
A general and algorithmic method for computing
the generating function of permutation classes

and for their random generation

Mathilde Bouvel (LaBRI)

avec Frédérique Bassino (LIPN), Adeline Pierrot (LIAFA),
Carine Pivoteau (LIGM), Dominique Rossin (LIX)

GT Combi - 9 décembre 2011

Guideline for the talk

Data:

B a finite set of permutations (the excluded patterns),

C = Av(B) the class of permutations that avoid every pattern
of B.

Problem:
Describe an algorithm to obtain automatically from B a
combinatorial specification for C, and hence:

some enumerative results on C, in terms of generating
function C (z) =

∑
|Avn(B)|zn,

a random sampler of permutations in C, that is uniform on
Avn(B) for each n.

Result:
Such an algorithm . . . that works under some hypothesis on C, also
tested algorithmically.

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set Sn.

Linear representation:
σ = 1 8 3 6 4 2 5 7

Two lines
representation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Representation as
a product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical representation:

i

σ(i)

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Patterns in permutations

Pattern (order) relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Patterns in permutations

Pattern (order) relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Patterns in permutations

Pattern (order) relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Permutation classes

Permutation class : set of permutations downward-closed for 4.

Av(B) : the class of permutations that avoid every pattern of B.
If B is an antichain then B is the basis of Av(B).

Conversely : Every class C can be characterized by its basis:

C = Av(B) for B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}

A class has a unique basis.
A basis can be either finite or infinite.

Origin : [Knuth 73] with stack-sortable permutations = Av(231)

Enumeration[Stanley & Wilf 92][Marcus & Tardos 04] : |C ∩Sn| ≤ cn

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Problematics

Combinatorics: study of classes defined by their basis.

↪→ Enumeration.

↪→ Exhaustive generation.

Algorithmics: problematics from text algorithmics.

↪→ Pattern matching, longest common pattern.

↪→ Linked with testing the membership of σ to a class.

Combinatorics (and algorithms): study families of classes.

↪→ The basis of the class is not always given.

↪→ Obtain general results on permutation classes. . .

↪→ . . . and do it automatically (with algorithms).

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes.

[Möhring & Radermacher 84]: general framework.

Specialization: Modular decomposition of graphs.

Relies on:

a principle for building objects (permutations, graphs) from
smaller objects: the substitution.

some “basic objects” for this construction: simple
permutations, prime graphs.

Required properties:

every object can be decomposed using only “basic objects”.

this decomposition is unique.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and

α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Simple permutations

Interval (or block) = set of elements of
σ whose positions and values form
intervals of integers
Example: 5 7 4 6 is an interval of
2 5 7 4 6 1 3

Simple permutation = permutation
that has no interval, except the trivial
intervals: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple.

The smallest simple: 1 2, 2 1, 2 4 1 3, 3 1 4 2

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Substitution decomposition of permutations

Theorem: Every σ (6= 1) is uniquely decomposed as

12[α(1), α(2)], where α(1) is ⊕-indecomposable

21[α(1), α(2)], where α(1) is 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable : that cannot be written as 12[α(1), α(2)]

Result stated as in [Albert & Atkinson 05]

Can be rephrased changing the first two items into:

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable
k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

Decomposing recursively inside the α(i) ⇒ decomposition tree
Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Decomposition tree: witness of this decomposition

Example: Decomposition tree
of σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:
• ⊕ = 12 . . . k and 	 = k . . . 21
= linear nodes.
• π simple of size ≥ 4 = prime
node.
• No edge ⊕−⊕ nor 	−	.
• Ordered trees.

Expansion of
⊕

T1 T2 T3 . . . into

⊕

T1 ⊕

T2 T3 . . .

and recursively, for the version of
the trees of [AA05]

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Substitution decomposition and decomposition trees

Computation and examples of application

Computation: in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib &

Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In algorithms:

Pattern matching [Bose, Buss & Lubiw 98] [Ibarra 97]

Algorithms for bio-informatics [Bérard, Bergeron, Chauve & Paul

07] [Bérard, Chateau, Chauve, Paul & Tannier 08]

In combinatorics:

Simple permutations [Albert, Atkinson & Klazar 03]

Classes closed by substitution product [Atkinson & Stitt 02]

[Brignall 07] [Atkinson, Ruškuc & Smith 09]

Exhibit the structure of classes [Albert & Atkinson 05] [Brignall,

Huczynska & Vatter 08a,08b] [Brignall, Ruškuc & Vatter 08]
Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

Combinatorial classes and generating functions

Notations:

