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Enumeration sequences and Wilf-equivalence

Let C be any combinatorial class, i.e.
o C is equipped with a notion of size
@ such that for any n there are finitely many objects of size n in C.

@ The number of objects of size n in C is denoted c,.

To C, we associate:
@ its enumeration sequence (cp),

@ its generating function ) c,t”.
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Enumeration sequences and Wilf-equivalence

Let C be any combinatorial class, i.e.
o C is equipped with a notion of size
@ such that for any n there are finitely many objects of size n in C.

@ The number of objects of size n in C is denoted c,.

To C, we associate:
@ its enumeration sequence (cp),

@ its generating function ) c,t”.
Sometimes (or very often!), two classes have the same enumeration
sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology
from the Permutation Patterns literature).
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Motivation: from pattern-avoiding permutations

S, = set of permutations of {1,2,...,n}, seen as words o(1)c(2)...0(n)
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2134 is a pattern of 312854796.
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mand 7 (or Av(r) and Av(7)) are Wilf-equivalent if Av(7) and Av(7)
have the same enumeration.
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Motivation: from pattern-avoiding permutations

S, = set of permutations of {1,2,...,n}, seen as words o(1)c(2)...0(n)

T € & is a pattern of 0 € &, if 3
1<i <...<i < nsuch that the
sequence (i) ...o(ik) is in the same °
relative order as .

Example: o
2134 is a pattern of 312854796.

Notation: Av(my,m2,...) is the class of all permutations that do not
contain y, nor my, ...as a pattern.

mand 7 (or Av(r) and Av(7)) are Wilf-equivalent if Av(7) and Av(7)
have the same enumeration.

For R and S sets of permutations, R and S (or Av(R) and Av(S)) are
Wilf-equivalent if Av(R) and Av(S) have the same enumeration.
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Some Wilf-equivalences for pattern-avoiding permutations

Small excluded patterns:

e Av(123) and Av(231) are Wilf-equivalent, and enumerated by the

Catalan numbers Cat, = n}rl (2n")

@ There are three Wilf-equivalence classes for permutation classes
Av(m) with 7 of size 4, the enumeration of Av(1324) being open.

@ Check all Wilf-equivalences between Av(m,7) when 7 and 7 have size
3 or 4 on Wikipedia.

Some results for arbitrary long patterns:
e Av(231 @ 7) and Av(312 & 7) [West & Stankova 02]

First unbalanced Wilf-equivalences:

o Av(1324,3416725) and Av(1234);
Av(2143,3142,246135) and Av(2413,3142) [Burstein & Pantone 14+]

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures



Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes Av(231, 7).

Harmless assumption: In Av(231, ), throughout the talk, m avoids 231.
(or we are just studying Av(231)...)
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Harmless assumption: In Av(231, ), throughout the talk, m avoids 231.
(or we are just studying Av(231)...)

Most important remark: Classes Av(231,7) are families of Catalan objects
(Av(231)) with an additional avoidance restriction.
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Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes Av(231, 7).
Harmless assumption: In Av(231, ), throughout the talk, m avoids 231.
(or we are just studying Av(231)...)

Most important remark: Classes Av(231,7) are families of Catalan objects
(Av(231)) with an additional avoidance restriction.

So, equivalently but somehow more generally, our goal rephrases as:

find all Wilf-equivalences between “pattern-avoiding Catalan objects”.
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Substructures in Catalan objects



Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

D A

41327658 =

@ Plane forests

/} } ¢ @ Arch systems

o Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N

31254 =

0 2

@ Plane forests

/’\ I ° @ Arch systems
I

@ Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N

31254 =

0 2

@ Plane forests

/’\ I ° @ Arch systems
I

@ Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N

31254 =

0 2

@ Plane forests

/’\ I ° @ Arch systems
I

@ Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N
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@ Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N

31254 =

0 2

@ Plane forests

/\ I @ Arch systems

@ Complete binary trees
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Some Catalan structures, and their substructures

@ 231-avoiding permutations @ Dyck paths

N

31254 =

0 2

@ Plane forests

/\ I @ Arch systems

@ Complete binary trees

Essential fact: The usual bijections re-
lating our quartet of Catalan structures
preserve the substructure relation.
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Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined
by the avoidance of one Catalan object.

e Motivation: permutation classes Av(231,7)
@ In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!
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Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined
by the avoidance of one Catalan object.

e Motivation: permutation classes Av(231,7)
@ In practice: classes Av(A) of arch systems avoiding some subsystem A

But all four contexts are equivalent!

