A general and algorithmic method for computing the generating function of permutation classes and for their random generation

Mathilde Bouvel (LaBRI) avec Frédérique Bassino (LIPN), Adeline Pierrot (LIAFA), Carine Pivoteau (LIGM), Dominique Rossin (LIX)

GT Combi-9 décembre 2011

Guideline for the talk

Data:

- B a finite set of permutations (the excluded patterns),
$\square \mathcal{C}=\operatorname{Av}(B)$ the class of permutations that avoid every pattern of B.

Problem:
Describe an algorithm to obtain automatically from B a combinatorial specification for \mathcal{C}, and hence:

■ some enumerative results on \mathcal{C}, in terms of generating function $C(z)=\sum\left|A v_{n}(B)\right| z^{n}$,

- a random sampler of permutations in \mathcal{C}, that is uniform on $A v_{n}(B)$ for each n.

Result:

Such an algorithm ... that works under some hypothesis on \mathcal{C}, also tested algorithmically.

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.

- Linear representation:

$$
\sigma=18364257
$$

■ Two lines representation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- Representation as a product of cycles:

$$
\sigma=(1)(287546)(3)
$$

■ Graphical representation:

Patterns in permutations

Pattern (order) relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:

The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Patterns in permutations

Pattern (order) relation $\preccurlyeq:$

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:

The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Permutations, patterns and permutation classes

Patterns in permutations

Pattern (order) relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Permutation classes

Permutation class: set of permutations downward-closed for \preccurlyeq.
$A v(B)$: the class of permutations that avoid every pattern of B. If B is an antichain then B is the basis of $\operatorname{Av}(B)$.

Conversely: Every class \mathcal{C} can be characterized by its basis:

$$
\mathcal{C}=A v(B) \text { for } B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma \text { such that } \pi \neq \sigma, \pi \in \mathcal{C}\}
$$

A class has a unique basis.
A basis can be either finite or infinite.
Origin : [Knuth 73] with stack-sortable permutations $=\operatorname{Av}(231)$
Enumeration[Stanley \& Wilf 92][Marcus \& Tardos 04] : $\left|\mathcal{C} \cap \mathfrak{S}_{n}\right| \leq c^{n}$

Problematics

■ Combinatorics: study of classes defined by their basis.
\hookrightarrow Enumeration.
\hookrightarrow Exhaustive generation.

- Algorithmics: problematics from text algorithmics.
\hookrightarrow Pattern matching, longest common pattern.
\hookrightarrow Linked with testing the membership of σ to a class.

■ Combinatorics (and algorithms): study families of classes.
\hookrightarrow The basis of the class is not always given.
\hookrightarrow Obtain general results on permutation classes...
$\hookrightarrow \ldots$ and do it automatically (with algorithms).

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes.
■ [Möhring \& Radermacher 84]: general framework.

- Specialization: Modular decomposition of graphs.

Relies on:

- a principle for building objects (permutations, graphs) from smaller objects: the substitution.
■ some "basic objects" for this construction: simple permutations, prime graphs.
Required properties:
■ every object can be decomposed using only "basic objects".
- this decomposition is unique.

Substitution decomposition and decomposition trees

Substitution for permutations

Substitution or inflation : $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.

Mathilde Bouvel

Simple permutations

Interval (or block) = set of elements of σ whose positions and values form intervals of integers
Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation that has no interval, except the trivial intervals: $1,2, \ldots, n$ and σ
Example: 3174625 is simple.
The smallest simple: 12,21,2413,3142

Substitution decomposition of permutations

Theorem: Every $\sigma(\neq 1)$ is uniquely decomposed as

- $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$, where $\alpha^{(1)}$ is \oplus-indecomposable
- $21\left[\alpha^{(1)}, \alpha^{(2)}\right]$, where $\alpha^{(1)}$ is \ominus-indecomposable

■ $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Remarks:

- \oplus-indecomposable : that cannot be written as $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- Result stated as in [Albert \& Atkinson 05]
- Can be rephrased changing the first two items into:
- $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable

■ $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable
Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

Decomposition tree: witness of this decomposition

Example: Decomposition tree of $\sigma=$ 101312111411819202117161548329567

Notations and properties:
$\bullet \oplus=12 \ldots k$ and $\ominus=k \ldots 21$
= linear nodes.

- π simple of size $\geq 4=$ prime node.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Ordered trees.

