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Enumeration sequences and Wilf-equivalence

Let C be any combinatorial class, i.e.

C is equipped with a notion of size

such that for any n there are finitely many objects of size n in C.

The number of objects of size n in C is denoted cn.

To C, we associate:

its enumeration sequence (cn),

its generating function
∑

cnt
n.
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Enumeration sequences and Wilf-equivalence

Let C be any combinatorial class, i.e.

C is equipped with a notion of size

such that for any n there are finitely many objects of size n in C.

The number of objects of size n in C is denoted cn.

To C, we associate:

its enumeration sequence (cn),

its generating function
∑

cnt
n.

Sometimes (or very often!), two classes have the same enumeration
sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology
from the Permutation Patterns literature).
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Motivation: from pattern-avoiding permutations

Sn = set of permutations of {1, 2, . . . , n}, seen as words σ(1)σ(2) . . . σ(n)

π ∈ Sk is a pattern of σ ∈ Sn if ∃
1 ≤ i1 < . . . < ik ≤ n such that the
sequence σ(i1) . . . σ(ik) is in the same
relative order as π.

Example:
2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.
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π ∈ Sk is a pattern of σ ∈ Sn if ∃
1 ≤ i1 < . . . < ik ≤ n such that the
sequence σ(i1) . . . σ(ik) is in the same
relative order as π.

Example:
2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.

Notation: Av(π1, π2, . . .) is the class of all permutations that do not
contain π1, nor π2, . . . as a pattern.
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Sn = set of permutations of {1, 2, . . . , n}, seen as words σ(1)σ(2) . . . σ(n)

π ∈ Sk is a pattern of σ ∈ Sn if ∃
1 ≤ i1 < . . . < ik ≤ n such that the
sequence σ(i1) . . . σ(ik) is in the same
relative order as π.

Example:
2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.

Notation: Av(π1, π2, . . .) is the class of all permutations that do not
contain π1, nor π2, . . . as a pattern.

π and τ (or Av(π) and Av(τ)) are Wilf-equivalent if Av(π) and Av(τ)
have the same enumeration.
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Sn = set of permutations of {1, 2, . . . , n}, seen as words σ(1)σ(2) . . . σ(n)

π ∈ Sk is a pattern of σ ∈ Sn if ∃
1 ≤ i1 < . . . < ik ≤ n such that the
sequence σ(i1) . . . σ(ik) is in the same
relative order as π.

Example:
2 1 3 4 is a pattern of 3 1 2 8 5 4 7 9 6.

Notation: Av(π1, π2, . . .) is the class of all permutations that do not
contain π1, nor π2, . . . as a pattern.

π and τ (or Av(π) and Av(τ)) are Wilf-equivalent if Av(π) and Av(τ)
have the same enumeration.

For R and S sets of permutations, R and S (or Av(R) and Av(S)) are
Wilf-equivalent if Av(R) and Av(S) have the same enumeration.
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Some Wilf-equivalences for pattern-avoiding permutations

Small excluded patterns:

Av(123) and Av(231) are Wilf-equivalent, and enumerated by the
Catalan numbers Catn = 1

n+1

(2n
n

)
There are three Wilf-equivalence classes for permutation classes
Av(π) with π of size 4, the enumeration of Av(1324) being open.

Check all Wilf-equivalences between Av(π, τ) when π and τ have size
3 or 4 on Wikipedia.

Some results for arbitrary long patterns:

Av(231⊕ π) and Av(312⊕ π) [West & Stankova 02]

First unbalanced Wilf-equivalences:

Av(1324, 3416725) and Av(1234);
Av(2143, 3142, 246135) and Av(2413, 3142) [Burstein & Pantone 14+]
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Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes Av(231, π).

Harmless assumption: In Av(231, π), throughout the talk, π avoids 231.
(or we are just studying Av(231). . . )
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Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes Av(231, π).

Harmless assumption: In Av(231, π), throughout the talk, π avoids 231.
(or we are just studying Av(231). . . )

Most important remark: Classes Av(231, π) are families of Catalan objects
(Av(231)) with an additional avoidance restriction.