@ Which arch systems A are Wilf-equivalent?
i.e. which classes Av(A) have the same enumeration?

@ Bijections between Av(A) and Av(B) for Wilf-equivalent arch
systems A and B?

@ How many Wilf-equivalence classes of arch systems are there?
@ The special case of the Wilf-equivalence class of N, = [...[M)...].

o Comparison between the enumeration sequences of Av(A) and Av(B)
for some A and B that are not equivalent.
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

@ 123-avoiding permutations

86421753 = .
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

@ 123-avoiding permutations @ Non-crossing partitions

54213 = .

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

@ 123-avoiding permutations @ Non-crossing partitions

54213 =

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:
123 132 213 312 321 132 213 231 312 321

12 1 but Av(123) is X 1

\/ \/

1 1

Av(231) is
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Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

@ 123-avoiding permutations @ Non-crossing partitions

54213 =

However the “usual” or “canonical” bijections (if any...) with Catalan
objects of our quartet do not preserve the substructure relation.

Indeed, the associated posets are not isomorphic:
123 132 213 312 321 132 213 231 312 321

12 1 but Av(123) is X 1

\/ \/

1 1

Av(231) is

= These Catalan objects are not part of our study. (Future work maybe?)
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An equivalence relation
strongly related to Wilf-equivalence



An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch
systems having a single outermost arch.
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An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch
systems having a single outermost arch.

The binary relation, ~, is the finest equivalence relation that satisfies:

(0 A~A
(1) A~B = (A ~ (B
(2) a~b = PaQ ~ PbQ
(3) PabQ ~ PbaQ@
(4) albc) ~ (ab)c

where A, B, P and @ denote arbitrary arch systems
and a, b and ¢ denote atoms or empty arch systems.
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~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
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~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
Conjecture: ~ coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where ~ has
16,709 equivalence classes on the Catjs = 9,694,845 arch systems).
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~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
Conjecture: ~ coincides with Wilf-equivalence.

Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where ~ has
16,709 equivalence classes on the Catjs = 9,694,845 arch systems).

Terminology: The equivalence classes of ~ are called cohorts.

To any arch system A, we can associate:
@ its ~-equivalence class, i.e., its cohort;
e its avoidance class Av(A);
@ the enumeration sequence, or generating function Fa, of Av(A).
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Overview of the proof

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.
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Overview of the proof. .. by induction!

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

Base case: If A= B then Av(A) and Av(B) are Wilf-equivalent. ..

Inductive case: One case for each rule defining ~.

Rule bijective proof | analytic proof
(1) A~B = (Al ~ [B] yes -
(2) a~b = PaQ ~ PbQ yes -
(3) PabQ ~ Pba@ yes _
(4) albcl ~ fablc no yes
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Overview of the proof. .. by induction!

Main theorem: If A and B are arch systems such that A ~ B then Av(A)
and Av(B) have the same enumeration, i.e. are Wilf-equivalent.

Base case: If A= B then Av(A) and Av(B) are Wilf-equivalent. ..

Inductive case: One case for each rule defining ~.

Rule bijective proof | analytic proof
(1) A~B = (Al ~ [B] yes -
(2) a~b = PaQ ~ PbQ yes -
(3) PabQ ~ Pba@ yes _
(4) albcl ~ fablc no yes
(4 weak)  albl ~ [ba) yes _

Having only bijective proofs would allow to “unfold” the induction into a
bijective proof that Av(A) and Av(B) are Wilf-equivalent, for all A ~ B.
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Bijective proof in case (2)

(2) a~b = PaQ ~ PbQ

Take a ~ b and suppose that Av(a) and Av(b) are Wilf-equivalent.
Take a size-preserving bijection o : X — X7 from Av(a) to Av(b).

Build a size-preserving bijection 7 from Av(PaQ) to Av(PbQ) as follows:
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Bijective proof in case (2)

(2) a~b = PaQ ~ PbQ

Take a ~ b and suppose that Av(a) and Av(b) are Wilf-equivalent.
Take a size-preserving bijection o : X — X7 from Av(a) to Av(b).

Build a size-preserving bijection 7 from Av(PaQ) to Av(PbQ) as follows:
o If X avoids PQ, then take X7 = X.

