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Guideline for the talk

Data:

B a finite set of permutations (the excluded patterns),

C = Av(B) the class of permutations that avoid every pattern
of B.

Problem:
Describe an algorithm to obtain automatically from B

some enumerative results on C, in terms of generating
function C (z) =

∑
|Avn(B)|zn,

a random sampler of permutations in C, that is uniform on
Avn(B) for each n.

Result:
Such an algorithm . . . that works when C contains a finite number
of simple permutations. Additional algorithms for:

testing if C contains a finite number of simple permutations

computing from B the finite set of simple permutations of C



Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the simple permutations to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes



Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Outline

1 Permutations, patterns and permutation classes

2 Substitution decomposition and decomposition trees

3 Permutations and trees as combinatorial structures

4 An algorithm from the simple permutations to the specification

5 Perspectives

Mathilde Bouvel

Algorithmic methodology for the enumeration and random generation of permutation classes



Permutation classes Decomposition trees Combinatorial structures Algorithm Perspectives

Permutations, patterns and permutation classes

Representation of permutations

Permutation: Bijection from [1..n] to itself. Set Sn.

Linear representation:
σ = 1 8 3 6 4 2 5 7

Two lines
representation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Representation as
a product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical representation:

i

σ(i)
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Permutations, patterns and permutation classes

Patterns in permutations

Pattern (order) relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Mathilde Bouvel
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Permutations, patterns and permutation classes

Permutation classes

Permutation class : set of permutations downward-closed for 4.

Av(B) : the class of permutations that avoid every pattern of B.
If B is an antichain then B is the basis of Av(B).

Conversely : Every class C can be characterized by its basis:

C = Av(B) for B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}

A class has a unique basis.
A basis can be either finite or infinite.

Origin : [Knuth 73] with stack-sortable permutations = Av(231)

Enumeration[Stanley & Wilf 92][Marcus & Tardos 04] : |C ∩Sn| ≤ cn

Mathilde Bouvel
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Permutations, patterns and permutation classes

Problematics

Combinatorics: study of classes defined by their basis.

↪→ Enumeration.

↪→ Exhaustive generation.

Algorithmics: problematics from text algorithmics.

↪→ Pattern matching, longest common pattern.

↪→ Linked with testing the membership of σ to a class.

Combinatorics (and algorithms): study families of classes.

↪→ A class is not always described by its basis.

↪→ Obtain general results on the structure of a class. . .

↪→ . . . and do it automatically (with algorithms).
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Substitution decomposition and decomposition trees

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes.

[Möhring & Radermacher 84]: general framework.

Specialization: Modular decomposition of graphs.

Relies on:

a principle for building objects (permutations, graphs) from
smaller objects: the substitution.

some “basic objects” for this construction: simple
permutations, prime graphs.

Required properties:

every object can be decomposed using only “basic objects”.

this decomposition is unique.

Mathilde Bouvel
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Substitution decomposition and decomposition trees

Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.
Mathilde Bouvel
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Substitution decomposition and decomposition trees

Simple permutations

Interval (or block) = set of elements of
σ whose positions and values form
intervals of integers
Example: 5 7 4 6 is an interval of
2 5 7 4 6 1 3

Simple permutation = permutation
that has no interval, except the trivial
intervals: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple.

The smallest simple: 1 2, 2 1, 2 4 1 3, 3 1 4 2

Mathilde Bouvel
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Substitution decomposition and decomposition trees

Substitution decomposition of permutations

Theorem: Every σ (6= 1) is uniquely decomposed as

12[α(1), α(2)], where α(1) is ⊕-indecomposable

21[α(1), α(2)], where α(1) is 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable : that cannot be written as 12[α(1), α(2)]

Result stated as in [Albert & Atkinson 05]

Can be rephrased changing the first two items into:

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable
k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

Decomposing recursively inside the α(i) ⇒ decomposition tree
Mathilde Bouvel
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Substitution decomposition and decomposition trees

Decomposition tree: witness of this decomposition

Example: Decomposition tree
of σ =
10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:
• ⊕ = 12 . . . k and 	 = k . . . 21
= linear nodes.
• π simple of size ≥ 4 = prime
node.
• No edge ⊕−⊕ nor 	−	.
• Ordered trees.

Expansion of
⊕

T1 T2 T3 . . . into

⊕

T1 ⊕

T2 T3 . . .

and recursively, for the version of
the trees of [AA05]

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Mathilde Bouvel
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Substitution decomposition and decomposition trees

Computation and examples of application

Computation: in linear time. [Uno & Yagiura 00] [Bui Xuan, Habib &

Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

In algorithms:

Pattern matching [Bose, Buss & Lubiw 98] [Ibarra 97]

Algorithms for bio-informatics [Bérard, Bergeron, Chauve & Paul

07] [Bérard, Chateau, Chauve, Paul & Tannier 08]

In combinatorics:

Simple permutations [Albert, Atkinson & Klazar 03]

Classes closed by substitution product [Atkinson & Stitt 02]

[Brignall 07] [Atkinson, Ruškuc & Smith 09]

