A general theory of Wilf-equivalence for Catalan structures

Mathilde Bouvel (Universität Zürich)

joint work with Michael Albert (University of Otago)

arXiv:1407.8261

Séminaire CALIN, LIPN October 21, 2014.

Enumeration sequences and Wilf-equivalence

- Let C be any combinatorial class, *i.e.*
 - $\bullet \ \mathcal{C}$ is equipped with a notion of size
 - such that for any n there are finitely many objects of size n in C.
 - The number of objects of size n in C is denoted c_n .

To \mathcal{C} , we associate:

- its enumeration sequence (c_n) ,
- its generating function $\sum c_n t^n$.

Enumeration sequences and Wilf-equivalence

- Let C be any combinatorial class, *i.e.*
 - $\bullet \ \mathcal{C}$ is equipped with a notion of size
 - such that for any n there are finitely many objects of size n in C.
 - The number of objects of size n in C is denoted c_n .

To \mathcal{C} , we associate:

- its enumeration sequence (c_n) ,
- its generating function $\sum c_n t^n$.

Sometimes (or very often!), two classes have the same enumeration sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology from the *Permutation Patterns* literature).

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

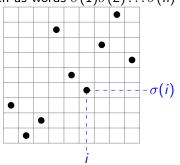
Example: 2134 is a pattern of **31**28**5**4**7**96.

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example:

2134 is a pattern of **31**28**5**4**7**96.

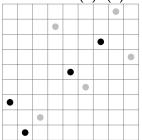


 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example:

2134 is a pattern of **31**28**5**4**7**96.



 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example:

2134 is a pattern of 312854796.

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example:

2134 is a pattern of 312854796.

Notation: Av $(\pi_1, \pi_2, ...)$ is the class of all permutations that do not contain π_1 , nor π_2 , ... as a pattern.

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example: 2134 is a pattern of **31**28**5**4**7**96.

Notation: Av $(\pi_1, \pi_2, ...)$ is the class of all permutations that do not contain π_1 , nor π_2 , ... as a pattern.

 π and τ (or $Av(\pi)$ and $Av(\tau)$) are Wilf-equivalent if $Av(\pi)$ and $Av(\tau)$ have the same enumeration.

 \mathfrak{S}_n = set of permutations of $\{1, 2, \ldots, n\}$, seen as words $\sigma(1)\sigma(2)\ldots\sigma(n)$

 $\pi \in \mathfrak{S}_k$ is a pattern of $\sigma \in \mathfrak{S}_n$ if $\exists 1 \leq i_1 < \ldots < i_k \leq n$ such that the sequence $\sigma(i_1) \ldots \sigma(i_k)$ is in the same relative order as π .

Example: 2134 is a pattern of **31**28**5**4**7**96.

Notation: Av $(\pi_1, \pi_2, ...)$ is the class of all permutations that do not contain π_1 , nor π_2 , ... as a pattern.

 π and τ (or $Av(\pi)$ and $Av(\tau)$) are Wilf-equivalent if $Av(\pi)$ and $Av(\tau)$ have the same enumeration.

For R and S sets of permutations, R and S (or Av(R) and Av(S)) are Wilf-equivalent if Av(R) and Av(S) have the same enumeration.

Small excluded patterns:

- Av(123) and Av(231) are Wilf-equivalent, and enumerated by the Catalan numbers $Cat_n = \frac{1}{n+1} \binom{2n}{n}$
- There are three Wilf-equivalence classes for permutation classes $Av(\pi)$ with π of size 4, the enumeration of Av(1324) being open.
- Check all Wilf-equivalences between $Av(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.

Some results for arbitrary long patterns:

• $\operatorname{Av}(231 \oplus \pi)$ and $\operatorname{Av}(312 \oplus \pi)$

[West & Stankova 02]

First unbalanced Wilf-equivalences:

• Av(1324, 3416725) and Av(1234); Av(2143, 3142, 246135) and Av(2413, 3142) [Burstein & Pantone 14+]

Our goal: find all Wilf-equivalences between classes $Av(231, \pi)$.

Harmless assumption: In $Av(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying Av(231)...)

Our goal: find all Wilf-equivalences between classes $Av(231, \pi)$.

Harmless assumption: In $Av(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying Av(231)...)

Most important remark: Classes $Av(231, \pi)$ are families of Catalan objects (Av(231)) with an additional avoidance restriction.