So, equivalently but somehow more generally, our goal rephrases as:

find all Wilf-equivalences between “pattern-avoiding Catalan objects”.
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Substructures in Catalan objects



Some Catalan structures, and their substructures

231-avoiding permutations

41327658 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems
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Some Catalan structures, and their substructures

231-avoiding permutations

31254 =

Plane forests

Complete binary trees

·
· · · ·

·
· ·

·

Dyck paths

Arch systems

Essential fact: The usual bijections re-
lating our quartet of Catalan structures
preserve the substructure relation.
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Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined
by the avoidance of one Catalan object.

Motivation: permutation classes Av(231, π)

In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!
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Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined
by the avoidance of one Catalan object.

Motivation: permutation classes Av(231, π)

In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!

Which arch systems A are Wilf-equivalent?
i.e. which classes Av(A) have the same enumeration?

Bijections between Av(A) and Av(B) for Wilf-equivalent arch
systems A and B?

How many Wilf-equivalence classes of arch systems are there?

The special case of the Wilf-equivalence class of Nn = ... ... .

Comparison between the enumeration sequences of Av(A) and Av(B)
for some A and B that are not equivalent.

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures 8 / 25



Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

123-avoiding permutations

86421753 =
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

123-avoiding permutations

54213 =

Non-crossing partitions

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.
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Other Catalan objects having a natural notion of substructure:

123-avoiding permutations

54213 =

Non-crossing partitions

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:

Av(231) is

1

12 21

123 132 213 312 321

but Av(123) is

1

12 21

132 213 231 312 321

.
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

123-avoiding permutations

54213 =

Non-crossing partitions

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:

Av(231) is

1

12 21

123 132 213 312 321

but Av(123) is

1

12 21

132 213 231 312 321

.

⇒ These Catalan objects are not part of our study. (Future work maybe?)
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An equivalence relation
strongly related to Wilf-equivalence



An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch
systems having a single outermost arch.
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An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch
systems having a single outermost arch.

The binary relation, ∼, is the finest equivalence relation that satisfies:

(0) A ∼ A

(1) A ∼ B =⇒ A ∼ B

(2) a ∼ b =⇒ PaQ ∼ PbQ

(3) PabQ ∼ PbaQ

(4) a bc ∼ ab c

where A, B, P and Q denote arbitrary arch systems
and a, b and c denote atoms or empty arch systems.
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∼ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ∼ refines Wilf-equivalence.
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Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ∼ refines Wilf-equivalence.

Conjecture: ∼ coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where ∼ has
16,709 equivalence classes on the Cat15 = 9,694,845 arch systems).
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∼ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ∼ refines Wilf-equivalence.

Conjecture: ∼ coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where ∼ has
16,709 equivalence classes on the Cat15 = 9,694,845 arch systems).

Terminology: The equivalence classes of ∼ are called cohorts.

To any arch system A, we can associate:

its ∼-equivalence class, i.e., its cohort;

its avoidance class Av(A);

the enumeration sequence, or generating function FA, of Av(A).
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Overview of the proof

Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.
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Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent. . .

Inductive case: One case for each rule defining ∼.

Rule bijective proof analytic proof

(1) A ∼ B =⇒ A ∼ B yes

(2) a ∼ b =⇒ PaQ ∼ PbQ yes

(3) PabQ ∼ PbaQ yes

(4) a bc ∼ ab c no yes
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Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that A ∼ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent. . .

Inductive case: One case for each rule defining ∼.

Rule bijective proof analytic proof

(1) A ∼ B =⇒ A ∼ B yes

(2) a ∼ b =⇒ PaQ ∼ PbQ yes

(3) PabQ ∼ PbaQ yes

(4) a bc ∼ ab c no yes

(4 weak) a b ∼ ba yes

Having only bijective proofs would allow to “unfold” the induction into a
bijective proof that Av(A) and Av(B) are Wilf-equivalent, for all A ∼ B.
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Bijective proof in case (2)

(2) a ∼ b =⇒ PaQ ∼ PbQ

Take a ∼ b and suppose that Av(a) and Av(b) are Wilf-equivalent.

Take a size-preserving bijection σ : X 7→ X σ from Av(a) to Av(b).

Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:
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Bijective proof in case (2)

(2) a ∼ b =⇒ PaQ ∼ PbQ

Take a ∼ b and suppose that Av(a) and Av(b) are Wilf-equivalent.

Take a size-preserving bijection σ : X 7→ X σ from Av(a) to Av(b).

Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:

If X avoids PQ, then take X τ = X .