Expansion of $T_{1} / T_{2} T_{3} \ldots$ into $T_{2} T_{1} T_{3}$. and recursively, for the version of the trees of [AA05]
$\sigma=3142[\oplus[1, \ominus[1,1,1], 1], 1, \ominus[\oplus[1,1,1,1], 1,1,1], 24153[1,1, \ominus[1,1], 1, \oplus[1,1,1]]]$
Bijection between permutations and their decomposition trees.

Computation and examples of application

Computation: in linear time. [Uno \& Yagiura 00] [Bui Xuan, Habib \& Paul 05] [Bergeron, Chauve, Montgolfier \& Raffinot 08]

In algorithms:

- Pattern matching [Bose, Buss \& Lubiw 98] [lbarra 97]

■ Algorithms for bio-informatics [Bérard, Bergeron, Chauve \& Paul 07] [Bérard, Chateau, Chauve, Paul \& Tannier 08]

In combinatorics:

- Simple permutations [Albert, Atkinson \& Klazar 03]

■ Classes closed by substitution product [Atkinson \& Stitt 02] [Brignall 07] [Atkinson, Ruškuc \& Smith 09]
■ Exhibit the structure of classes [Albert \& Atkinson 05] [Brignall, Huczynska \& Vatter 08a,08b] [Brignall, Ruškuc \& Vatter 08]

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Combinatorial classes and generating functions

Notations:
■ $\mathcal{C}=\cup_{n \geq 0} \mathcal{C}_{n}$ with finite number $c_{n}=\left|\mathcal{C}_{n}\right|$ of objects of size n

- Generating function $C(z)=\sum c_{n} z^{n}$

Recursive description with constructors \Rightarrow Equation on the g.f.:

Constructor	Notation	$C(z)$
Atom	\mathcal{Z}	z
Disjoint Union	$\mathcal{A}+\mathcal{B}$	$A(z)+B(z)$
Cartesian Product	$\mathcal{A} \times \mathcal{B}$	$A(z) B(z)$
Sequence	$\operatorname{SEQ}(\mathcal{A})$	$\frac{1}{1-A(z)}$
Restricted Seq.	$\operatorname{SEQ}_{=k}(\mathcal{A})$	$A(z)^{k}$

[Flajolet \& Sedgewick 09]

Combinatorial classes and random samplers

Uniform sampling: objects of size n have the same probability
Two methods based on the recursive description of objects:

- Recursive method [Flajolet, Zimmerman \& Van Cutsem 94]: size n chosen in advance. Requires to know the c_{k} for $k \leq n$.
- Boltzmann method [Duchon, Flajolet, Louchard \& Schaeffer 04]: size n not fixed. Needs the evaluation of $C(z)$ at one point x.

\mathcal{Z}	return an atom
$\mathcal{A}+\mathcal{B}$	call $\Gamma A(x)$ with proba. $\frac{A(x)}{A(x)+B(x)}$, else $\Gamma B(x)$
$\mathcal{A} \times \mathcal{B}$	call $\Gamma A(x)$ and $\Gamma B(x)$
$\operatorname{SEQ}(\mathcal{A})$	choose k according to a geometric law of parameter $A(x)$ and call $\Gamma A(x) k$ times
$\operatorname{SEQ}=k^{(\mathcal{A})}$	call the sampler $\Gamma A(x) k$ times

Mathilde Bouvel
Algorithmic methodology for the enumeration and random generation of permutation classes

Example: binary trees

$\mathcal{B}=\cup_{n \geq 1} \mathcal{B}_{n}$
where \mathcal{B}_{n} denotes the set of binary trees with n leaves.

Recursive description (also called specification): $\mathcal{B}=\bullet \quad+$
 Equation for the g.f.: $B(z)=z+B(z)^{2}$, hence $B(z)=\frac{1-\sqrt{1-4 z}}{2}$. Boltzmann random sampler $\lceil\mathcal{B}(x)$ for \mathcal{B} :

- Data: $x, B(x)$
- Result: a random binary tree

■ Procedure:

- Choose r uniformly at random on $[0,1]$
- If $\frac{x}{B(x)}<r$ then return -
- Else return $\lceil\mathcal{B}(x)\ulcorner\mathcal{B}(x)$