Our goal: find all Wilf-equivalences between classes $Av(231, \pi)$.

Harmless assumption: In $Av(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying Av(231)...)

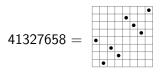
Most important remark: Classes $Av(231, \pi)$ are families of Catalan objects (Av(231)) with an additional avoidance restriction.

So, equivalently but somehow more generally, our goal rephrases as:

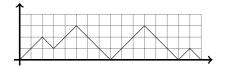
find all Wilf-equivalences between "pattern-avoiding Catalan objects".

Substructures in Catalan objects

• 231-avoiding permutations



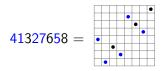
Dyck paths



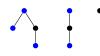
Plane forests

• Arch systems

• 231-avoiding permutations



• Plane forests



Arch systems

Dyck paths

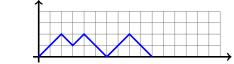
• 231-avoiding permutations

• Plane forests

31254 =

• Arch systems

• 231-avoiding permutations

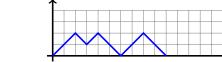


• Plane forests

31254 =

• Arch systems

• 231-avoiding permutations

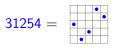


• Plane forests

31254 =

• Arch systems

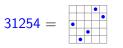
• 231-avoiding permutations



• Plane forests

• Arch systems

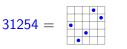
• 231-avoiding permutations



• Plane forests

• Arch systems

• 231-avoiding permutations



Plane forests

• Arch systems

• Complete binary trees

Essential fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined by the avoidance of one Catalan object.

- Motivation: permutation classes $Av(231, \pi)$
- In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!

Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined by the avoidance of one Catalan object.

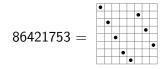
- Motivation: permutation classes $Av(231, \pi)$
- In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!

- Which arch systems A are Wilf-equivalent?
 i.e. which classes Av(A) have the same enumeration?
- Bijections between Av(A) and Av(B) for Wilf-equivalent arch systems A and B?
- How many Wilf-equivalence classes of arch systems are there?
- The special case of the Wilf-equivalence class of $N_n = [...]$.
- Comparison between the enumeration sequences of Av(A) and Av(B) for some A and B that are not equivalent.

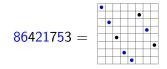
Other Catalan objects having a natural notion of substructure:

• 123-avoiding permutations



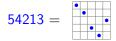
Other Catalan objects having a natural notion of substructure:

• 123-avoiding permutations



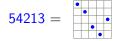
Other Catalan objects having a natural notion of substructure:

• 123-avoiding permutations



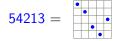
Other Catalan objects having a natural notion of substructure:

123-avoiding permutations
 Non-crossing partitions



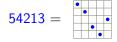
Other Catalan objects having a natural notion of substructure:

123-avoiding permutations
 Non-crossing partitions



Other Catalan objects having a natural notion of substructure:

123-avoiding permutations
 Non-crossing partitions



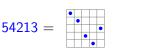
Other Catalan objects having a natural notion of substructure:

123-avoiding permutations
 Non-crossing partitions

However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation.

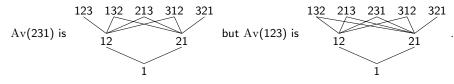
Other Catalan objects having a natural notion of substructure:

• 123-avoiding permutations • Non-crossing partitions



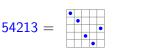
However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:



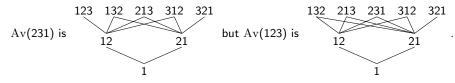
Other Catalan objects having a natural notion of substructure:

• 123-avoiding permutations • Non-crossing partitions



However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:



⇒ These Catalan objects are **not** part of our study. (Future work maybe?)

An equivalence relation strongly related to Wilf-equivalence

An equivalence relation on arch systems

Observation and terminology:

An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

An equivalence relation on arch systems

Observation and terminology:

An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

The binary relation, \sim , is the finest equivalence relation that satisfies:

where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

In other words, \sim refines Wilf-equivalence.

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

In other words, \sim refines Wilf-equivalence.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:

The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

In other words, \sim refines Wilf-equivalence.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:

The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

Terminology: The equivalence classes of \sim are called cohorts.

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

In other words, \sim refines Wilf-equivalence.

