A general theory of Wilf-equivalence for Catalan structures

Mathilde Bouvel (Universität Zürich)

joint work with Michael Albert (University of Otago)

```
arXiv:1407.8261
```

Discrete Math Seminar, Uni. Zürich. September 23, 2014.

Enumeration sequences and Wilf-equivalence

Let \mathcal{C} be any combinatorial class, i.e.

- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_{n}.

To \mathcal{C}, we associate:

- its enumeration sequence $\left(c_{n}\right)$,
- its generating function $\sum c_{n} t^{n}$.

Enumeration sequences and Wilf-equivalence

Let \mathcal{C} be any combinatorial class, i.e.

- \mathcal{C} is equipped with a notion of size
- such that for any n there are finitely many objects of size n in \mathcal{C}.
- The number of objects of size n in \mathcal{C} is denoted c_{n}.

To \mathcal{C}, we associate:

- its enumeration sequence $\left(c_{n}\right)$,
- its generating function $\sum c_{n} t^{n}$.

Sometimes (or very often!), two classes have the same enumeration sequences (or equivalently generating function).

Such enumeration coincidences are called Wilf-equivalences (terminology from the Permutation Patterns literature).

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the
sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the
sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:
2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists $1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:
2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:
2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the
sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:

2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:

2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$
Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:

2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$
Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.
π and $\tau($ or $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau))$ are Wilf-equivalent if $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau)$ have the same enumeration.

Motivation: from pattern-avoiding permutations

$\mathfrak{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$, seen as words $\sigma(1) \sigma(2) \ldots \sigma(n)$
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if \exists
$1 \leq i_{1}<\ldots<i_{k} \leq n$ such that the sequence $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ is in the same relative order as π.

Example:

2134 is a pattern of $\mathbf{3 1 2 8 5 4 7 9 6 .}$
Notation: $\operatorname{Av}\left(\pi_{1}, \pi_{2}, \ldots\right)$ is the class of all permutations that do not contain π_{1}, nor π_{2}, \ldots as a pattern.
π and $\tau($ or $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau))$ are Wilf-equivalent if $\operatorname{Av}(\pi)$ and $\operatorname{Av}(\tau)$ have the same enumeration.

For R and S sets of permutations, R and $S($ or $\operatorname{Av}(R)$ and $\operatorname{Av}(S))$ are Wilf-equivalent if $\operatorname{Av}(R)$ and $\operatorname{Av}(S)$ have the same enumeration.

Some Wilf-equivalences for pattern-avoiding permutations

Small excluded patterns:

- $\operatorname{Av}(123)$ and $\operatorname{Av}(231)$ are Wilf-equivalent, and enumerated by the Catalan numbers Cat $_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- There are three Wilf-equivalence classes for permutation classes $\operatorname{Av}(\pi)$ with π of size 4, the enumeration of $\operatorname{Av}(1324)$ being open.
- Check all Wilf-equivalences between $\operatorname{Av}(\pi, \tau)$ when π and τ have size 3 or 4 on Wikipedia.

Some results for arbitrary long patterns:

- $\operatorname{Av}(231 \oplus \pi)$ and $\operatorname{Av}(312 \oplus \pi)$
[West \& Stankova 02]
First unbalanced Wilf-equivalences:
- $\operatorname{Av}(1324,3416725)$ and $\operatorname{Av}(1234)$;
$\operatorname{Av}(2143,3142,246135)$ and $\operatorname{Av}(2413,3142)$ [Burstein \& Pantone 14+]

Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$.
Harmless assumption: In $\operatorname{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\operatorname{Av}(231) \ldots$)

Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$.
Harmless assumption: In $\operatorname{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\operatorname{Av}(231) \ldots$)

Most important remark: Classes $\operatorname{Av}(231, \pi)$ are families of Catalan objects $(\operatorname{Av}(231))$ with an additional avoidance restriction.

Novelty of our work: a global look

Our goal: find all Wilf-equivalences between classes $\operatorname{Av}(231, \pi)$.
Harmless assumption: In $\operatorname{Av}(231, \pi)$, throughout the talk, π avoids 231. (or we are just studying $\operatorname{Av}(231) \ldots$)

Most important remark: Classes $\operatorname{Av}(231, \pi)$ are families of Catalan objects $(\operatorname{Av}(231))$ with an additional avoidance restriction.

So, equivalently but somehow more generally, our goal rephrases as: find all Wilf-equivalences between "pattern-avoiding Catalan objects".