@ Otherwise, apply o to all intervals determined by the arches having
one extremity between the leftmost P and the rightmost Q:

X:} \ K HXT—}

N A A

\/1 2‘7..

e X7 avoids PbQ if and only if X avoids PaQ.
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa(b—a = F@C.
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa@ = F@C.

e Compute a system for F, 7 :
Fa ba — 1+ tFAFaﬂﬁ + t(Fa® - FA)F(ba

Av(albcl)= & + Xy  + (2T
X avoids A Z contains A
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa@ = F@C.

e Compute a system for F, 7 :

Fa ba — 1+ tFAFaﬂﬁ + t(Fa® - FA)F(ba
F@ =1+ thCF@
Fpe = 1+ tFgFpc + t(Fpe — FB)Fe
Fo=1+tFcF,
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa@ = F@C.

e Compute a system for F, 7 :
@ The solution F, 4o is a terrible mess depending on Fu, Fg and F¢
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa@ = F@C.

e Compute a system for F, 7 :

@ The solution F, 4o is a terrible mess depending on Fu, Fg and F¢
... but symmetric in Fa, Fg and F¢!

o Consequently, F,z5 = F.5p = Frpie-
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Analytic proof in case (4)

(4) albc) ~ fablc

Notations: a = [A), b= (B and ¢ = [C).
Fx = the generating function of Av(X).

We want that Fa@ = F@C.

e Compute a system for F, 7 :
@ The solution F, 4o is a terrible mess depending on Fu, Fg and F¢
... but symmetric in Fa, Fg and F¢!

o Consequently, F,z5 = F.5p = Frpie-
e Using Fxy = 1/(1 — tFx), we can write:

F 1= t(FaFy+ FoFe + FeFo — FaFyFe)
b = T t(F, + Fp + Fo — FaFuFe)
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How many cohorts?

How many Wilf-equivalence classes ?



Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1,1, 2, 4 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...
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Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1,1, 2, 4 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes
of classes Av(A), where A is an arch system with n arches is:

e Cat, = number of arch systems with n arches
= number of plane forests of size n: ~ % 4N . p=3/2
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Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1,1, 2, 4 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes
of classes Av(A), where A is an arch system with n arches is:

e Cat, = number of arch systems with n arches
= number of plane forests of size n: ~ % 4N . p=3/2

Improved upper bounds can also be obtained:
o Number of non-plane forests of size n: ~ 0.440 - 2.9558" . n—3/2

o Number of cohorts of arch systems of size n: ~ 0.455 - 2.4975" - n=3/2
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Number of Wilf-equivalence classes: upper bounds

Up to size 15, there are as many Wilf-equivalence as cohorts:
1,1, 2, 4 8, 16, 32, 67, 142, 307, 669, 1478, 3290, 7390, 16709...

For any size n, an upper bound on the number of Wilf-equivalence classes
of classes Av(A), where A is an arch system with n arches is:

e Cat, = number of arch systems with n arches
= number of plane forests of size n: ~ % 4N . p=3/2

Improved upper bounds can also be obtained:
o Number of non-plane forests of size n: ~ 0.440 - 2.9558" . n—3/2

o Number of cohorts of arch systems of size n: ~ 0.455 - 2.4975" - n=3/2

Moral of the story:
Many Wilf-equivalences between classes Av(A) avoiding an arch system Al
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

AR

— ° )

and atoms correspond to (plane) trees.
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

PREAEE

and atoms correspond to (plane) trees.

Proposition: If ¢(A) = ¢(B) as non-plane forests, then A ~ B.

Sketch of proof:

@ (3) PabQ ~ PbaQ: The order of the trees does not affect the cohort.

0 (1) A~B = (Al ~(Bland (2) a~ b = PaQ ~ PbQ:
This also holds in context, i.e. for siblings.
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Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

PREAEE

and atoms correspond to (plane) trees.

Proposition: If ¢(A) = ¢(B) as non-plane forests, then A ~ B.

Sketch of proof:

@ (3) PabQ ~ PbaQ: The order of the trees does not affect the cohort.

0 (1) A~B = (Al ~(Bland (2) a~ b = PaQ ~ PbQ:
This also holds in context, i.e. for siblings.