Specifications for permutation classes

For all permutations, with \mathcal{S} the set of all simple permutations:

$$
\left\{\begin{array}{l}
\mathfrak{S}=\bullet+\mathfrak{S}^{+} \stackrel{\ominus}{\mathfrak{S}}+\mathfrak{S}^{-} \mathfrak{S}+\sum_{\pi \in \mathcal{S}} \mathfrak{S} \mathfrak{S} \cdots \mathfrak{S} \\
\mathfrak{S}^{+}=\bullet+\mathfrak{S}^{-} \mathfrak{S}+\sum_{\pi \in \mathcal{S}} \mathfrak{S} \cdot \mathfrak{S} \cdot \mathfrak{S} \\
\mathfrak{S}^{-}=\bullet+\mathfrak{S}^{+} \mathfrak{S}+\sum_{\pi \in \mathcal{S}} \mathfrak{S} \mathfrak{S}^{\top} \cdots \mathfrak{S}
\end{array}\right.
$$

\Rightarrow The generating functions of \mathfrak{S} and \mathcal{S} are related [Albert, Atkinson \& Klazar 03].
This can be adapted to (substitution-closed and arbitrary) permutation classes [Albert \& Atkinson 05].

The simpler case of substitution-closed classes

A permutation class \mathcal{C} is substitution-closed when $\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right] \in \mathcal{C}$ for all $\pi, \alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)} \in \mathcal{C}$.

Hence, with $\mathcal{S}_{\mathcal{C}}=\mathcal{C} \cap \mathcal{S}$ the set of simple permutations in \mathcal{C} :

When $\mathcal{S}_{\mathcal{C}}$ is finite, this is a simple family of trees in the sense of [Flajolet \& Sedgewick 09].
\Rightarrow Enumerative results and random samplers can be obtained by efficient algorithms.

For general permutation classes

For non substitution-closed classes, we have only a strict inclusion:

Example: $231=21[12,1] \notin \operatorname{Av}(231)$ whereas $21,12,1 \in \operatorname{Av}(231)$.
The system describing \mathcal{C} has to be refined with new equations for these constraints. The system can be computed by an algorithm.
\Rightarrow Enumerative results and random samplers can be obtained algorithmically, but this is less efficient.

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

An algorithm from the finite basis to the specification

Summary of results

First semi-decision procedure

Theorem [Albert \& Atkinson 05]: If \mathcal{C} contains a finite number of simple permutations, then \mathcal{C} has a finite basis and an algebraic g.f..

Constructive proof: compute, for each given class,
■ the specification for decomposition trees of \mathcal{C}
■ a system of equations satisfied by the g.f.
from the finite set of simple permutations in \mathcal{C}
Testing the precondition:

- Semi-decision procedure
\hookrightarrow Find simples of size $4,5,6, \ldots$ until k and $k+1$ for which there are 0 simples [Schmerl \& Trotter 93]
- "Very exponential" ($\sim n!$) computation of the simples in \mathcal{C}

Step 1: Is there a finite number of simple permutations

 in \mathcal{C} ? A first decision resultTheorem [Brignall, Ruškuc \& Vatter 08]: It is decidable whether \mathcal{C} given by its finite basis contains a finite number of simples.

Prop: $\mathcal{C}=\operatorname{Av}(B)$ contains infinitely many simples iff \mathcal{C} contains:

1. either infinitely many parallel permutations
2. or infinitely many simple wedge permutations
3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2.:	pattern matching of patterns of size 3 or 4 in the $\beta \in B$.	Polynomial $\mathcal{O}(n \log n)$
$3 .:$	Decidability with automata techniques	Decidable
2ExpTime		

Mathilde Bouvel
Algorithmic methodology for the enumeration and random generation of permutation classes

Polynomial algorithms for the finite number of simples

Points similar to [BRV 08] :
■ Encoding by pin words on $\{1,2,3,4, L, R, U, D\}$

- Construction of automata accepting words of pin-permutations π such that $\beta \preccurlyeq \pi$ for some $\beta \in B$
Study of pin-permutations $[B B R 09] \Rightarrow$ better understanding of the relationship between pin words and patterns in permutations
Points specific to [BBPR 10 \& 11] :
- Polynomial construction of a (deterministic, complete) automaton for the language $\mathcal{L}=$ pin words of proper pin-permutations containing some $\beta \in B$
■ Is this language co-finite ? Polynomial.
\hookrightarrow Yes iff the class contains finitely many simples.
Polynomial w.r.t. $n=\sum_{\beta \in B}|\beta|$, but $k=|B|$ is an exponent.