Exhibit the structure of classes [Albert & Atkinson 05] [Brignall,

Huczynska & Vatter 08a,08b] [Brignall, Ruškuc & Vatter 08]
Mathilde Bouvel
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Permutations and trees as combinatorial structures

Combinatorial classes and generating functions

Notations:

C = ∪n≥0Cn with finite number cn = |Cn| of objects of size n

Generating function C (z) =
∑

cnz
n

Recursive description with constructors ⇒ Equation on the g.f.:

Constructor Notation C (z)

Atom Z z

Disjoint Union A+ B A(z) + B(z)

Cartesian Product A× B A(z)B(z)

Sequence Seq(A) 1

1− A(z)
Restricted Seq. Seq=k(A) A(z)k

[Flajolet & Sedgewick 09]
Mathilde Bouvel
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Permutations and trees as combinatorial structures

Combinatorial classes and random samplers

Uniform sampling: objects of size n have the same probability

Two methods based on the recursive description of objects:

Recursive method [Flajolet, Zimmerman & Van Cutsem 94]:
size n chosen in advance. Requires to know the ck for k ≤ n.
Boltzmann method [Duchon, Flajolet, Louchard & Schaeffer 04]:
size n not fixed. Needs the evaluation of C (z) at one point x .

Z return an atom

A+ B call ΓA(x) with proba. A(x)
A(x)+B(x) , else ΓB(x)

A× B call ΓA(x) and ΓB(x)

Seq(A) choose k according to a geometric law of parameter
A(x) and call ΓA(x) k times

Seq=k(A) call the sampler ΓA(x) k times

Mathilde Bouvel
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Permutations and trees as combinatorial structures

Example: binary trees

B = ∪n≥1Bn
where Bn denotes the set of binary trees with n leaves.

Recursive description (also called specification): B = • +

◦
B B

Equation for the g.f.: B(z) = z + B(z)2, hence B(z) = 1−
√
1−4z
2 .

Boltzmann random sampler ΓB(x) for B:

Data: x , B(x)

Result: a random binary tree

Procedure:
Choose r uniformly at random on [0, 1]
If r < x

B(x) then return •

Else return

◦

ΓB(x) ΓB(x)

Mathilde Bouvel
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Permutations and trees as combinatorial structures

Specifications for permutation classes

For all permutations, with S the set of all simple permutations:

S = •+

⊕

S+ S +

	

S− S +
∑

π∈S

π

S S . . . S

S+ = •+

	

S− S +
∑

π∈S

π

S S . . . S

S− = •+

⊕

S+ S +
∑

π∈S

π

S S . . . S

⇒The generating functions of S and S are related
[Albert, Atkinson & Klazar 03].

This can be adapted to (substitution-closed and arbitrary)
permutation classes [Albert & Atkinson 05].

Mathilde Bouvel
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Permutations and trees as combinatorial structures

The simpler case of substitution-closed classes

A permutation class C is substitution-closed when
π[α(1), α(2), . . . , α(k)] ∈ C for all π, α(1), α(2), . . . , α(k) ∈ C.

Hence, with SC = C ∩ S the set of simple permutations in C:C = •+

⊕

C+ C +

	

C− C +
∑

π∈SC

π

C C . . . C
. . .

When SC is finite, this is a simple family of trees in the sense of
[Flajolet & Sedgewick 09].

⇒Enumerative results and random samplers can be obtained by
efficient algorithms.

Mathilde Bouvel
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Permutations and trees as combinatorial structures

For general permutation classes

For non substitution-closed classes, we have only a strict inclusion:

C  •+

⊕

C+ C +

	

C− C +
∑
π∈SC

π

C C . . . C

Example: 	[12, 1] /∈ Av(231) whereas 12, 1 ∈ Av(231).

The system describing C has to be refined with new equations for
these constraints. The system can be computed by an algorithm.

⇒Enumerative results and random samplers can be obtained
algorithmically, but this is less efficient.

Mathilde Bouvel
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Summary of the overall procedure

Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n) O(n    )

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

O(N. l  ) O(N. l      )

direct
Constraints propagation

exponential (?)

Specification for C

Boltzmann sampler

Approximate-size

O(size)

Exact-size

O(size  )

Generating functions

STOP

3 p+3

3k

2
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An algorithm from the simple permutations to the specification

From the simple permutations to the specification for C

From the set SC of simple permutations in C, the specification for
the substitution closure Ĉ of C is obtained immediately:

Ĉ = •+

⊕

Ĉ+ Ĉ +

	

Ĉ− Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

Ĉ+ = •+

	

Ĉ− Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

Ĉ− = •+

⊕

Ĉ+ Ĉ +
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ

If C is substitution-closed, C = Ĉ and we are done.
Otherwise, C = Ĉ〈B?〉 and propagate the constraints from
B? = {β ∈ B : β is not simple } into the subtrees.