Substructures in Catalan objects

Some Catalan structures, and their substructures

- 231-avoiding permutations

- Complete binary trees

- Dyck paths

- Plane forests

- Arch systems

Some Catalan structures, and their substructures

- 231-avoiding permutations

$$
41327658=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \bullet \\
\hline & & & & \bullet & & & \\
\hline & & & & & \bullet & & \\
\hline & & & & & & \bullet & \\
\hline \bullet & & & & & & & \\
\hline & & \bullet & & & & & \\
\hline & & & \bullet & & & & \\
\hline & \bullet & & & & & & \\
\hline
\end{array}
$$

- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Some Catalan structures, and their substructures

- 231-avoiding permutations
- Dyck paths

- Plane forests

- Arch systems

- Complete binary trees

Essential fact: The usual bijections relating our quartet of Catalan structures preserve the substructure relation.

Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined by the avoidance of one Catalan object.

- Motivation: permutation classes $\operatorname{Av}(231, \pi)$
- In practice: classes $\operatorname{Av}(A)$ of arch systems avoiding some subsystem A But all four contexts are equivalent!

Outline for (the rest of) the talk

For any Catalan family in our quartet, we are interested in classes defined by the avoidance of one Catalan object.

- Motivation: permutation classes $\operatorname{Av}(231, \pi)$
- In practice: classes $\operatorname{Av}(A)$ of arch systems avoiding some subsystem A But all four contexts are equivalent!
- Which arch systems A are Wilf-equivalent? i.e. which classes $\operatorname{Av}(A)$ have the same enumeration?
- Bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for Wilf-equivalent arch systems A and B ?
- How many Wilf-equivalence classes of arch systems are there?
- The special case of the Wilf-equivalence class of $N_{n}=\ldots \cap \ldots$.
- Comparison between the enumeration sequences of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for some A and B that are not equivalent.

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

$$
54213=\stackrel{\bullet}{\bullet} \cdot
$$

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

- Non-crossing partitions

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

- Non-crossing partitions

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations
- Non-crossing partitions

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

- Non-crossing partitions

However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation.

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

- Non-crossing partitions

However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation. Indeed, the associated posets are not isomorphic:
$\operatorname{Av}(231)$ is

but $\operatorname{Av}(123)$ is

Quick detour: What about other Catalan structures?

Other Catalan objects having a natural notion of substructure:

- 123-avoiding permutations

- Non-crossing partitions

However the "usual" or "canonical" bijections (if any...) with Catalan objects of our quartet do not preserve the substructure relation. Indeed, the associated posets are not isomorphic:
$\operatorname{Av}(231)$ is

but $\operatorname{Av}(123)$ is

\Rightarrow These Catalan objects are not part of our study. (Future work maybe?)

An equivalence relation strongly related to Wilf-equivalence

An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

An equivalence relation on arch systems

Observation and terminology:
An arch system is a concatenation of atoms, i.e. (non-empty) arch systems having a single outermost arch.

The binary relation, \sim, is the finest equivalence relation that satisfies:
(0) $A \sim A$
(1) $\quad A \sim B \Longrightarrow A \mid \sim B$
(2) $a \sim b \Longrightarrow P a Q \sim P b Q$
(3) $P a b Q \sim P b a Q$
(4) $a(b c) \sim a b c$
where A, B, P and Q denote arbitrary arch systems and a, b and c denote atoms or empty arch systems.

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
Conjecture: ~ coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
Conjecture: ~ coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

Terminology: The equivalence classes of \sim are called cohorts.

~ is (a refinement of?) Wilf-equivalence

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

In other words, ~ refines Wilf-equivalence.
Conjecture: ~ coincides with Wilf-equivalence.
Data, obtained with PermLab:
The conjecture holds for arch systems of size up to 15 (where \sim has 16,709 equivalence classes on the $C a t_{15}=9,694,845$ arch systems).

Terminology: The equivalence classes of \sim are called cohorts.

To any arch system A, we can associate:

- its \sim-equivalence class, i.e., its cohort;
- its avoidance class $\operatorname{Av}(A)$;
- the enumeration sequence, or generating function F_{A}, of $\operatorname{Av}(A)$.

Overview of the proof

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

| Rule | bijective proof | analytic proof |
| :--- | :--- | :---: | :---: |
| $(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$ | yes | - |
| $(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$ | yes | - |
| $(3) \quad P a b Q \sim P b a Q$ | yes | - |
| $(4) \quad a(b c) \sim$ ablc c | no | yes |
| | | |

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \triangle A) \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a(b c) \sim \widehat{a b l} c$	no	yes
$(4$ weak $) \quad a(b) \sim(b a)$	yes	-

Overview of the proof. . . by induction!

