A general and algorithmic method for computing the generating function of permutation classes and for their random generation

Mathilde Bouvel (LaBRI) avec Frédérique Bassino (LIPN), Adeline Pierrot (LIAFA), Carine Pivoteau (LIGM), Dominique Rossin (LIX)

GT Combi - 9 décembre 2011

Data:

- *B* a finite set of permutations (the excluded patterns),
- C = Av(B) the class of permutations that avoid every pattern of B.

Problem:

Describe an algorithm to obtain automatically from B a combinatorial specification for C, and hence:

- some enumerative results on C, in terms of generating function $C(z) = \sum |Av_n(B)| z^n$,
- a random sampler of permutations in C, that is uniform on $Av_n(B)$ for each n.

Result:

Such an algorithm . . . that works under some hypothesis on $\mathcal{C},$ also tested algorithmically.

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives

Outline

- **1** Permutations, patterns and permutation classes
- 2 Substitution decomposition and decomposition trees
- 3 Permutations and trees as combinatorial structures
- 4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives

Outline

1 Permutations, patterns and permutation classes

- 2 Substitution decomposition and decomposition trees
- 3 Permutations and trees as combinatorial structures
- 4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes ●○○○	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and	permutation classes			

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_n .

- Linear representation: $\sigma = 18364257$
- Two lines representation: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 8 & 3 & 6 & 4 & 2 & 5 & 7 \end{pmatrix}$
- Representation as a product of cycles: $\sigma = (1) (2 \ 8 \ 7 \ 5 \ 4 \ 6) (3)$

Graphical representation:

Mathilde Bouvel

Permutation classes ○●○○	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and	permutation classes			

Patterns in permutations

Pattern (order) relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:

The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Permutation classes ○●○○	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and	permutation classes			

Patterns in permutations

Pattern (order) relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently:

The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Permutation classes ○●○○	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and	permutation classes			

Patterns in permutations

Pattern (order) relation \preccurlyeq :

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists \ 1 \leq i_1 < \ldots < i_k \leq n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order isomorphic (\equiv) to π .

Notation: $\pi \preccurlyeq \sigma$.

Equivalently: The normalization of $\sigma_{i_1} \dots \sigma_{i_k}$ on [1..k] yields π .

Example: $2134 \preccurlyeq 312854796$ since $3157 \equiv 2134$.

Mathilde Bouvel

Permutation classes ○○●○	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and	permutation classes			

Permutation classes

Permutation class : set of permutations downward-closed for \preccurlyeq .

Av(B): the class of permutations that avoid every pattern of B. If B is an antichain then B is the basis of Av(B).

Conversely : Every class C can be characterized by its basis:

 $\mathcal{C} = Av(B)$ for $B = \{ \sigma \notin \mathcal{C} : \forall \pi \preccurlyeq \sigma \text{ such that } \pi \neq \sigma, \pi \in \mathcal{C} \}$

A class has a unique basis. A basis can be either finite or infinite.

Origin : [Knuth 73] with stack-sortable permutations = Av(231)Enumeration[Stanley & Wilf 92][Marcus & Tardos 04] : $|C \cap \mathfrak{S}_n| \le c^n$

Mathilde Bouvel

Permutation classes ○○○●	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations, patterns and permutation classes				

Problematics

- **Combinatorics**: study of classes defined by their basis.
- \hookrightarrow Enumeration.
- \hookrightarrow Exhaustive generation.
 - Algorithmics: problematics from text algorithmics.
- \hookrightarrow Pattern matching, longest common pattern.
- \hookrightarrow Linked with testing the membership of σ to a class.
 - Combinatorics (and algorithms): study families of classes.
- $\,\hookrightarrow\,$ The basis of the class is not always given.
- \hookrightarrow Obtain general results on permutation classes...
- \hookrightarrow ...and do it automatically (with algorithms).