Conjecture: \sim coincides with Wilf-equivalence.

Data, obtained with PermLab:

The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $Cat_{15} = 9,694,845$ arch systems).

Terminology: The equivalence classes of \sim are called cohorts.

To any arch system A, we can associate:

- its ~-equivalence class, *i.e.*, its cohort;
- its avoidance class Av(A);
- the enumeration sequence, or generating function F_A , of Av(A).

Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining \sim .

Rule		bijective proof	analytic proof
(1)	$A \sim B \implies (A) \sim (B)$	yes	_
(2)	$a \sim b \implies PaQ \sim PbQ$	yes	-
(3)	$PabQ\sim PbaQ$	yes	-
(4)	$abc \sim abc$	no	yes

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining \sim .

Rule	bijective proof	analytic proof
$(1) A \sim B \implies (\overline{A}) \sim (\overline{B})$	yes	-
(2) $a \sim b \implies PaQ \sim PbQ$	yes	-
(3) $PabQ \sim PbaQ$	yes	-
$(4) a[bc] \sim [ab]c$	no	yes
(4 weak) $a[b] \sim ba$	yes	-

Overview of the proof... by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then Av(A) and Av(B) have the same enumeration, *i.e.* are Wilf-equivalent.

Base case: If A = B then Av(A) and Av(B) are Wilf-equivalent...

Inductive case: One case for each rule defining $\sim\!\!.$

Rule	bijective proof	analytic proof
$(1) A \sim B \implies (\overline{A}) \sim (\overline{B})$	yes	-
(2) $a \sim b \implies PaQ \sim PbQ$	yes	-
(3) $PabQ \sim PbaQ$	yes	-
$(4) a[bc] \sim [ab]c$	no	yes
(4 weak) $a[b] \sim ba$	yes	-

Having only bijective proofs would allow to "unfold" the induction into a bijective proof that Av(A) and Av(B) are Wilf-equivalent, for all $A \sim B$.

(2)
$$a \sim b \implies PaQ \sim PbQ$$

Take $a \sim b$ and suppose that Av(a) and Av(b) are Wilf-equivalent. Take a size-preserving bijection $\sigma : X \mapsto X^{\sigma}$ from Av(a) to Av(b). Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:

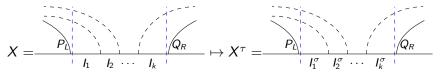
(2)
$$a \sim b \implies PaQ \sim PbQ$$

Take $a \sim b$ and suppose that Av(a) and Av(b) are Wilf-equivalent.

Take a size-preserving bijection $\sigma : X \mapsto X^{\sigma}$ from Av(a) to Av(b).

Build a size-preserving bijection τ from Av(PaQ) to Av(PbQ) as follows:

- If X avoids PQ, then take $X^{\tau} = X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q:



• X^{τ} avoids PbQ if and only if X avoids PaQ.

Analytic proof in case (4)

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = [\overline{A}], b = [\overline{B}]$ and $c = [\overline{C}].$ $F_X =$ the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = (\overline{A}), b = (\overline{B})$ and $c = (\overline{C})$. F_X = the generating function of $\operatorname{Av}(X)$. We want that $F_{a(\overline{bc})} = F_{(\overline{ab})c}$. • Compute a system for $F_{a(\overline{bc})}$: $F_{a(\overline{bc})} = 1 + tF_AF_{a(\overline{bc})} + t(F_{a(\overline{bc})} - F_A)F_{(\overline{bc})}$

$$Av(a\overline{bc}) = \varepsilon + \overline{X}Y + \overline{Z}T$$

X avoids A Z contains A

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: a = [A], b = [B] and c = [C]. F_X = the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

• Compute a system for $F_{a(bc)}$:

$$F_{a(\overline{bc})} = 1 + tF_A F_{a(\overline{bc})} + t(F_{a(\overline{bc})} - F_A)F_{(\overline{bc})}$$

$$F_{(\overline{bc})} = 1 + tF_{bc}F_{(\overline{bc})}$$

$$F_{bc} = 1 + tF_B F_{bc} + t(F_{bc} - F_B)F_c$$

$$F_c = 1 + tF_C F_c$$

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = (\overline{A}), b = (\overline{B})$ and $c = (\overline{C}).$ $F_X =$ the generating function of Av(X). We want that $F_{a(bc)} = F_{(ab)c}$.