Main theorem: If A and B are arch systems such that $A \sim B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ have the same enumeration, i.e. are Wilf-equivalent.

Base case: If $A=B$ then $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent... Inductive case: One case for each rule defining \sim.

Rule	bijective proof	analytic proof
$(1) \quad A \sim B \Longrightarrow \widehat{A} \sim(B)$	yes	-
$(2) \quad a \sim b \Longrightarrow P a Q \sim P b Q$	yes	-
$(3) \quad P a b Q \sim P b a Q$	yes	-
$(4) \quad a \mid b c) \sim \widehat{a b l} c$	no	yes
$(4$ weak $) \quad a(b) \sim(b a l$	yes	-

Having only bijective proofs would allow to "unfold" the induction into a bijective proof that $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ are Wilf-equivalent, for all $A \sim B$.

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent. Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$. Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

Bijective proof in case (2)

(2) $a \sim b \Longrightarrow P a Q \sim P b Q$

Take $a \sim b$ and suppose that $\operatorname{Av}(a)$ and $\operatorname{Av}(b)$ are Wilf-equivalent.
Take a size-preserving bijection $\sigma: X \mapsto X^{\sigma}$ from $\operatorname{Av}(a)$ to $\operatorname{Av}(b)$.
Build a size-preserving bijection τ from $\operatorname{Av}(P a Q)$ to $\operatorname{Av}(P b Q)$ as follows:

- If X avoids $P Q$, then take $X^{\tau}=X$.
- Otherwise, apply σ to all intervals determined by the arches having one extremity between the leftmost P and the rightmost Q :

- X^{τ} avoids $P b Q$ if and only if X avoids $P a Q$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\overparen{a b b c}}$.

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{gathered}
F_{a(b c)}=1+t F_{A} F_{a(b c \mid}+t\left(F_{a|b c|}-F_{A}\right) F_{|b c|} \\
\operatorname{Av}(a \mid b c)=\varepsilon+\underset{X}{ }+\sqrt{X} Y+\underset{Z \text { avoids } A}{ }+\underset{Z \text { contains } A}{ }
\end{gathered}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=(A), b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b C)}$:

$$
\begin{aligned}
F_{a b b c} & =1+t F_{A} F_{a b c c}+t\left(F_{a b c}-F_{A}\right) F_{b c} \\
F_{b b c} & =1+t F_{b c} F_{b b c} \\
F_{b c} & =1+t F_{B} F_{b c}+t\left(F_{b c}-F_{B}\right) F_{c} \\
F_{c} & =1+t F_{C} F_{c}
\end{aligned}
$$

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{\text {ablc }}$.

- Compute a system for $F_{a(b C)}$:
- The solution $F_{a(b C}$ is a terrible mess depending on F_{A}, F_{B} and F_{C}

Analytic proof in case (4)

$$
\text { (4) } a(b c) \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=(C)$.
$F_{X}=$ the generating function of $\operatorname{Av}(X)$.
We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a(b C}$ is a terrible mess depending on F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c a b}=F_{a b c c}$.

Analytic proof in case (4)

$$
\text { (4) } a|b c| \sim \sqrt{a b} c
$$

Notations: $a=\widehat{A}, b=\widehat{B}$ and $c=\widehat{C}$.

$$
F_{X}=\text { the generating function of } \operatorname{Av}(X)
$$

We want that $F_{a(b c)}=F_{a b b c}$.

- Compute a system for $F_{a(b c)}$:
- The solution $F_{a(b C}$ is a terrible mess depending on F_{A}, F_{B} and F_{C} \ldots but symmetric in F_{A}, F_{B} and F_{C} !
- Consequently, $F_{a(b c)}=F_{c l a b \mid}=F_{a b c c}$.
- Using $F_{X X}=1 /\left(1-t F_{X}\right)$, we can write:

$$
F_{a|b c|}=\frac{1-t\left(F_{a} F_{b}+F_{b} F_{c}+F_{c} F_{a}-F_{a} F_{b} F_{c}\right)}{1-t\left(F_{a}+F_{b}+F_{c}-F_{a} F_{b} F_{c}\right)}
$$

How many cohorts?

How many Wilf-equivalence classes ?