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes

Decomposition trees

Combinatorial structures

Algorithm

Perspectives

Substitution decomposition and decomposition trees

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes.

- [Möhring & Radermacher 84]: general framework.
- Specialization: Modular decomposition of graphs.

Relies on:

- a principle for building objects (permutations, graphs) from smaller objects: the substitution.
- some "basic objects" for this construction: simple permutations, prime graphs.

Required properties:

- every object can be decomposed using only "basic objects".
- this decomposition is unique.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Substitution decomposition and decomposition trees				

Substitution for permutations

Substitution or inflation : $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}].$

Example : Here,
$$\pi = 132$$
, and
$$\begin{cases} \alpha^{(1)} = 21 = \textcircled{\bullet} \\ \alpha^{(2)} = 132 = \textcircled{\bullet} \\ \alpha^{(3)} = 1 = \textcircled{\bullet} \end{cases}$$

Hence $\sigma = 132[21, 132, 1] = 214653$.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Substitution decomposition	and decomposition trees			

Simple permutations

Interval (or block) = set of elements of σ whose positions **and** values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation = permutation that has no interval, except the trivial intervals: 1, 2, ..., n and σ Example: 3174625 is simple.

The smallest simple: 12,21,2413,3142

Mathilde Bouvel

Permutation classes Decomposition trees

Combinatorial structures

Algorithm

Perspectives

Substitution decomposition and decomposition trees

Substitution decomposition of permutations

Theorem: Every $\sigma \ (\neq 1)$ is uniquely decomposed as $12[\alpha^{(1)}, \alpha^{(2)}]$, where $\alpha^{(1)}$ is \oplus -indecomposable $21[\alpha^{(1)}, \alpha^{(2)}]$, where $\alpha^{(1)}$ is \oplus -indecomposable $\pi[\alpha^{(1)}, \dots, \alpha^{(k)}]$, where π is simple of size $k \ge 4$

Remarks:

- \oplus -indecomposable : that cannot be written as $12[\alpha^{(1)}, \alpha^{(2)}]$
- Result stated as in [Albert & Atkinson 05]
- Can be rephrased changing the first two items into:
 - $12...k[\alpha^{(1)},...,\alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable ■ $k...21[\alpha^{(1)},...,\alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable

Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

Mathilde Bouvel

 Permutation classes
 Decomposition trees
 Combinatorial structures
 Algorithm
 Perspectives

 0000 ● 0
 000000
 000000
 000000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 000000
 00000
 00000<

Decomposition tree: witness of this decomposition

Example:	Decomposition	tree
of $\sigma =$		

 $10\,13\,12\,11\,14\,1\,18\,19\,20\,21\,17\,16\,15\,4\,8\,3\,2\,9\,5\,6\,7$

Notations and properties:

• $\oplus = 12 \dots k$ and $\ominus = k \dots 21$

= linear nodes.

- π simple of size \geq 4 = prime node.
- No edge $\oplus \oplus$ nor $\ominus \ominus$.
- Ordered trees.

Expansion of $\tau_1 \tau_2 \tau_3$ into $\tau_2 \tau_3$ and recursively, for the version of the trees of [AA05]

 $\sigma = \texttt{3142}[\oplus [1, \ominus [1, 1, 1], 1], 1, \ominus [\oplus [1, 1, 1, 1], 1, 1, 1], 2 \texttt{4153}[1, 1, \ominus [1, 1], 1, \oplus [1, 1, 1]]]$

Bijection between permutations and their decomposition trees.