C = ∪n≥0Cn with finite number cn = |Cn| of objects of size n

Generating function C (z) =
∑

cnz
n

Recursive description with constructors ⇒ Equation on the g.f.:

Constructor Notation C (z)

Atom Z z

Disjoint Union A+ B A(z) + B(z)

Cartesian Product A× B A(z)B(z)

Sequence Seq(A) 1

1− A(z)
Restricted Seq. Seq=k(A) A(z)k

[Flajolet & Sedgewick 09]
Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

Combinatorial classes and random samplers

Uniform sampling: objects of size n have the same probability

Two methods based on the recursive description of objects:

Recursive method [Flajolet, Zimmerman & Van Cutsem 94]:
size n chosen in advance. Requires to know the ck for k ≤ n.
Boltzmann method [Duchon, Flajolet, Louchard & Schaeffer 04]:
size n not fixed. Needs the evaluation of C (z) at one point x .

Z return an atom

A+ B call ΓA(x) with proba. A(x)
A(x)+B(x) , else ΓB(x)

A× B call ΓA(x) and ΓB(x)

Seq(A) choose k according to a geometric law of parameter
A(x) and call ΓA(x) k times

Seq=k(A) call the sampler ΓA(x) k times

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

Example: binary trees

B = ∪n≥1Bn
where Bn denotes the set of binary trees with n leaves.

Recursive description (also called specification): B = • +

◦
B B

Equation for the g.f.: B(z) = z + B(z)2, hence B(z) = 1−
√
1−4z
2 .

Boltzmann random sampler ΓB(x) for B:

Data: x , B(x)

Result: a random binary tree

Procedure:
Choose r uniformly at random on [0, 1]
If x

B(x) < r then return •

Else return

◦

ΓB(x) ΓB(x)

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

Specifications for permutation classes

For all permutations, with S the set of all simple permutations:

S = •+

⊕

S+ S +

	

S− S +
∑

π∈S

π

S S . . . S

S+ = •+

	

S− S +
∑

π∈S

π

S S . . . S

S− = •+

⊕

S+ S +
∑

π∈S

π

S S . . . S

⇒The generating functions of S and S are related
[Albert, Atkinson & Klazar 03].

This can be adapted to (substitution-closed and arbitrary)
permutation classes [Albert & Atkinson 05].

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

The simpler case of substitution-closed classes

A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.

Hence, with SC = C ∩ S the set of simple permutations in C:C = •+

⊕

C+ C +

	

C− C +
∑

π∈SC

π

C C . . . C
. . .

When SC is finite, this is a simple family of trees in the sense of
[Flajolet & Sedgewick 09].

⇒Enumerative results and random samplers can be obtained by
efficient algorithms.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations and trees as combinatorial structures

For general permutation classes

For non substitution-closed classes, we have only a strict inclusion:

C •+

⊕

C+ C +

	

C− C +
∑
π∈SC

π

C C . . . C

Example: 231 = 21[12, 1] /∈ Av(231) whereas 21, 12, 1 ∈ Av(231).

The system describing C has to be refined with new equations for
these constraints. The system can be computed by an algorithm.

⇒Enumerative results and random samplers can be obtained
algorithmically, but this is less efficient.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Summary of results

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n) O(n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

O(N. l) O(N. l . |B|)

direct
Constraints propagation

exponential (?)
Specification for C

Generating function and Boltzmann sampler

STOP

4 p+2

3k

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

First semi-decision procedure

Theorem [Albert & Atkinson 05]: If C contains a finite number of
simple permutations, then C has a finite basis and an algebraic g.f..

Constructive proof: compute, for each given class,

the specification for decomposition trees of C
a system of equations satisfied by the g.f.

from the finite set of simple permutations in C

Testing the precondition:

Semi-decision procedure

↪→ Find simples of size 4, 5, 6, . . . until k and k + 1 for which
there are 0 simples [Schmerl & Trotter 93]

“Very exponential” (∼ n!) computation of the simples in C
Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Step 1: Is there a finite number of simple permutations
in C? A first decision result

Theorem [Brignall, Ruškuc & Vatter 08]: It is decidable whether C
given by its finite basis contains a finite number of simples.