- Compute a system for $F_{a(\overline{bc})}$:
- The solution $F_{a(bc)}$ is a terrible mess depending on F_A , F_B and F_C

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: a = [A], b = [B] and c = [C]. $F_X =$ the generating function of Av(X). We want that $F_{a(\overline{bc})} = F_{(\overline{ab})c}$.

- Compute a system for $F_{a(bc)}$:
- The solution $F_{a(bc)}$ is a terrible mess depending on F_A , F_B and F_C ... but symmetric in F_A , F_B and F_C !

• Consequently,
$$F_{a(bc)} = F_{c(ab)} = F_{(ab)c}$$
.

$$(4) \quad a \overline{bc} \sim \overline{ab} c$$

Notations: $a = [\overline{A}], b = [\overline{B}]$ and $c = [\overline{C}].$ $F_X =$ the generating function of Av(X). We want that $F_{a(\overline{bc})} = F_{(\overline{ab})c}.$

- Compute a system for $F_{a(bc)}$:
- The solution $F_{a(bc)}$ is a terrible mess depending on F_A , F_B and F_C ... but symmetric in F_A , F_B and F_C !
- Consequently, $F_{a(bc)} = F_{c(ab)} = F_{(ab)c}$.
- Using $F_{(\widehat{X})} = 1/(1-tF_X)$, we can write:

$$F_{a(\overline{bc})} = \frac{1 - t(F_aF_b + F_bF_c + F_cF_a - F_aF_bF_c)}{1 - t(F_a + F_b + F_c - F_aF_bF_c)}$$

How many cohorts?

How many Wilf-equivalence classes ?

Up to size 15, there are as many Wilf-equivalence as cohorts: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

Up to size 15, there are as many Wilf-equivalence as cohorts: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes of classes Av(A), where A is an arch system with n arches is:

• Cat_n = number of arch systems with *n* arches = number of plane forests of size *n*: $\sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$

Up to size 15, there are as many Wilf-equivalence as cohorts: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes of classes Av(A), where A is an arch system with n arches is:

• Cat_n = number of arch systems with *n* arches = number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$

Improved upper bounds can also be obtained:

- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$
- Number of cohorts of arch systems of size $n: \sim 0.455 \cdot 2.4975^n \cdot n^{-3/2}$

Up to size 15, there are as many Wilf-equivalence as cohorts: 1, 1, 2, 4, 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes of classes Av(A), where A is an arch system with n arches is:

• Cat_n = number of arch systems with *n* arches = number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^n \cdot n^{-3/2}$

Improved upper bounds can also be obtained:

- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^n \cdot n^{-3/2}$
- Number of cohorts of arch systems of size $n: \sim 0.455 \cdot 2.4975^n \cdot n^{-3/2}$

Moral of the story:

Many Wilf-equivalences between classes Av(A) avoiding an arch system A!

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

 $\xrightarrow{\phi}$

and atoms correspond to (plane) trees.

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

and atoms correspond to (plane) trees.

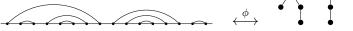
Proposition: If $\phi(A) = \phi(B)$ as non-plane forests, then $A \sim B$.

Sketch of proof:

- (3) PabQ ~ PbaQ: The order of the trees does not affect the cohort.
- (1) $A \sim B \implies (\widehat{A}| \sim (\widehat{B}) \text{ and } (2) a \sim b \implies PaQ \sim PbQ$: This also holds in context, *i.e.* for siblings.

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:



and atoms correspond to (plane) trees.

Proposition: If $\phi(A) = \phi(B)$ as non-plane forests, then $A \sim B$.

Sketch of proof:

- (3) PabQ ~ PbaQ: The order of the trees does not affect the cohort.
- (1) $A \sim B \implies |\overline{A}| \sim |\overline{B}|$ and (2) $a \sim b \implies PaQ \sim PbQ$: This also holds in context, *i.e.* for siblings.

Corollary: There are fewer cohorts than non-plane forests, hence fewer Wilf-equivalence classes than non-plane forests.