Mathilde Bouvel

Permutation classes

Decomposition trees ○○○○○● Combinatorial structures

Algorithm

Perspectives

Substitution decomposition and decomposition trees

Computation and examples of application

Computation: in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In algorithms:

- Pattern matching [Bose, Buss & Lubiw 98] [Ibarra 97]
- Algorithms for bio-informatics [Bérard, Bergeron, Chauve & Paul 07] [Bérard, Chateau, Chauve, Paul & Tannier 08]

In combinatorics:

- Simple permutations [Albert, Atkinson & Klazar 03]
- Classes closed by substitution product [Atkinson & Stitt 02] [Brignall 07] [Atkinson, Ruškuc & Smith 09]
- Exhibit the structure of classes [Albert & Atkinson 05] [Brignall, Huczynska & Vatter 08a,08b] [Brignall, Ruškuc & Vatter 08]

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives

Outline

- 1 Permutations, patterns and permutation classes
- 2 Substitution decomposition and decomposition trees
- 3 Permutations and trees as combinatorial structures
- 4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm	Perspectives	
		000000			
Demonstrations and trace as combinatorial structures					

Combinatorial classes and generating functions

Notations:

- $C = \bigcup_{n \ge 0} C_n$ with finite number $c_n = |C_n|$ of objects of size n
- Generating function $C(z) = \sum c_n z^n$

Recursive description with constructors \Rightarrow Equation on the g.f.:

Constructor	Notation	<i>C</i> (<i>z</i>)
Atom	\mathcal{Z}	Z
Disjoint Union	$\mathcal{A} + \mathcal{B}$	A(z) + B(z)
Cartesian Product	$\mathcal{A} imes \mathcal{B}$	A(z)B(z)
Sequence	$\operatorname{Seq}(\mathcal{A})$	1
		1 - A(z)
Restricted Seq.	$\operatorname{SEQ}_{=k}(\mathcal{A})$	$A(z)^k$

[Flajolet & Sedgewick 09]

Mathilde Bouvel

Permutation classes

Decomposition trees

Combinatorial structures

Algorithm 000000000 Perspectives

Permutations and trees as combinatorial structures

Combinatorial classes and random samplers

Uniform sampling: objects of size n have the same probability

Two methods based on the recursive description of objects:

- Recursive method [Flajolet, Zimmerman & Van Cutsem 94]: size *n* chosen in advance. Requires to know the c_k for k < n.
- Boltzmann method [Duchon, Flajolet, Louchard & Schaeffer 04]: size n not fixed. Needs the evaluation of C(z) at one point x.

\mathcal{Z}	return an atom
$\mathcal{A} + \mathcal{B}$	call $\Gamma A(x)$ with proba. $\frac{A(x)}{A(x)+B(x)}$, else $\Gamma B(x)$
$\mathcal{A} imes \mathcal{B}$	call $\Gamma A(x)$ and $\Gamma B(x)$
$\operatorname{Seq}(\mathcal{A})$	choose k according to a geometric law of parameter
	$A(x)$ and call $\Gamma A(x)$ k times
$\operatorname{SeQ}_{=k}(\mathcal{A})$	call the sampler $\Gamma A(x) k$ times

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations and trees as	combinatorial structures			

Example: binary trees

 $\mathcal{B} = \cup_{n \geq 1} \mathcal{B}_n$ where \mathcal{B}_n denotes the set of binary trees with *n* leaves.

Recursive description (also called specification): $\mathcal{B} = \bullet + \mathcal{B} \mathcal{B}$ Equation for the g.f.: $B(z) = z + B(z)^2$, hence $B(z) = \frac{1 - \sqrt{1 - 4z}}{2}$. Boltzmann random sampler $\Gamma \mathcal{B}(x)$ for \mathcal{B} :

- Data: *x*, *B*(*x*)
- Result: a random binary tree
- Procedure:
 - Choose r uniformly at random on [0, 1]

If
$$\frac{x}{B(x)} < r$$
 then return •

Else return
$$\Gamma \mathcal{B}(x) \Gamma \mathcal{B}(x)$$

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives
Permutations and trees as	combinatorial structures			

Specifications for permutation classes

For all permutations, with $\mathcal S$ the set of all simple permutations:

 \Rightarrow The generating functions of \mathfrak{S} and \mathcal{S} are related [Albert, Atkinson & Klazar 03].