Otherwise, apply σ to all intervals determined by the arches having
one extremity between the leftmost P and the rightmost Q:

X =
PL QR

I1 I2 . . . Ik
7→ X τ =

PL QR

Iσ1 Iσ2 . . . Iσk

X τ avoids PbQ if and only if X avoids PaQ.
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .

Compute a system for Fa bc :

Fa bc = 1 + tFAFa bc + t(Fa bc − FA)F bc

Av(a bc ) = ε + X Y + Z T
X avoids A Z contains A
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .

Compute a system for Fa bc :

Fa bc = 1 + tFAFa bc + t(Fa bc − FA)F bc

F bc = 1 + tFbcF bc

Fbc = 1 + tFBFbc + t(Fbc − FB)Fc

Fc = 1 + tFCFc
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .

Compute a system for Fa bc :

The solution Fa bc is a terrible mess depending on FA, FB and FC
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .

Compute a system for Fa bc :

The solution Fa bc is a terrible mess depending on FA, FB and FC
. . . but symmetric in FA, FB and FC !

Consequently, Fa bc = Fc ab = F ab c .
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Analytic proof in case (4)

(4) a bc ∼ ab c

Notations: a = A , b = B and c = C .
FX = the generating function of Av(X ).

We want that Fa bc = F ab c .

Compute a system for Fa bc :

The solution Fa bc is a terrible mess depending on FA, FB and FC
. . . but symmetric in FA, FB and FC !

Consequently, Fa bc = Fc ab = F ab c .

Using F X = 1/(1− tFX ), we can write:

Fa bc =
1− t(FaFb + FbFc + FcFa − FaFbFc)

1− t(Fa + Fb + Fc − FaFbFc)
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How many cohorts?

How many Wilf-equivalence classes ?



Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709 . . .
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Up to size 15, there are as many Wilf-equivalence as cohorts:
1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709 . . .

For any size n, an upper bound on the number of Wilf-equivalence classes
of classes Av(A), where A is an arch system with n arches is:

Catn = number of arch systems with n arches
= number of plane forests of size n: ∼ 1√

π
· 4n · n−3/2
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of classes Av(A), where A is an arch system with n arches is:

Catn = number of arch systems with n arches
= number of plane forests of size n: ∼ 1√

π
· 4n · n−3/2

Improved upper bounds can also be obtained:

Number of non-plane forests of size n: ∼ 0.440 · 2.9558n · n−3/2

Number of cohorts of arch systems of size n: ∼ 0.455 · 2.4975n · n−3/2
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Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1 478, 3 290, 7 390, 16 709 . . .

For any size n, an upper bound on the number of Wilf-equivalence classes
of classes Av(A), where A is an arch system with n arches is:

Catn = number of arch systems with n arches
= number of plane forests of size n: ∼ 1√

π
· 4n · n−3/2

Improved upper bounds can also be obtained:

Number of non-plane forests of size n: ∼ 0.440 · 2.9558n · n−3/2

Number of cohorts of arch systems of size n: ∼ 0.455 · 2.4975n · n−3/2

Moral of the story:
Many Wilf-equivalences between classes Av(A) avoiding an arch system A!
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

φ←→
and atoms correspond to (plane) trees.
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

φ←→
and atoms correspond to (plane) trees.

Proposition: If φ(A) = φ(B) as non-plane forests, then A ∼ B.

Sketch of proof:

(3) PabQ ∼ PbaQ: The order of the trees does not affect the cohort.

(1) A ∼ B =⇒ A ∼ B and (2) a ∼ b =⇒ PaQ ∼ PbQ:
This also holds in context, i.e. for siblings.
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

φ←→
and atoms correspond to (plane) trees.

Proposition: If φ(A) = φ(B) as non-plane forests, then A ∼ B.

Sketch of proof:

(3) PabQ ∼ PbaQ: The order of the trees does not affect the cohort.

(1) A ∼ B =⇒ A ∼ B and (2) a ∼ b =⇒ PaQ ∼ PbQ:
This also holds in context, i.e. for siblings.

Corollary: There are fewer cohorts than non-plane forests,
hence fewer Wilf-equivalence classes than non-plane forests.
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Asymptotic estimate of the number of cohorts

Interpretation of (4’) a bc ∼ ab c on forests:
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Asymptotic estimate of the number of cohorts

Interpretation of (4’) a bc ∼ ab c on trees:

Ta

Tb Tc

∼

Ta Tb

Tc
;

Ta

Tb
∼

Ta Tb

∼
Ta

Tb

;
Ta

∼

Ta

∼
Ta

Proposition: The generating function of cohorts is A(t)/t where

A = t + tA +
1

t
MSet≥2(t2MSet≥3(A)) + tMSet≥3(A)

where MSet(Z ) = exp(
Z (t)

1
+

Z (t2)

2
+

Z (t3)

3
+

Z (t4)

4
+ . . .)