Corollary: There are fewer cohorts than non-plane forests,
hence fewer Wilf-equivalence classes than non-plane forests.
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Asymptotic estimate of the number of cohorts

Interpretation of (4) albcl ~ (ablc on forests:
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Asymptotic estimate of the number of cohorts

Interpretation of (4') a(bc)| ~ [(ablcl on trees:

A~

Tb Tc Ta Tb
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Asymptotic estimate of the number of cohorts

Interpretation of (4 albcl| ~ [(ablc| on trees:

&ﬁc A S

Tb Tc Ta Tb a Ta Tb
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Asymptotic estimate of the number of cohorts

Interpretation of (4 albc) (ablc| on trees:
B e Py« AL,
Tb Tc Ta Tb a Ta Tb

Proposition: The generating function of cohorts is A(t)/t where
1
A=t+tA+ ?MSetZQ(tz MSets3(A)) + tMSet>3(A)

where MSet(Z) = exp (th) N Z(2t2) N Z(3ts) N Z(4t4)

MSet>o(Z) = MSet(Z) — 1 — Z(t)

MSetss(Z) = MSet(Z) — 1 — Z(t) — % (Z(t) + 2()
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Asymptotic estimate of the number of cohorts

Interpretation of (4 albcl| ~ [(ablc| on trees:
B e Py« AL,
Tb Tc Ta Tb a Ta Tb

Proposition: The generating function of cohorts is A(t)/t where
1
A=t+tA+ ?MSetZQ(tz MSets3(A)) + tMSet>3(A)

Proposition: The number of cohorts is asymptotically equivalent to

c-~"- n~3/2 where ¢ &~ 0.455 and ~ ~ 2.4975.
Proof: Use the “twenty steps” of [Harary, Robinson & Schwenk 75].
This is an upper bound (conjecturally tight) on the number of

Wilf-equivalence classes of classes Av(A) defined by the avoidance of an
arch system A of size n.
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Further results:
the “main” cohort,
and comparison between cohorts



Original motivation for our work

Define the sequence (C(") of generating functions by
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Original motivation for our work

Define the sequence (C(") of generating functions by

Proposition: The generating function of Av(231,7) is C(" whenever:

em=k...21-n...(k+2)(k+1)foranyl < k<n
[Mansour & Vainshtein 01]

e 7 is a “wedge permutation” of size n [Mansour & Vainshtein 02]
o T=N\c®Ap_xforany 1<k <n, witheg \¢= |- [A &B. 13

These were proved independently (and analytically).
Our original goal was a uniform (and possibly bijective) proof.
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Original motivation for our work

Define the sequence (C(") of generating functions by

Proposition: The generating function of Av(231,7) is C(" whenever:

em=k...21-n...(k+2)(k+1)foranyl < k<n
[Mansour & Vainshtein 01]

e 7 is a “wedge permutation” of size n [Mansour & Vainshtein 02]
@ T= A B Ap_ forany 1 < k < n, with e.g. \¢ = iﬁ [A. & B. 13]

These were proved independently (and analytically).
Our original goal was a uniform (and possibly bijective) proof.

Remark:
C(M s also the generating function of Dyck path of height at most n.

New results:
We can explain these statements (and more) studying the “main” cohort.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.

Remarks:
@ This encapsulates all results of previous slides.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.

Remarks:
@ This encapsulates all results of previous slides.

@ |t also generalizes them to more excluded patterns.

Ln/2]
< There are Motz, = > (2’;() Caty objects in the main cohort.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.
Remarks:

@ This encapsulates all results of previous slides.

@ |t also generalizes them to more excluded patterns.

@ It provides a bijective explanation of all these Wilf-equivalences.

< Because rule (4) defining ~ is useless to explain ~-equivalences inside
the main cohort, the proof of our main theorem gives bijections
between Av(A) and Av(B) for A, B € M,,.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.
Remarks:

@ This encapsulates all results of previous slides.

@ |t also generalizes them to more excluded patterns.

@ It provides a bijective explanation of all these Wilf-equivalences.

Proof:
e For Ae M,, Fa = C( follows from main theorem and Fn, = c(.
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The main cohort

Definition: N, = [...(M)...] is the nested arch system with n arches.
The main cohort (of size n) M, is the cohort of N,,.

Theorem: The arch systems A such that the generating function Fj of
Av(A) is C(" are exactly those of M.
Remarks:

@ This encapsulates all results of previous slides.

@ |t also generalizes them to more excluded patterns.

@ It provides a bijective explanation of all these Wilf-equivalences.