Mathilde Bouvel
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Ĉ〈B?〉 = •+

⊕

Ĉ+ Ĉ〈B?〉+

	

Ĉ− Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

Ĉ+〈B?〉 = •+

	

Ĉ− Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉

Ĉ−〈B?〉 = •+

⊕

Ĉ+ Ĉ〈B?〉+
∑

π∈SC

π

Ĉ Ĉ . . . Ĉ〈B?〉
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Otherwise, C = Ĉ〈B?〉 and propagate the constraints from
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π
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Ĉ Ĉ . . . Ĉ〈B?〉
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An algorithm from the simple permutations to the specification

Pushing constraints into the subtrees

Embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}
Example:
for 	[C−, C]〈3412〉, there are 3 embeddings of 3412 into 21,
(34, 12) ↪→ (2, 1) and the trivial ones (3412, ∅) ↪→ (2, 1) and
(∅, 3412) ↪→ (2, 1).

additional restrictions α in B? that are blocks of β ∈ B?

and do it inductively while new constraints α appear

this terminates since each α 4 β for some β ∈ B?

Mathilde Bouvel
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An algorithm from the simple permutations to the specification

Pushing constraints into the subtrees

Embeddings of β ∈ B? into π ∈ SC ∪ {12, 21}
Example:
for 	[C−, C]〈3412〉, there are 3 embeddings of 3412 into 21,
(34, 12) ↪→ (2, 1) and the trivial ones (3412, ∅) ↪→ (2, 1) and
(∅, 3412) ↪→ (2, 1).

additional restrictions α in B? that are blocks of β ∈ B?

and do it inductively while new constraints α appear

this terminates since each α 4 β for some β ∈ B?

Result: A system describing C, that may be ambiguous

Mathilde Bouvel
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An algorithm from the simple permutations to the specification

An ambiguous system

Example: At the first step for 	[C−, C]〈3412〉, we get:

	

Ĉ− Ĉ〈3412〉 =

	
Ĉ−〈3412〉 Ĉ ∩

	

Ĉ− Ĉ〈3412〉 ∩ (

	
Ĉ−〈12〉 Ĉ ∪

	

Ĉ− Ĉ〈12〉)

=

	
Ĉ−〈12〉 Ĉ〈3412〉 ∪

	
Ĉ−〈3412〉 Ĉ〈12〉

Mathilde Bouvel
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An algorithm from the simple permutations to the specification

An ambiguous system

Example: At the first step for 	[C−, C]〈3412〉, we get:

	

Ĉ− Ĉ〈3412〉 =

	
Ĉ−〈3412〉 Ĉ ∩

	

Ĉ− Ĉ〈3412〉 ∩ (

	
Ĉ−〈12〉 Ĉ ∪

	

Ĉ− Ĉ〈12〉)

=

	
Ĉ−〈12〉 Ĉ〈3412〉 ∪

	
Ĉ−〈3412〉 Ĉ〈12〉

Rem. 1 The new excluded pattern 12 appears, and this new
constraint should be further pushed into the substrees.

Rem. 2 The two terms of the union have a non-empty intersection
⇒ Need of disambiguation.

Mathilde Bouvel
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An algorithm from the simple permutations to the specification

Disambiguation of the system

Use formulas of the type A ∪ B = A ∩ B ] A ∩ B ] A ∩ B
In complement set, excluded patterns become mandatory
patterns: Cγ for γ 4 β ∈ B?

Propagate also mandatory restrictions

Example: From

	

Ĉ− Ĉ〈3412〉 =

	
Ĉ−〈12〉 Ĉ〈3412〉 ∪

	
Ĉ−〈3412〉 Ĉ〈12〉,

we obtain:

	

Ĉ− Ĉ〈3412〉 =

	
Ĉ−〈12〉Ĉ〈12〉 ]

	
Ĉ−12〈3412〉Ĉ〈12〉 ]

	
Ĉ−〈12〉Ĉ12〈3412〉.

Notice that the terms

	
Ĉ−〈3412〉Ĉ3412〈12〉 and

	
Ĉ−3412〈12〉Ĉ〈3412〉

are empty, and have been deleted.
Mathilde Bouvel
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An algorithm from the simple permutations to the specification

Disambiguation of the system

Result: An unambiguous system (i.e. a combinatorial specification)
describing C, where the left-hand-sides are Cεγ1,...,γp〈α1, . . . , αk〉
with ε ∈ { ,+,−}.

Termination: all αi and γj are patterns of some β ∈ B?

Theorem: The propagation of the constraints to obtain a
specification for C is algorithmic, but there is an explosion of the
number of equations in the system.

Open question: provide bounds on the number of equations of the
system produced.

Mathilde Bouvel
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Perspectives

What next?

About the algorithm:

Implementation in progress

Complexity analysis of step 3 (explosion of the system)

Dependency of the complexity of Boltzmann random samplers
w.r.t. the size of the specification

With the algorithm:

From the specifications, estimate growth rates of classes

Are random permutations in C “like” in S?

Compare statistics on C and S, or on C1 and C2
Related questions:

How general is our algorithm?

Classes with infinite set of simples, but finitely described?

Use specification of a class to decide membership efficiently?

Mathilde Bouvel
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Almost 30 000 permutations of size 500 in
Av(2413, 1243, 2341, 531642, 41352)
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