MSet≥2(Z ) = MSet(Z )− 1− Z (t)

MSet≥3(Z ) = MSet(Z )− 1− Z (t)− 1

2

(
Z (t)2 + Z (t2)

)

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures 19 / 25



Asymptotic estimate of the number of cohorts

Interpretation of (4’) a bc ∼ ab c on trees:

Ta

Tb Tc

∼

Ta Tb

Tc
;

Ta

Tb
∼

Ta Tb

∼
Ta

Tb

;
Ta

∼

Ta

∼
Ta

Proposition: The generating function of cohorts is A(t)/t where

A = t + tA +
1

t
MSet≥2(t2MSet≥3(A)) + tMSet≥3(A)

Proposition: The number of cohorts is asymptotically equivalent to
c · γn · n−3/2 where c ≈ 0.455 and γ ≈ 2.4975.

Proof: Use the “twenty steps” of [Harary, Robinson & Schwenk 75].

This is an upper bound (conjecturally tight) on the number of
Wilf-equivalence classes of classes Av(A) defined by the avoidance of an
arch system A of size n.
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Further results:
the “main” cohort,

and comparison between cohorts



Original motivation for our work

Define the sequence (C (n)) of generating functions by
C (0) = 1 and C (n) = 1

1−t C (n−1) for n ≥ 1.
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Original motivation for our work

Define the sequence (C (n)) of generating functions by
C (0) = 1 and C (n) = 1

1−t C (n−1) for n ≥ 1.

Proposition: The generating function of Av(231, π) is C (n) whenever:

π = k . . . 21 · n . . . (k + 2)(k + 1) for any 1 ≤ k ≤ n
[Mansour & Vainshtein 01]

π is a “wedge permutation” of size n [Mansour & Vainshtein 02]

π = λk ⊕ λn−k for any 1 ≤ k ≤ n, with e.g. λ6 = [A. & B. 13]

These were proved independently (and analytically).
Our original goal was a uniform (and possibly bijective) proof.
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Original motivation for our work

Define the sequence (C (n)) of generating functions by
C (0) = 1 and C (n) = 1

1−t C (n−1) for n ≥ 1.

Proposition: The generating function of Av(231, π) is C (n) whenever:

π = k . . . 21 · n . . . (k + 2)(k + 1) for any 1 ≤ k ≤ n
[Mansour & Vainshtein 01]

π is a “wedge permutation” of size n [Mansour & Vainshtein 02]

π = λk ⊕ λn−k for any 1 ≤ k ≤ n, with e.g. λ6 = [A. & B. 13]

These were proved independently (and analytically).
Our original goal was a uniform (and possibly bijective) proof.

Remark:
C (n) is also the generating function of Dyck path of height at most n.

New results:
We can explain these statements (and more) studying the “main” cohort.
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The main cohort

Definition: Nn = ... ... is the nested arch system with n arches.
The main cohort (of size n) Mn is the cohort of Nn.

Theorem: The arch systems A such that the generating function FA of
Av(A) is C (n) are exactly those of Mn.
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Remarks:

This encapsulates all results of previous slides.
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The main cohort

Definition: Nn = ... ... is the nested arch system with n arches.
The main cohort (of size n) Mn is the cohort of Nn.

Theorem: The arch systems A such that the generating function FA of
Av(A) is C (n) are exactly those of Mn.

Remarks:

This encapsulates all results of previous slides.

It also generalizes them to more excluded patterns.

↪→ There are Motzn =
bn/2c∑
k=0

( n
2k

)
Catk objects in the main cohort.
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The main cohort

Definition: Nn = ... ... is the nested arch system with n arches.
The main cohort (of size n) Mn is the cohort of Nn.

Theorem: The arch systems A such that the generating function FA of
Av(A) is C (n) are exactly those of Mn.

Remarks:

This encapsulates all results of previous slides.

It also generalizes them to more excluded patterns.

It provides a bijective explanation of all these Wilf-equivalences.