Interpretation of (4) $a(bc) \sim (ab)c$ on forests:

Interpretation of (4') $a(bc) \sim (ab)c$ on trees:

 $T_a \sim T_c T_c T_c$

Interpretation of (4') $a b c \sim a b c$ on trees: $T_a \sim T_c T_c ; T_b \sim T_a \sim T_a T_b ; T_a \sim T_a T_b = T_a T_b = T_a = T_a$

Interpretation of (4')
$$a b c$$
 $\sim a b c$ on trees:
 $T_{a} \sim T_{c} = T_{c}$ $T_{c} = T_{a} = T_{b} = T_{c} = T_{a} = T_{c} = T_{a} = T_{c} =$

Proposition: The generating function of cohorts is A(t)/t where $A = t + tA + \frac{1}{t}MSet_{\geq 2}(t^2MSet_{\geq 3}(A)) + tMSet_{\geq 3}(A)$ where $MSet(Z) = \exp(\frac{Z(t)}{1} + \frac{Z(t^2)}{2} + \frac{Z(t^3)}{3} + \frac{Z(t^4)}{4} + ...)$ $MSet_{\geq 2}(Z) = MSet(Z) - 1 - Z(t)$ $MSet_{\geq 3}(Z) = MSet(Z) - 1 - Z(t) - \frac{1}{2}(Z(t)^2 + Z(t^2))$

Interpretation of (4')
$$\overrightarrow{a \mid bc} \sim \overrightarrow{ab \mid c}$$
 on trees:
 $T_{a} \sim T_{c} T_{c} T_{c} T_{c} T_{b} \sim T_{a} \sim T_{c} T_{a} T_{b} \sim T_{a} = T_{c} T_{c} T_{a} = T_{c} = T_$

Proposition: The generating function of cohorts is A(t)/t where $A = t + tA + \frac{1}{t}MSet_{\geq 2}(t^2MSet_{\geq 3}(A)) + tMSet_{\geq 3}(A)$

Proposition: The number of cohorts is asymptotically equivalent to $c \cdot \gamma^n \cdot n^{-3/2}$ where $c \approx 0.455$ and $\gamma \approx 2.4975$.

Proof: Use the "twenty steps" of [Harary, Robinson & Schwenk 75].

This is an upper bound (conjecturally tight) on the number of Wilf-equivalence classes of classes Av(A) defined by the avoidance of an arch system A of size n.

Further results: the "main" cohort, and comparison between cohorts

Original motivation for our work

Define the sequence
$$(C^{(n)})$$
 of generating functions by
 $C^{(0)} = 1$ and $C^{(n)} = \frac{1}{1 - t C^{(n-1)}}$ for $n \ge 1$.

Original motivation for our work

Define the sequence $(C^{(n)})$ of generating functions by $C^{(0)} = 1$ and $C^{(n)} = \frac{1}{1 - t C^{(n-1)}}$ for $n \ge 1$.

Proposition: The generating function of $Av(231, \pi)$ is $C^{(n)}$ whenever:

•
$$\pi = k \dots 21 \cdot n \dots (k+2)(k+1)$$
 for any $1 \le k \le n$

[Mansour & Vainshtein 01]

• π is a "wedge permutation" of size *n* [Mansour & Vainshtein 02]

• $\pi = \lambda_k \oplus \lambda_{n-k}$ for any $1 \le k \le n$, with e.g. $\lambda_6 =$ [A. & B. 13]

These were proved independently (and analytically). Our original goal was a uniform (and possibly bijective) proof.

Original motivation for our work

Define the sequence $(C^{(n)})$ of generating functions by $C^{(0)} = 1$ and $C^{(n)} = \frac{1}{1 - t C^{(n-1)}}$ for $n \ge 1$.

Proposition: The generating function of $Av(231, \pi)$ is $C^{(n)}$ whenever:

•
$$\pi = k \dots 21 \cdot n \dots (k+2)(k+1)$$
 for any $1 \le k \le n$

[Mansour & Vainshtein 01]

• π is a "wedge permutation" of size *n* [Mansour & Vainshtein 02]

• $\pi = \lambda_k \oplus \lambda_{n-k}$ for any $1 \le k \le n$, with e.g. $\lambda_6 =$ [A. & B. 13]

These were proved independently (and analytically). Our original goal was a uniform (and possibly bijective) proof.

Remark:

 $C^{(n)}$ is also the generating function of Dyck path of height at most *n*.

New results:

We can explain these statements (and more) studying the "main" cohort.

Definition: $N_n = [...]$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Definition: $N_n = [...] \cap ...$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Remarks:

• This encapsulates all results of previous slides.