This can be adapted to (substitution-closed and arbitrary) permutation classes [Albert & Atkinson 05].

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures ○○○○●○	Algorithm 0000000000	Perspectives
Permutations and trees a	s combinatorial structures			

The simpler case of substitution-closed classes

A permutation class C is substitution-closed when $\pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}] \in C$ for all $\pi, \alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)} \in C$.

Hence, with $S_C = C \cap S$ the set of simple permutations in C:

$$\begin{cases} \mathcal{C} = \bullet + \mathcal{C}^+ \mathcal{C} + \mathcal{C}^- \mathcal{C} + \sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \mathcal{C} \mathcal{C} \mathcal{C} \\ \dots \end{cases}$$

When S_C is finite, this is a simple family of trees in the sense of [Flajolet & Sedgewick 09].

 \Rightarrow Enumerative results and random samplers can be obtained by efficient algorithms.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures 00000●	Algorithm 0000000000	Perspectives
Permutations and trees as	combinatorial structures			

For general permutation classes

For non substitution-closed classes, we have only a strict inclusion:

$$\mathcal{C} \subsetneq \bullet + \mathcal{C}^+ \mathcal{C} + \mathcal{C}^- \mathcal{C} + \sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \mathcal{C}^- \mathcal{C}^+ \cdots \mathcal{C}$$

Example: $231 = 21[12, 1] \notin Av(231)$ whereas $21, 12, 1 \in Av(231)$.

The system describing C has to be refined with new equations for these constraints. The system can be computed by an algorithm.

 \Rightarrow Enumerative results and random samplers can be obtained algorithmically, but this is less efficient.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm	Perspectives

Outline

- 1 Permutations, patterns and permutation classes
- 2 Substitution decomposition and decomposition trees
- 3 Permutations and trees as combinatorial structures
- 4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ●○○○○○○○○○	Perspectives
An algorithm from the finite	e basis to the specification			

Summary of results

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○●○○○○○○○○	Perspectives
An algorithm from the finit	e basis to the specification			

First semi-decision procedure

Theorem [Albert & Atkinson 05]: If C contains a finite number of simple permutations, then C has a finite basis and an algebraic g.f..

Constructive proof: compute, for each given class,

- \blacksquare the specification for decomposition trees of ${\mathcal C}$
- a system of equations satisfied by the g.f.

from the finite set of simple permutations in $\ensuremath{\mathcal{C}}$

Testing the precondition:

- Semi-decision procedure
- \hookrightarrow Find simples of size 4, 5, 6, ... until k and k + 1 for which there are 0 simples [Schmerl & Trotter 93]
 - "Very exponential" (~ n!) computation of the simples in C

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm	Perspective
			0000000000	
An algorithm from the fi	nite basis to the specification			

Step 1: Is there a finite number of simple permutations in C? A first decision result

Theorem [Brignall, Ruškuc & Vatter 08]: It is decidable whether C given by its finite basis contains a finite number of simples.

Prop: C = Av(B) contains infinitely many simples iff C contains:

- 1. either infinitely many parallel permutations
- 2. or infinitely many simple wedge permutations
- 3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2. :		Polynomial
	of size 3 or 4 in the $\beta \in B$.	$\mathcal{O}(n \log n)$
3. :	Decidability with	Decidable
	automata techniques	2ExpTime

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○●○○○○○○	Perspectives
An algorithm from the fin	ite basis to the specification			

Polynomial algorithms for the finite number of simples

Points similar to [BRV 08] :

- Encoding by pin words on $\{1, 2, 3, 4, L, R, U, D\}$
- Construction of automata accepting words of pin-permutations π such that $\beta \preccurlyeq \pi$ for some $\beta \in B$

Study of pin-permutations [BBR 09] \Rightarrow better understanding of the relationship between pin words and patterns in permutations

Points specific to [BBPR 10 & 11] :

- Polynomial construction of a (deterministic, complete) automaton for the language $\mathcal{L} = \text{pin words of proper pin-permutations containing some } \beta \in B$
- Is this language co-finite ? Polynomial.
- \hookrightarrow Yes iff the class contains finitely many simples.