↪→ Because rule (4) defining ∼ is useless to explain ∼-equivalences inside
the main cohort, the proof of our main theorem gives bijections
between Av(A) and Av(B) for A,B ∈Mn.
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Definition: Nn = ... ... is the nested arch system with n arches.
The main cohort (of size n) Mn is the cohort of Nn.

Theorem: The arch systems A such that the generating function FA of
Av(A) is C (n) are exactly those of Mn.

Remarks:

This encapsulates all results of previous slides.

It also generalizes them to more excluded patterns.

It provides a bijective explanation of all these Wilf-equivalences.

Proof:

For A ∈Mn, FA = C (n) follows from main theorem and FNn = C (n).
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The main cohort

Definition: Nn = ... ... is the nested arch system with n arches.
The main cohort (of size n) Mn is the cohort of Nn.

Theorem: The arch systems A such that the generating function FA of
Av(A) is C (n) are exactly those of Mn.

Remarks:

This encapsulates all results of previous slides.

It also generalizes them to more excluded patterns.

It provides a bijective explanation of all these Wilf-equivalences.

Proof:

For A ∈Mn, FA = C (n) follows from main theorem and FNn = C (n).

Why not for other A? For A of size n, if A /∈Mn then C (n)

dominates FA term by term (and eventually strictly).

↪→ This follows from results on the comparison of cohorts.
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Comparison of cohorts

A,B arch systems. Generating functions FA and FB for Av(A) and Av(B).

Definition: Write A ≤ B when FB dominates FA term by term,
and A < B when FB dominates FA term by term and eventually strictly.
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Comparison of cohorts

A,B arch systems. Generating functions FA and FB for Av(A) and Av(B).

Definition: Write A ≤ B when FB dominates FA term by term,
and A < B when FB dominates FA term by term and eventually strictly.

Proposition: If A ≤ B then A ≤ B , and if A < B then A < B .

Proof: Recall the bijective proof for case (1) of main theorem:
from a bijection Av(A)→ Av(B), build a bijection Av( A )→ Av( B ).

The same construction applies to injections instead of bijections
(resp. injections which eventually fail to be surjective).

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures 23 / 25



Comparison of cohorts

A,B arch systems. Generating functions FA and FB for Av(A) and Av(B).

Definition: Write A ≤ B when FB dominates FA term by term,
and A < B when FB dominates FA term by term and eventually strictly.

Proposition: If A ≤ B then A ≤ B , and if A < B then A < B .

Proof: Recall the bijective proof for case (1) of main theorem:
from a bijection Av(A)→ Av(B), build a bijection Av( A )→ Av( B ).

The same construction applies to injections instead of bijections
(resp. injections which eventually fail to be surjective).

Similar results and proofs for rules (2) and (4 weak).

Corollary: For A of size n, either FA = C (n) or C (n) dominates FA term by
term (and eventually strictly).
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Summary of results and open questions (1/2)

Main theorem: ∼ refines Wilf-equivalence between classes of Catalan
objects with one excluded substructure.

Open: Find a completely bijective proof of main theorem.
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Summary of results and open questions (1/2)

Main theorem: ∼ refines Wilf-equivalence between classes of Catalan
objects with one excluded substructure.

Open: Find a completely bijective proof of main theorem.

From the proof: Comparison between the enumeration of Av(A) and
Av(B). More comparisons to be found from more bijective proofs?

Conjecture: ∼ and Wilf-equivalence coincide.

Stronger conjecture: Given two arch systems A and B both with n
arches, either A ∼ B or |Av2n−2(A)| 6= |Av2n−2(B)|.
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Summary of results and open questions (2/2)

Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.
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Study of the main cohort: unifies and generalizes previous results on
classes Av(231, π), and provides the first bijective proofs.

Maximum cardinality of a cohort: We know the main cohort Mn

contains Motzn arch systems. Is this the largest possible cardinality of
a cohort?

Extension to other contexts (e.g. Schröder objects and separable
permutations [Albert, Homberger, Pantone], . . . ).
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Summary of results and open questions (2/2)

Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.

Study of the main cohort: unifies and generalizes previous results on
classes Av(231, π), and provides the first bijective proofs.

Maximum cardinality of a cohort: We know the main cohort Mn

contains Motzn arch systems. Is this the largest possible cardinality of
a cohort?

Extension to other contexts (e.g. Schröder objects and separable
permutations [Albert, Homberger, Pantone], . . . ).

What about other Catalan posets?
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