Definition: $N_n = [...] \cap ...$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.

$$\hookrightarrow$$
 There are $Motz_n = \sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2k} Cat_k$ objects in the main cohort.

Definition: $N_n = [...] \cap ...$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.
- \hookrightarrow Because rule (4) defining \sim is useless to explain \sim -equivalences inside the main cohort, the proof of our main theorem gives bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for $A, B \in \mathcal{M}_n$.

Definition: $N_n = [...] \cap ...$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.

Proof:

• For $A \in \mathcal{M}_n$, $F_A = C^{(n)}$ follows from main theorem and $F_{N_n} = C^{(n)}$.

Definition: $N_n = [...] \cap ...$ is the nested arch system with *n* arches. The main cohort (of size *n*) \mathcal{M}_n is the cohort of N_n .

Theorem: The arch systems A such that the generating function F_A of Av(A) is $C^{(n)}$ are exactly those of \mathcal{M}_n .

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.

Proof:

- For $A \in \mathcal{M}_n$, $F_A = C^{(n)}$ follows from main theorem and $F_{N_n} = C^{(n)}$.
- Why not for other A? For A of size n, if A ∉ M_n then C⁽ⁿ⁾ dominates F_A term by term (and eventually strictly).
- $\,\hookrightarrow\,$ This follows from results on the comparison of cohorts.

Comparison of cohorts

A, B arch systems. Generating functions F_A and F_B for Av(A) and Av(B). Definition: Write $A \leq B$ when F_B dominates F_A term by term, and A < B when F_B dominates F_A term by term and eventually strictly.

Comparison of cohorts

A, B arch systems. Generating functions F_A and F_B for Av(A) and Av(B). Definition: Write $A \leq B$ when F_B dominates F_A term by term, and A < B when F_B dominates F_A term by term and eventually strictly.

Proposition: If $A \leq B$ then $(\overline{A}) \leq (\overline{B})$, and if A < B then $(\overline{A}) < (\overline{B})$.

Proof: Recall the bijective proof for case (1) of main theorem: from a bijection $\operatorname{Av}(A) \to \operatorname{Av}(B)$, build a bijection $\operatorname{Av}(\overline{|A|}) \to \operatorname{Av}(\overline{|B|})$. The same construction applies to injections instead of bijections (resp. injections which eventually fail to be surjective).

Comparison of cohorts

A, B arch systems. Generating functions F_A and F_B for Av(A) and Av(B). Definition: Write $A \leq B$ when F_B dominates F_A term by term, and A < B when F_B dominates F_A term by term and eventually strictly.

Proposition: If $A \leq B$ then $(\overline{A}) \leq (\overline{B})$, and if A < B then $(\overline{A}) < (\overline{B})$.

Proof: Recall the bijective proof for case (1) of main theorem: from a bijection $\operatorname{Av}(A) \to \operatorname{Av}(B)$, build a bijection $\operatorname{Av}(\overline{|A|}) \to \operatorname{Av}(\overline{|B|})$. The same construction applies to injections instead of bijections (resp. injections which eventually fail to be surjective).

Similar results and proofs for rules (2) and (4 weak).

Corollary: For A of size n, either $F_A = C^{(n)}$ or $C^{(n)}$ dominates F_A term by term (and eventually strictly).

• Main theorem: \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.

• Open: Find a completely bijective proof of main theorem.

(1/2)

- Main theorem: \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of Av(A) and Av(B). More comparisons to be found from more bijective proofs?

(1/2)

- Main theorem: \sim refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of Av(A) and Av(B). More comparisons to be found from more bijective proofs?
- Conjecture: \sim and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either A ~ B or | Av_{2n-2}(A)| ≠ | Av_{2n-2}(B)|.

(1/2)

(2/2)

• Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes Av(231, π), and provides the first bijective proofs.

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $Av(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort M_n contains $Motz_n$ arch systems. Is this the largest possible cardinality of a cohort?

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $Av(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort \mathcal{M}_n contains $Motz_n$ arch systems. Is this the largest possible cardinality of a cohort?
- Extension to other contexts (e.g. Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).

/2)

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $Av(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort M_n contains $Motz_n$ arch systems. Is this the largest possible cardinality of a cohort?
- Extension to other contexts (*e.g.* Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).
- What about other Catalan posets?

2/2)