Prop: C = Av(B) contains infinitely many simples iff C contains:

1. either infinitely many parallel permutations

2. or infinitely many simple wedge permutations

3. or infinitely many proper pin-permutations

Decision procedure Complexity

1. and 2. : pattern matching of patterns Polynomial
of size 3 or 4 in the β ∈ B. O(n log n)

3. : Decidability with Decidable
automata techniques 2ExpTime

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Polynomial algorithms for the finite number of simples

Points similar to [BRV 08] :

Encoding by pin words on {1, 2, 3, 4, L,R,U,D}
Construction of automata accepting words of
pin-permutations π such that β 4 π for some β ∈ B

Study of pin-permutations [BBR 09] ⇒ better understanding of
the relationship between pin words and patterns in permutations

Points specific to [BBPR 10 & 11] :

Polynomial construction of a (deterministic, complete)
automaton for the language L = pin words of proper
pin-permutations containing some β ∈ B

Is this language co-finite ? Polynomial.

↪→ Yes iff the class contains finitely many simples.

Polynomial w.r.t. n =
∑

β∈B |β|, but k = |B| is an exponent. +

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Step 2: Finding the set of simple permutations in C
Starting point: Find simple permutations in C of size 4, 5, 6, . . .
until k and k + 1 for which there are 0 simples

Problem: There are ∼ n!
e2

simple permutations of size n

Reduce the number of simples σ of size n that are candidate to the
membership to C [Pierrot & Rossin, 11].

Prop: The simples of Cn+1 can be described as one-point (or
special two-points) extensions of the simples of Cn
⇒ There are at most O(n2.|S ∩ Cn|) candidates of size n + 1.

Test whether σ contains an occurrence of β ∈ B: in O(n|β|).

Theorem: Computing the finite set of simple permutations in C is
done in O(N · `p+2 · |B|) with N = |S ∩ C|, p = max{|β| : β ∈ B}
and ` = max{|π| : π ∈ S ∩ C}

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Refinement for substitution-closed classes

Prop: C = Av(B) is substitution-closed iff B contains only simples.

Prop [Pierrot & Rossin, 11]: If β 4 σ for β and σ simples, then
there are simples β = σ1 4 σ2 . . . 4 σk = σ s.t. for all i ,
|σi | − |σi−1| = 1 (or 2 in special cases).

Improvement of the complexity:

Avoid testing occurrences of β ∈ B in σ candidate simple of C.

Instead, test whether for every one point (or special two
points) deletion in σ resulting in σ′ simple, then σ′ ∈ C.

⇒ It is more efficient for computing S ∩ Cn+1 from S ∩ Cn.

Theorem: Computing the finite set of simple permutations in C is
done in O(N · `4) for substitution-closed classes.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Step 3: Compute the specification for C

From the set SC of simple permutations in C, the specification for
the substitution closure Ĉ of C is obtained immediately:

Ĉ = •+

⊕

Ĉ+ Ĉ +

	

Ĉ− Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

Ĉ+ = •+

	

Ĉ− Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

Ĉ− = •+

⊕

Ĉ+ Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

If C is substitution-closed, C = Ĉ and we are done.
Otherwise, C = Ĉ〈B?〉 and propagate the constraints from
B? = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Step 3: Compute the specification for C

From the set SC of simple permutations in C, the specification for
the substitution closure Ĉ of C is obtained immediately:

Ĉ〈B?〉 = •+

⊕

Ĉ+ Ĉ〈B?〉+

	

Ĉ− Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

Ĉ+ = •+

	

Ĉ− Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

Ĉ− = •+

⊕

Ĉ+ Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

If C is substitution-closed, C = Ĉ and we are done.
Otherwise, C = Ĉ〈B?〉 and propagate the constraints from
B? = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Step 3: Compute the specification for C

From the set SC of simple permutations in C, the specification for
the substitution closure Ĉ of C is obtained immediately:

Ĉ〈B?〉 = •+

⊕

Ĉ+ Ĉ〈B?〉+

	

Ĉ− Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

Ĉ+〈B?〉 = •+

	

Ĉ− Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

Ĉ−〈B?〉 = •+

⊕

Ĉ+ Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

If C is substitution-closed, C = Ĉ and we are done.
Otherwise, C = Ĉ〈B?〉 and propagate the constraints from
B? = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Constraint propagation 1/2

Embeddings of β ∈ B? into π ∈ SC
Example: for 	[C−, C]〈231〉, and for the embedding
(23, 1) ↪→ (2, 1), we get C−〈12〉.
additional restrictions α in B? that are blocks of β ∈ B?

and do it inductively while new constraints α appear

this terminates since each α 4 β for some β ∈ B?

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Constraint propagation 1/2

Embeddings of β ∈ B? into π ∈ SC
Example: for 	[C−, C]〈231〉, and for the embedding
(23, 1) ↪→ (2, 1), we get C−〈12〉.
additional restrictions α in B? that are blocks of β ∈ B?

and do it inductively while new constraints α appear

this terminates since each α 4 β for some β ∈ B?

