $P(\pi) \in Av(132)$  as  $P(\pi) = \lambda_{\pi} \circ \pi$ .

For  $\theta$  sortable by  $\mathbf{S} \circ \mathbf{A}$ , set  $\pi = \mathbf{A}(\theta)$ . Because  $\pi \in Av(231)$ , we may define  $\Phi_{\mathbf{A}}(\theta) = \lambda_{\pi} \circ \theta$ .

**Theorem**:  $\Phi_A$  is a bijection between permutation sortable by  $S \circ A$  and those sortable by  $S \circ R \circ A$ .



**Bijection** *P* **between** Av(231) **and** Av(132) [Dokos, Dwyer, Johnson, Sagan, Selsor 2012] Sum and skew sum of permutations, on their diagrams:

 $\alpha \oplus \beta = \boxed{\alpha} \text{ and } \alpha \ominus \beta = \boxed{\alpha} \beta$ 

Bijection *P* from Av(231) to Av(132) is recursively defined as: • if  $\pi = \alpha \oplus (1 \ominus \beta)$  then  $P(\pi) = (P(\alpha) \oplus 1) \ominus P(\beta)$ • or equivalently,  $\alpha \xrightarrow{\beta} \xrightarrow{P(\alpha)} \xrightarrow{P(\alpha)} \xrightarrow{P(\beta)}$ Some properties of *P*: *P* is the identity map on Av(231, 132) *P* preserves the shape of in-order trees

#### Statistics preserved by $\Phi_A$

- $\Phi_{\mathbf{A}}$  preserves the shape of in-order trees, hence
  - the number and positions of the right-to-left maxima,
  - the number and positions of the left-to-right maxima,
  - the up-down word.

#### Other statistics preserved:

• Zeilberger's statistics when  $\mathbf{A} = \mathbf{A}_0 \circ \mathbf{S}$ :

 $\begin{aligned} &\text{zeil}(\theta) = \max\{k \mid n(n-1) \dots (n-k+1) \text{ is a subword of } \theta\} \\ &\bullet \text{ the reversed Zeilberger's statistics when } \mathbf{A} = \mathbf{A}_0 \circ \mathbf{S} \text{ and} \\ &\mathbf{A}_0 \text{ contains at least a composition } \mathbf{S} \circ \mathbf{R}: \\ &\text{Rzeil}(\theta) = \max\{k \mid (n-k+1) \dots (n-1)n \text{ is a subword of } \theta\} \end{aligned}$ 

### **More properties of** *P***: Related Wilf-equivalences**

The families  $(\lambda_n)$  and  $(\rho_n)$  $\lambda_1 = \rho_1 = 1, \ \lambda_n = 1 \ominus \rho_{n-1}$  and  $\rho_n = \lambda_{n-1} \oplus 1$ i.e.  $\lambda_1 = \rho_1 = \bullet, \ \lambda_n = \frown \rho_{n-1}$  and  $\rho_n = \overline{\lambda_{n-1}}$ ;Examples:  $\lambda_6 = \frown \bullet$  and  $\rho_6 = \bullet \bullet$ 

Patterns  $\pi$  such that  $\operatorname{Av}(231, \pi) \xleftarrow{P} \operatorname{Av}(132, P(\pi))$ Theorem:  $\operatorname{Av}(231, \pi)$  and  $\operatorname{Av}(132, P(\pi))$  are in bijection via P if and only if  $\pi = \lambda_k \oplus (1 \oplus \rho_{n-k-1})$ .  $\pi = \begin{bmatrix} \lambda_k \end{bmatrix}$ 

In this case,  $\{231, \pi\}$  and  $\{132, P(\pi)\}$  are Wilf-equivalent.

**Generating function of**  $Av(231, \pi)$ Define  $F_1(t) = 1$  and  $F_{n+1}(t) = \frac{1}{1-tF_n(t)}$ Theorem: When  $Av(231, \pi) \xleftarrow{P} Av(132, P(\pi))$ , denoting  $n = |\pi|$ , the GF of  $Av(231, \pi)$  is  $F_n$ . **Consequence:** For all such  $\pi$  of the same size,  $\{231, \pi\}$  and  $\{132, P(\pi)\}$  are all Wilf-equivalent.

**Operators of equivalent sorting power and related Wilf-equivalences** 

25th International Conference on Formal Power Series and Algebraic Combinatorics, Paris, France, June 24 - 28, 2013