Step 2: Finding the set of simple permutations in \mathcal{C}

Starting point: Find simple permutations in \mathcal{C} of size $4,5,6, \ldots$ until k and $k+1$ for which there are 0 simples
Problem: There are $\sim \frac{n!}{e^{2}}$ simple permutations of size n
Reduce the number of simples σ of size n that are candidate to the membership to \mathcal{C} [Pierrot \& Rossin, 11].

Prop: The simples of \mathcal{C}_{n+1} can be described as one-point (or special two-points) extensions of the simples of \mathcal{C}_{n} \Rightarrow There are at most $\mathcal{O}\left(n^{2} .\left|\mathcal{S} \cap \mathcal{C}_{n}\right|\right)$ candidates of size $n+1$.
Test whether σ contains an occurrence of $\beta \in B$: in $\mathcal{O}\left(n^{|\beta|}\right)$.
Theorem: Computing the finite set of simple permutations in \mathcal{C} is done in $\mathcal{O}\left(N \cdot \ell^{p+2} \cdot|B|\right)$ with $N=|\mathcal{S} \cap \mathcal{C}|, p=\max \{|\beta|: \beta \in B\}$ and $\ell=\max \{|\pi|: \pi \in \mathcal{S} \cap \mathcal{C}\}$

Refinement for substitution-closed classes

Prop: $\mathcal{C}=A v(B)$ is substitution-closed iff B contains only simples.
Prop [Pierrot \& Rossin, 11]: If $\beta \preccurlyeq \sigma$ for β and σ simples, then there are simples $\beta=\sigma_{1} \preccurlyeq \sigma_{2} \ldots \preccurlyeq \sigma_{k}=\sigma$ s.t. for all i, $\left|\sigma_{i}\right|-\left|\sigma_{i-1}\right|=1$ (or 2 in special cases).
Improvement of the complexity:

- Avoid testing occurrences of $\beta \in B$ in σ candidate simple of \mathcal{C}.
- Instead, test whether for every one point (or special two points) deletion in σ resulting in σ^{\prime} simple, then $\sigma^{\prime} \in \mathcal{C}$.
\Rightarrow It is more efficient for computing $\mathcal{S} \cap \mathcal{C}_{n+1}$ from $\mathcal{S} \cap \mathcal{C}_{n}$.
Theorem: Computing the finite set of simple permutations in \mathcal{C} is done in $\mathcal{O}\left(N \cdot \ell^{4}\right)$ for substitution-closed classes.

An algorithm from the finite basis to the specification

Step 3: Compute the specification for \mathcal{C}

From the set $\mathcal{S}_{\mathcal{C}}$ of simple permutations in \mathcal{C}, the specification for the substitution closure $\hat{\mathcal{C}}$ of \mathcal{C} is obtained immediately:

$$
\begin{aligned}
& \hat{\mathcal{C}}=\bullet+\hat{\mathcal{C}}^{+} \stackrel{\oplus}{\hat{\mathcal{C}}}+\hat{\mathcal{C}}^{-} \stackrel{\ominus}{\mathcal{C}}+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} \cdots \hat{\mathcal{C}} \\
& \left\{\hat{\mathcal{C}}^{+}=\bullet+\hat{\mathcal{C}}^{-} \hat{\mathcal{C}}+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}}^{\prime} \hat{\mathcal{C}} \cdots \hat{\mathcal{C}}\right. \\
& \hat{\mathcal{C}}^{-}=\bullet+\hat{\mathcal{C}}^{+} \stackrel{\oplus}{\hat{\mathcal{C}}}+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}}^{\hat{\mathcal{C}}} \mathrm{M}_{\hat{\mathcal{C}}}
\end{aligned}
$$

- If \mathcal{C} is substitution-closed, $\mathcal{C}=\hat{\mathcal{C}}$ and we are done.

Step 3: Compute the specification for \mathcal{C}

From the set $\mathcal{S}_{\mathcal{C}}$ of simple permutations in \mathcal{C}, the specification for the substitution closure $\hat{\mathcal{C}}$ of \mathcal{C} is obtained immediately:

$$
\begin{aligned}
& \left\{\hat{\mathcal{C}}^{+}=\bullet+\hat{\mathcal{C}}^{-} \hat{\mathcal{C}}+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} \mathrm{A}_{\hat{\mathcal{C}}}\right. \\
& \hat{\mathcal{C}}^{-}=\bullet+\hat{\mathcal{C}}^{+} \hat{\mathcal{C}}+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}}{ }^{\pi}{ }_{\hat{\mathcal{C}}}
\end{aligned}
$$

