Challenge

Understand the convergence of a
nested family of trees towards
permutations

Simple Permutations

Simple permutation property: no set of consecutive numbers

are together in a block.

oc=794251386 = not simple
m=842713695 = simple

8 =set of all simple permutations

:{241 3,3142,24153,25314,35142,31524,...}
S(z)=2z%+62° +462°+3382" +29267%+281462° + ...

The number of simple permutations of size n: sn~n!/ez. [2]

oeis.org/AT 11111

Open problem: Describe a "nice” generation scheme for simple
permutations (i.e. not rejection).

P: The class of Strong Interval Trees

. Size is the number of leaves
. Three colours for internal vertices:

Linear nodes: ee children are totally ordered.

Prime nodes: e children are totally ordered, and are
decorated with a simple permutation

. There is only choice between linear nodes at the root, or
as a child of a prime node.

P=2Z7+N.-SEQ., U. + N.-SEQ-» U. + N. - S(P),
U. =2+ N.-SEQ-7 U. + N, - S(P),
U. =2+ N.-SEQ-7 U, + N, - S(P).

Lemma. (Simplification of system)

P= SEQZ] u 72
U=2+AQn Vi A@=

| -z

+S(1=)

| — 2z

/N A(z) is not analytic

What do the trees look like?
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oc=1234567 (identity)

oc=7654321 (reverse identity)

0c=3571426 (simple)

A random permutation: (recall, ~& are simple)

o=679 1011 13812315472
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This tree models instances of perfect sorting by reversals [4
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Permutations as a limit of tree classes

behaviour in the asymptotics.

In this work we define a nested family of parameterized trees P& whose limit P is in a
straightforward bijection with permutations.
permutations and are known as the strong interval trees of permutations. We give a specification

for P and hence have easy access to asymptotic counting and parameter formulas, as well as
random generation. The limits in k and n do not commute, and this leads to some interesting

The trees are decorated with subclasses of simple

limy_ ., P¥ =P, =n!

Prime node degree restricted trees: A simple variety of trees

P®_trees; The sub-class of P where prime nodes have at most k children. This class is a simple variety of trees for each case
and hence we have asymptotic enumeration and random generation for “free”.

j)(k) — SEQ>] u(k)
u(k) = SEQZZ(u(k))

4 (j)(k))4

Sk (j)(k))k

A random tree from P of size approx 1000 constructed from a Boltzmann generator

Asymptotic enumeration

Use adapted inversion formula [8] on U® =2+ A, (U®) with
_ _Z (_Z
Ak(z) -2 +Zj:4sj(]_z)j

Theorem.

& - pk Pk |
. . 21N (1)) n3/?

Here:

e
Pk<Tk< 7T

A () = | P

Pk = N (Tk)

Remark lim,_ 0, =0

Bounds on p, and a familiar limit

Theorem.

We see how trees become permutations when k =n:

o e \7 (k)" 5 logk [1)"
k -n.-3/2 _|_€ 4K 2 9% 2 -3/2
\/27TAZ(T/<) P T 5(4/«7) (e) ('*2 k +@(/<)) S
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Subtleties in the asymptotics

For any fixed k, as n — oo this asymptotic formula is very

accurate. However, P™ =n!, but the tree formula produces an
extra exponential factor of 2. Taking additional terms in the
expansion does not help. Rather, new contours are required
in the intermediate integrals, demonstrating the limits of the
inversion formula.

Tree Anatomy

Theorem. Average parameter values for trees in P®

AT

# vertices of arity j -5 &-n
Tk—Pk

# of internal vertices ‘N

P
: T 312
Sum of subtree size \/ 2orATD n

Application to genome reconstruction

This permutation data structure models the analysis of perfect
sorting by reversals, which is used in genome comparison. Tree
parameters such as the number of internal nodes have direct
interpretations on the evolutionary scenarios they represent (¢).
We aspire to describe better model for the permutations arising
in actual genome comparisons, and this is a first step towards
that goal.
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