Proof:
e For Ae M,, Fa = C( follows from main theorem and Fn, = c(.

o Why not for other A? For A of size n, if A ¢ M, then C(")
dominates F4 term by term (and eventually strictly).

< This follows from results on the comparison of cohorts.
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Comparison of cohorts

A, B arch systems. Generating functions Fa and Fg for Av(A) and Av(B).

Definition: Write A < B when Fg dominates Fp term by term,
and A < B when Fg dominates F4 term by term and eventually strictly.

M. H. Albert, M. Bouvel
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Comparison of cohorts

A, B arch systems. Generating functions F4 and Fg for Av(A) and Av(B).
Definition: Write A < B when Fg dominates Fp term by term,

and A < B when Fg dominates Fj term by term and eventually strictly.
Proposition: If A< B then (Al < (B), and if A < B then (Al < (B).

Proof: Recall the bijective proof for case (1) of main theorem:
from a bijection Av(A) — Av(B), build a bijection Av([Al) — Av((B)).

The same construction applies to injections instead of bijections
(resp. injections which eventually fail to be surjective).

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures



Comparison of cohorts

A, B arch systems. Generating functions F4 and Fg for Av(A) and Av(B).
Definition: Write A < B when Fg dominates Fp term by term,

and A < B when Fg dominates Fj term by term and eventually strictly.
Proposition: If A< B then (Al < (B), and if A < B then (Al < (B).

Proof: Recall the bijective proof for case (1) of main theorem:
from a bijection Av(A) — Av(B), build a bijection Av([Al) — Av((B)).

The same construction applies to injections instead of bijections
(resp. injections which eventually fail to be surjective).

Similar results and proofs for rules (2) and (4 weak).

Corollary: For A of size n, either F4 = C(" or C(") dominates F4 term by
term (and eventually strictly).
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Summary of results and open questions (1/2)

@ Main theorem: ~ refines Wilf-equivalence between classes of Catalan
objects with one excluded substructure.

@ Open: Find a completely bijective proof of main theorem.

M. H. Albert, M. Bouvel Wilf-equivalences of Catalan structures



Summary of results and open questions (1/2)

@ Main theorem: ~ refines Wilf-equivalence between classes of Catalan
objects with one excluded substructure.

@ Open: Find a completely bijective proof of main theorem.

@ From the proof: Comparison between the enumeration of Av(A) and
Av(B). More comparisons to be found from more bijective proofs?
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Summary of results and open questions (1/2)

@ Main theorem: ~ refines Wilf-equivalence between classes of Catalan
objects with one excluded substructure.

@ Open: Find a completely bijective proof of main theorem.

@ From the proof: Comparison between the enumeration of Av(A) and
Av(B). More comparisons to be found from more bijective proofs?

@ Conjecture: ~ and Wilf-equivalence coincide.

@ Stronger conjecture: Given two arch systems A and B both with n
arches, either A ~ B or | Avap_2(A)| # | Avan—2(B)].
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Summary of results and open questions (2/2)

@ Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.
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Summary of results and open questions (2/2)

@ Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.

@ Study of the main cohort: unifies and generalizes previous results on
classes Av(231, ), and provides the first bijective proofs.
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Summary of results and open questions (2/2)

@ Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.

@ Study of the main cohort: unifies and generalizes previous results on
classes Av(231, ), and provides the first bijective proofs.

@ Maximum cardinality of a cohort: We know the main cohort M,
contains Motz, arch systems. Is this the largest possible cardinality of
a cohort?
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Summary of results and open questions (2/2)

@ Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.

@ Study of the main cohort: unifies and generalizes previous results on
classes Av(231, ), and provides the first bijective proofs.

@ Maximum cardinality of a cohort: We know the main cohort M,
contains Motz, arch systems. Is this the largest possible cardinality of
a cohort?

o Extension to other contexts (e.g. Schroder objects and separable
permutations [Albert, Homberger, Pantone], ... ).
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Summary of results and open questions (2/2)

@ Asymptotic enumeration of cohorts. It is an upper bound
(conjecturally tight) on the number of Wilf-classes.

@ Study of the main cohort: unifies and generalizes previous results on
classes Av(231, ), and provides the first bijective proofs.

@ Maximum cardinality of a cohort: We know the main cohort M,
contains Motz, arch systems. Is this the largest possible cardinality of

a cohort?

o Extension to other contexts (e.g. Schroder objects and separable
permutations [Albert, Homberger, Pantone], ... ).

@ What about other Catalan posets?
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