- If \mathcal{C} is substitution-closed, $\mathcal{C}=\hat{\mathcal{C}}$ and we are done.
- Otherwise, $\mathcal{C}=\hat{\mathcal{C}}\left\langle B^{\star}\right\rangle$ and propagate the constraints from $B^{\star}=\{\beta \in B: \beta$ is not simple $\}$ into the subtrees.
Mathilde Bouvel
Algorithmic methodology for the enumeration and random generation of permutation classes

Step 3: Compute the specification for \mathcal{C}

From the set $\mathcal{S}_{\mathcal{C}}$ of simple permutations in \mathcal{C}, the specification for the substitution closure $\hat{\mathcal{C}}$ of \mathcal{C} is obtained immediately:

$$
\begin{aligned}
& \hat{\mathcal{C}}\left\langle B^{?}\right\rangle=\bullet+\hat{\mathcal{C}}^{+} \stackrel{\oplus}{\hat{\mathcal{C}}}\left\langle B^{?}\right\rangle+\hat{\mathcal{C}}^{-} \stackrel{\ominus}{\hat{\mathcal{C}}}\left\langle B^{?}\right\rangle+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} \cdots \hat{\mathcal{C}}\left\langle B^{?}\right\rangle \\
& \left\{\hat{\mathcal{C}}^{+}\left\langle B^{?}\right\rangle=\bullet+\hat{\mathcal{C}}^{-} \hat{\mathcal{C}}\left\langle B^{?}\right\rangle+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} \cdots \hat{\mathcal{C}}\left\langle B^{?}\right\rangle\right. \\
& \hat{\mathcal{C}}^{-}\left\langle B^{?}\right\rangle=\bullet+\hat{\mathcal{C}}^{+} \hat{\mathcal{C}}\left\langle B^{?}\right\rangle+\sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}}^{\oplus} \hat{\mathcal{C}} \cdots \hat{\mathcal{C}}\left\langle B^{?}\right\rangle
\end{aligned}
$$

- If \mathcal{C} is substitution-closed, $\mathcal{C}=\hat{\mathcal{C}}$ and we are done.
- Otherwise, $\mathcal{C}=\hat{\mathcal{C}}\left\langle B^{\star}\right\rangle$ and propagate the constraints from $B^{\star}=\{\beta \in B: \beta$ is not simple $\}$ into the subtrees.

Constraint propagation $1 / 2$

Embeddings of $\beta \in B^{\star}$ into $\pi \in \mathcal{S}_{\mathcal{C}}$

- Example: for $\ominus\left[\mathcal{C}^{-}, \mathcal{C}\right]\langle 231\rangle$, and for the embedding $(23,1) \hookrightarrow(2,1)$, we get $\mathcal{C}^{-}\langle 12\rangle$.
- additional restrictions α in $B^{\text {? }}$ that are blocks of $\beta \in B^{\star}$
- and do it inductively while new constraints α appear
- this terminates since each $\alpha \preccurlyeq \beta$ for some $\beta \in B^{\star}$

Constraint propagation $1 / 2$

Embeddings of $\beta \in B^{\star}$ into $\pi \in \mathcal{S}_{\mathcal{C}}$

- Example: for $\ominus\left[\mathcal{C}^{-}, \mathcal{C}\right]\langle 231\rangle$, and for the embedding $(23,1) \hookrightarrow(2,1)$, we get $\mathcal{C}^{-}\langle 12\rangle$.
- additional restrictions α in $B^{\text {? }}$ that are blocks of $\beta \in B^{\star}$

■ and do it inductively while new constraints α appear

- this terminates since each $\alpha \preccurlyeq \beta$ for some $\beta \in B^{\star}$

Result: A system describing \mathcal{C}, that may be ambiguous Example: For $2413[\mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}]\langle 1234\rangle$, the embeddings $(1,234) \hookrightarrow(2,4)$ and $(1,234) \hookrightarrow(1,3)$ produce the terms $2413[\mathcal{C}, \mathcal{C}\langle 123\rangle, \mathcal{C}, \mathcal{C}]$ and $2413[\mathcal{C}, \mathcal{C}, \mathcal{C}, \mathcal{C}\langle 123\rangle]$ whose intersection is not empty.