Result: A system describing C, that may be ambiguous
Example: For 2413[C, C, C, C]〈1234〉,
the embeddings (1, 234) ↪→ (2, 4) and (1, 234) ↪→ (1, 3)
produce the terms 2413[C, C〈123〉, C, C] and 2413[C, C, C, C〈123〉]
whose intersection is not empty.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Constraint propagation 2/2

Disambiguation of the system:

Use formulas of the type A ∪ B = A ∩ B] A ∩ B] A ∩ B

In complement set, excluded patterns become mandatory
patterns: Cγ for γ 4 β ∈ B?

Propagate also mandatory restrictions

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Constraint propagation 2/2

Disambiguation of the system:

Use formulas of the type A ∪ B = A ∩ B] A ∩ B] A ∩ B

In complement set, excluded patterns become mandatory
patterns: Cγ for γ 4 β ∈ B?

Propagate also mandatory restrictions

Result: An unambiguous system describing C, where the
left-hand-sides are Cεγ1,...,γp〈α1, . . . , αk〉 with ε ∈ { ,+,−}.

Termination: all αi and γj are patterns of some β ∈ B?

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Constraint propagation 2/2

Disambiguation of the system:

Use formulas of the type A ∪ B = A ∩ B] A ∩ B] A ∩ B

In complement set, excluded patterns become mandatory
patterns: Cγ for γ 4 β ∈ B?

Propagate also mandatory restrictions

Result: An unambiguous system describing C, where the
left-hand-sides are Cεγ1,...,γp〈α1, . . . , αk〉 with ε ∈ { ,+,−}.

Termination: all αi and γj are patterns of some β ∈ B?

Theorem: The propagation of the constraints to obtain a
specification for C is algorithmic, but there is an explosion of the
number of equations in the system.

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

An algorithm from the finite basis to the specification

Putting things together

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n) O(n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

O(N. l) O(N. l . |B|)

direct
Constraints propagation

exponential (?)
Specification for C

Generating function and Boltzmann sampler

STOP

4 p+2

3k

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Perspectives

What next?

About the algorithm:

Implementation in progress

Complexity analysis of step 3 (explosion of the system)

Dependency of the complexity of Boltzmann random samplers
w.r.t. the size of the specification

With the algorithm:

From the specifications, estimate growth rates of classes

Are random permutations in C “like” in S?

Compare statistics on C and S, or on C1 and C2
Related questions:

How general is our algorithm?

Classes with infinite set of simples, but finitely described?

Use specification of a class to decide membership efficiently?

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Almost 30 000 permutations of size 500 in
Av(2413, 1243, 2341, 531642, 41352)

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Perspectives

Improvements for substitution-closed classes

Prop: C = Av(B) is substitution-closed iff B contains only simple
permutations.

For simple β, β 4 π translates into a factor relation on pin words.
⇒ B gives a set of factors F (whose lengths sum to O(n)) such that
w has a factor in F iff β 4 πw for some β ∈ B

[Aho & Corasick 75]:
build in linear time a complete deterministic automaton AF

recognizing the language of words containing a factor in F

L(AF) co-finite iff finite number of simples in C
. . . and testing the co-finiteness of L(AF) is in linear time.

Theorem: Testing the finiteness of the number of simple
permutations in a substitution-closed class is solved in O(n log n)

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Perspectives

Polynomial algorithm for general classes

When β is not simple (but is a pin permutation), β 4 π translates
into a piecewise factor relation on pin words.

Def: f = (f1, f2, . . . , fk) is a piecewise factor of w iff
w = w0f1w1f2w2 . . .wk−1fkwk .

Piecewise factors Fβ corresponding to β ∈ B are computed
inductively on the decomposition trees of β.
And similarly for the deterministic automaton Aβ recognizing the
language of words containing a piecewise factor in Fβ.

Construction of Aβ in O(|β|3).
Then build the product of the Aβ for β ∈ B (deterministic union).

Theorem: Testing the finiteness of the number of simple
permutations in a permutation class is solved in O(n3k) Back

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

	Permutations, patterns and permutation classes
	Permutations, patterns and permutation classes

	Substitution decomposition and decomposition trees
	Substitution decomposition and decomposition trees

	Permutations and trees as combinatorial structures
	Permutations and trees as combinatorial structures

	An algorithm from the finite basis to the specification
	An algorithm from the finite basis to the specification

	Perspectives
	Perspectives