Polynomial w.r.t. $n = \sum_{\beta \in B} |\beta|$, but k = |B| is an exponent.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○●○○○○○	Perspectives
An algorithm from the fin	ite basis to the specification			

Step 2: Finding the set of simple permutations in C

Starting point: Find simple permutations in C of size 4, 5, 6, ... until k and k + 1 for which there are 0 simples

Problem: There are $\sim \frac{n!}{e^2}$ simple permutations of size *n*

Reduce the number of simples σ of size *n* that are candidate to the membership to C [Pierrot & Rossin, 11].

Prop: The simples of C_{n+1} can be described as one-point (or special two-points) extensions of the simples of C_n \Rightarrow There are at most $\mathcal{O}(n^2 \cdot |S \cap C_n|)$ candidates of size n + 1.

Test whether σ contains an occurrence of $\beta \in B$: in $\mathcal{O}(n^{|\beta|})$.

Theorem: Computing the finite set of simple permutations in C is done in $\mathcal{O}(N \cdot \ell^{p+2} \cdot |B|)$ with $N = |S \cap C|$, $p = \max\{|\beta| : \beta \in B\}$ and $\ell = \max\{|\pi| : \pi \in S \cap C\}$

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○●○○○○	Perspectives
An algorithm from the finit	e basis to the specification			

Refinement for substitution-closed classes

Prop: C = Av(B) is substitution-closed iff B contains only simples.

Prop [Pierrot & Rossin, 11]: If $\beta \preccurlyeq \sigma$ for β and σ simples, then there are simples $\beta = \sigma_1 \preccurlyeq \sigma_2 \ldots \preccurlyeq \sigma_k = \sigma$ s.t. for all *i*, $|\sigma_i| - |\sigma_{i-1}| = 1$ (or 2 in special cases).

Improvement of the complexity:

- Avoid testing occurrences of $\beta \in B$ in σ candidate simple of C.
- Instead, test whether for every one point (or special two points) deletion in σ resulting in σ' simple, then $\sigma' \in C$.
- \Rightarrow It is more efficient for computing $S \cap C_{n+1}$ from $S \cap C_n$.

Theorem: Computing the finite set of simple permutations in C is done in $\mathcal{O}(N \cdot \ell^4)$ for substitution-closed classes.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○●○○○	Perspectives
An algorithm from the finit	te basis to the specification			

Step 3: Compute the specification for C

From the set S_C of simple permutations in C, the specification for the substitution closure \hat{C} of C is obtained immediately:

If C is substitution-closed, C = Ĉ and we are done.
 Otherwise, C = Ĉ(B^{*}) and propagate the constraints from B^{*} = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○●○○○	Perspectives
An algorithm from the finit	e basis to the specification			

Step 3: Compute the specification for C

From the set S_C of simple permutations in C, the specification for the substitution closure \hat{C} of C is obtained immediately:

- If C is substitution-closed, $C = \hat{C}$ and we are done.
- Otherwise, $C = \hat{C} \langle B^* \rangle$ and propagate the constraints from $B^* = \{\beta \in B : \beta \text{ is not simple }\}$ into the subtrees.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○●○○○	Perspectives
An algorithm from the finit	e basis to the specification			