Constraint propagation 2/2

Disambiguation of the system:
■ Use formulas of the type $A \cup B=A \cap B \uplus \bar{A} \cap B \uplus A \cap \bar{B}$
■ In complement set, excluded patterns become mandatory patterns: \mathcal{C}_{γ} for $\gamma \preccurlyeq \beta \in B^{\star}$
■ Propagate also mandatory restrictions

Constraint propagation 2/2

Disambiguation of the system:
■ Use formulas of the type $A \cup B=A \cap B \uplus \bar{A} \cap B \uplus A \cap \bar{B}$
■ In complement set, excluded patterns become mandatory patterns: \mathcal{C}_{γ} for $\gamma \preccurlyeq \beta \in B^{\star}$
■ Propagate also mandatory restrictions
Result: An unambiguous system describing \mathcal{C}, where the left-hand-sides are $\mathcal{C}_{\gamma_{1}, \ldots, \gamma_{p}}^{\varepsilon}\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ with $\varepsilon \in\{,+,-\}$.
Termination: all α_{i} and γ_{j} are patterns of some $\beta \in B^{\star}$

Constraint propagation 2/2

Disambiguation of the system:
■ Use formulas of the type $A \cup B=A \cap B \uplus \bar{A} \cap B \uplus A \cap \bar{B}$
■ In complement set, excluded patterns become mandatory patterns: \mathcal{C}_{γ} for $\gamma \preccurlyeq \beta \in B^{\star}$

- Propagate also mandatory restrictions

Result: An unambiguous system describing \mathcal{C}, where the left-hand-sides are $\mathcal{C}_{\gamma_{1}, \ldots, \gamma_{p}}^{\varepsilon}\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ with $\varepsilon \in\{,+,-\}$.
Termination: all α_{i} and γ_{j} are patterns of some $\beta \in B^{\star}$
Theorem: The propagation of the constraints to obtain a specification for \mathcal{C} is algorithmic, but there is an explosion of the number of equations in the system.

An algorithm from the finite basis to the specification

Putting things together

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel
Algorithmic methodology for the enumeration and random generation of permutation classes

What next?

About the algorithm:

- Implementation in progress
- Complexity analysis of step 3 (explosion of the system)
- Dependency of the complexity of Boltzmann random samplers w.r.t. the size of the specification

With the algorithm:

- From the specifications, estimate growth rates of classes
- Are random permutations in \mathcal{C} "like" in \mathfrak{S} ?
- Compare statistics on \mathcal{C} and \mathfrak{S}, or on \mathcal{C}_{1} and \mathcal{C}_{2}

Related questions:
■ How general is our algorithm?
■ Classes with infinite set of simples, but finitely described?
■ Use specification of a class to decide membership efficiently?

Almost 30000 permutations of size 500 in $\operatorname{Av}(2413,1243,2341,531642,41352)$

Improvements for substitution-closed classes

Prop: $\mathcal{C}=A v(B)$ is substitution-closed iff B contains only simple permutations.
For simple $\beta, \beta \preccurlyeq \pi$ translates into a factor relation on pin words. $\Rightarrow B$ gives a set of factors F (whose lengths sum to $\mathcal{O}(n)$) such that w has a factor in F iff $\beta \preccurlyeq \pi_{w}$ for some $\beta \in B$
[Aho \& Corasick 75]:
build in linear time a complete deterministic automaton \mathcal{A}_{F} recognizing the language of words containing a factor in F
$\mathcal{L}\left(\mathcal{A}_{F}\right)$ co-finite iff finite number of simples in \mathcal{C} \ldots and testing the co-finiteness of $\mathcal{L}\left(\mathcal{A}_{F}\right)$ is in linear time.

Theorem: Testing the finiteness of the number of simple permutations in a substitution-closed class is solved in $\mathcal{O}(n \log n)$

Polynomial algorithm for general classes

When β is not simple (but is a pin permutation), $\beta \preccurlyeq \pi$ translates into a piecewise factor relation on pin words.

Def: $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ is a piecewise factor of w iff $w=w_{0} f_{1} w_{1} f_{2} w_{2} \ldots w_{k-1} f_{k} w_{k}$.

Piecewise factors F_{β} corresponding to $\beta \in B$ are computed inductively on the decomposition trees of β.
And similarly for the deterministic automaton \mathcal{A}_{β} recognizing the language of words containing a piecewise factor in F_{β}.
Construction of \mathcal{A}_{β} in $\mathcal{O}\left(|\beta|^{3}\right)$.
Then build the product of the \mathcal{A}_{β} for $\beta \in B$ (deterministic union).
Theorem: Testing the finiteness of the number of simple permutations in a permutation class is solved in $\mathcal{O}\left(n^{3 k}\right)$