Step 3: Compute the specification for C

From the set S_C of simple permutations in C, the specification for the substitution closure \hat{C} of C is obtained immediately:

$$\begin{cases} \hat{\mathcal{C}}\langle B^{?} \rangle = \bullet + \hat{\mathcal{C}}^{+} \hat{\mathcal{C}}\langle B^{?} \rangle + \hat{\mathcal{C}}^{-} \hat{\mathcal{C}}\langle B^{?} \rangle + \sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} & \ddots & \hat{\mathcal{C}}\langle B^{?} \rangle \\ \hat{\mathcal{C}}^{+}\langle B^{?} \rangle = \bullet + \hat{\mathcal{C}}^{-} \hat{\mathcal{C}}\langle B^{?} \rangle + \sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} & \ddots & \hat{\mathcal{C}}\langle B^{?} \rangle \\ \hat{\mathcal{C}}^{-}\langle B^{?} \rangle = \bullet + \hat{\mathcal{C}}^{+} \hat{\mathcal{C}}\langle B^{?} \rangle + \sum_{\pi \in \mathcal{S}_{\mathcal{C}}} \hat{\mathcal{C}} \hat{\mathcal{C}} & \cdots & \hat{\mathcal{C}}\langle B^{?} \rangle \end{cases}$$

If C is substitution-closed, C = Ĉ and we are done.
Otherwise, C = Ĉ⟨B*⟩ and propagate the constraints from B* = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel

ć

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○●○○	Perspectives
An algorithm from the finite basis to the specification				

Constraint propagation 1/2

Embeddings of $\beta \in B^*$ into $\pi \in S_C$

- Example: for $\ominus [\mathcal{C}^-, \mathcal{C}]\langle 231 \rangle$, and for the embedding $(23, 1) \hookrightarrow (2, 1)$, we get $\mathcal{C}^- \langle 12 \rangle$.
- additional restrictions α in $B^{?}$ that are blocks of $\beta \in B^{\star}$
- \blacksquare and do it inductively while new constraints α appear
- \blacksquare this terminates since each $\alpha \preccurlyeq \beta$ for some $\beta \in B^{\star}$

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○●○○	Perspectives
An algorithm from the finite basis to the specification				

Constraint propagation 1/2

Embeddings of $\beta \in B^*$ into $\pi \in S_C$

- Example: for $\ominus [\mathcal{C}^-, \mathcal{C}]\langle 231 \rangle$, and for the embedding $(23, 1) \hookrightarrow (2, 1)$, we get $\mathcal{C}^- \langle 12 \rangle$.
- additional restrictions α in $B^{?}$ that are blocks of $\beta \in B^{\star}$
- \blacksquare and do it inductively while new constraints α appear
- \blacksquare this terminates since each $\alpha \preccurlyeq \beta$ for some $\beta \in B^{\star}$

Result: A system describing C, that may be ambiguous **Example**: For 2413[C, C, C, C](1234), the embeddings (1,234) \hookrightarrow (2,4) and (1,234) \hookrightarrow (1,3) produce the terms 2413[C, C(123), C, C] and 2413[C, C, C, C(123)] whose intersection is not empty.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○○●○	Perspectives
An algorithm from the finit	e basis to the specification			

Constraint propagation 2/2

Disambiguation of the system:

- Use formulas of the type $A \cup B = A \cap B \ \uplus \ \overline{A} \cap B \ \uplus \ A \cap \overline{B}$
- In complement set, excluded patterns become mandatory patterns: C_γ for γ ≼ β ∈ B^{*}
- Propagate also mandatory restrictions

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○○●○	Perspectives
An algorithm from the finite basis to the specification				

Constraint propagation 2/2

Disambiguation of the system:

- Use formulas of the type $A \cup B = A \cap B \ \uplus \ \overline{A} \cap B \ \uplus \ A \cap \overline{B}$
- In complement set, excluded patterns become mandatory patterns: C_{γ} for $\gamma \preccurlyeq \beta \in B^{\star}$
- Propagate also mandatory restrictions

Result: An unambiguous system describing C, where the left-hand-sides are $C^{\varepsilon}_{\gamma_1,...,\gamma_p}\langle \alpha_1,...,\alpha_k \rangle$ with $\varepsilon \in \{ ,+,-\}$.

Termination: all α_i and γ_j are patterns of some $\beta \in B^*$

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○○●○	Perspectives
An algorithm from the finite basis to the specification				

Constraint propagation 2/2

Disambiguation of the system:

- Use formulas of the type $A \cup B = A \cap B \ \uplus \ \overline{A} \cap B \ \uplus \ A \cap \overline{B}$
- In complement set, excluded patterns become mandatory patterns: C_{γ} for $\gamma \preccurlyeq \beta \in B^{\star}$
- Propagate also mandatory restrictions

Result: An unambiguous system describing C, where the left-hand-sides are $C^{\varepsilon}_{\gamma_1,...,\gamma_{\rho}}\langle \alpha_1,\ldots,\alpha_k \rangle$ with $\varepsilon \in \{ ,+,-\}$.

Termination: all α_i and γ_j are patterns of some $\beta \in B^*$

Theorem: The propagation of the constraints to obtain a specification for C is algorithmic, but there is an explosion of the number of equations in the system.

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm ○○○○○○○○●	Perspectives	
An algorithm from the finite basis to the specification					

Putting things together

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives

Outline

- 1 Permutations, patterns and permutation classes
- 2 Substitution decomposition and decomposition trees
- 3 Permutations and trees as combinatorial structures
- 4 An algorithm from the finite basis to the specification

5 Perspectives

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives ●000
Perspectives				

What next?

About the algorithm:

- Implementation in progress
- Complexity analysis of step 3 (explosion of the system)
- Dependency of the complexity of Boltzmann random samplers w.r.t. the size of the specification

With the algorithm:

- From the specifications, estimate growth rates of classes
- Are random permutations in C "like" in \mathfrak{S} ?
- Compare statistics on C and \mathfrak{S} , or on C_1 and C_2

Related questions:

- How general is our algorithm?
- Classes with infinite set of simples, but finitely described?
- Use specification of a class to decide membership efficiently?

Mathilde Bouvel

Almost 30 000 permutations of size 500 in Av(2413, 1243, 2341, 531642, 41352)

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives ○○●○
Perspectives				

Improvements for substitution-closed classes

Prop: C = Av(B) is substitution-closed iff *B* contains only simple permutations.

For simple β , $\beta \preccurlyeq \pi$ translates into a factor relation on pin words. $\Rightarrow B$ gives a set of factors F (whose lengths sum to $\mathcal{O}(n)$) such that w has a factor in F iff $\beta \preccurlyeq \pi_w$ for some $\beta \in B$

[Aho & Corasick 75]:

build in linear time a complete deterministic automaton A_F recognizing the language of words containing a factor in F

 $\mathcal{L}(\mathcal{A}_F)$ co-finite iff finite number of simples in \mathcal{C} ... and testing the co-finiteness of $\mathcal{L}(\mathcal{A}_F)$ is in linear time.

Theorem: Testing the finiteness of the number of simple permutations in a substitution-closed class is solved in $O(n \log n)$

Mathilde Bouvel

Permutation classes	Decomposition trees	Combinatorial structures	Algorithm 0000000000	Perspectives ○○○●
Perspectives				

Polynomial algorithm for general classes

When β is not simple (but is a pin permutation), $\beta \preccurlyeq \pi$ translates into a piecewise factor relation on pin words.

Def: $f = (f_1, f_2, \dots, f_k)$ is a piecewise factor of w iff $w = w_0 f_1 w_1 f_2 w_2 \dots w_{k-1} f_k w_k$.

Piecewise factors F_{β} corresponding to $\beta \in B$ are computed inductively on the decomposition trees of β .

And similarly for the deterministic automaton \mathcal{A}_{β} recognizing the language of words containing a piecewise factor in F_{β} .

Construction of \mathcal{A}_{β} in $\mathcal{O}(|\beta|^3)$. Then build the product of the \mathcal{A}_{β} for $\beta \in B$ (deterministic union).

Theorem: Testing the finiteness of the number of simple permutations in a permutation class is solved in $\mathcal{O}(n^{3k})$ \blacktriangleright Back

Mathilde Bouvel