Number of Wilf-equivalence classes: upper bounds

Up to size 15 , there are as many Wilf-equivalence as cohorts:
$1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$

Number of Wilf-equivalence classes: upper bounds

Up to size 15 , there are as many Wilf-equivalence as cohorts:
$1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$
For any size n, an upper bound on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches is:

- Cat ${ }_{n}=$ number of arch systems with n arches
$=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$

Number of Wilf-equivalence classes: upper bounds

Up to size 15 , there are as many Wilf-equivalence as cohorts:
$1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$
For any size n, an upper bound on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches is:

- Cat ${ }_{n}=$ number of arch systems with n arches
$=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$
Improved upper bounds can also be obtained:
- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$
- Number of cohorts of arch systems of size $n: \sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$

Number of Wilf-equivalence classes: upper bounds

Up to size 15 , there are as many Wilf-equivalence as cohorts:
$1,1,2,4,8,16,32,67,142,307,669,1478,3290,7390,16709 \ldots$
For any size n, an upper bound on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$, where A is an arch system with n arches is:

- Cat $t_{n}=$ number of arch systems with n arches $=$ number of plane forests of size $n: \sim \frac{1}{\sqrt{\pi}} \cdot 4^{n} \cdot n^{-3 / 2}$

Improved upper bounds can also be obtained:

- Number of non-plane forests of size $n: \sim 0.440 \cdot 2.9558^{n} \cdot n^{-3 / 2}$
- Number of cohorts of arch systems of size $n: \sim 0.455 \cdot 2.4975^{n} \cdot n^{-3 / 2}$

Moral of the story:
Many Wilf-equivalences between classes $\operatorname{Av}(A)$ avoiding an arch system A !

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

and atoms correspond to (plane) trees.

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

and atoms correspond to (plane) trees.
Proposition: If $\phi(A)=\phi(B)$ as non-plane forests, then $A \sim B$.
Sketch of proof:

- (3) $P a b Q \sim P b a Q:$ The order of the trees does not affect the cohort.
- (1) $A \sim B \Longrightarrow \widehat{A} \sim \widehat{B}$ and (2) $a \sim b \Longrightarrow P a Q \sim P b Q$: This also holds in context, i.e. for siblings.

Fewer cohorts than non-plane forests

Arch systems are in bijection with plane forests:

and atoms correspond to (plane) trees.
Proposition: If $\phi(A)=\phi(B)$ as non-plane forests, then $A \sim B$.
Sketch of proof:

- (3) $P a b Q \sim P b a Q:$ The order of the trees does not affect the cohort.
- (1) $A \sim B \Longrightarrow \widehat{A} \sim \widehat{B}$ and (2) $a \sim b \Longrightarrow P a Q \sim P b Q$: This also holds in context, i.e. for siblings.

Corollary: There are fewer cohorts than non-plane forests, hence fewer Wilf-equivalence classes than non-plane forests.

Asymptotic estimate of the number of cohorts

Interpretation of (4) a $b c c \sim \sqrt{a b} c$ on forests:

Asymptotic estimate of the number of cohorts

Interpretation of $\left(4^{\prime}\right) \sqrt{a b c} \sim \sqrt{a b \mid c}$ on trees:

Asymptotic estimate of the number of cohorts

Interpretation of $\left(4^{\prime}\right) \sqrt{a} b c \mid \sim \sqrt{a b c}$ on trees:

Asymptotic estimate of the number of cohorts

Interpretation of $\left(4^{\prime}\right) \sqrt{a \mid b c} \sim \sqrt{a b c}$ on trees:

Proposition: The generating function of cohorts is $A(t) / t$ where

$$
\begin{gathered}
A=t+t A+\frac{1}{t} M \operatorname{Set}_{\geq 2}\left(t^{2} M \operatorname{Set}_{\geq 3}(A)\right)+t M \operatorname{Set}_{\geq 3}(A) \\
\text { where } M \operatorname{Set}(Z)=\exp \left(\frac{Z(t)}{1}+\frac{Z\left(t^{2}\right)}{2}+\frac{Z\left(t^{3}\right)}{3}+\frac{Z\left(t^{4}\right)}{4}+\ldots\right) \\
M \operatorname{Set}_{\geq 2}(Z)=M \operatorname{Set}(Z)-1-Z(t) \\
M \operatorname{Set}_{\geq 3}(Z)=M \operatorname{Set}(Z)-1-Z(t)-\frac{1}{2}\left(Z(t)^{2}+Z\left(t^{2}\right)\right)
\end{gathered}
$$

Asymptotic estimate of the number of cohorts

Interpretation of $\left(4^{\prime}\right) \sqrt{a \mid b c} \sim \sqrt{a b c}$ on trees:

Proposition: The generating function of cohorts is $A(t) / t$ where

$$
A=t+t A+\frac{1}{t} M \operatorname{Set}_{\geq 2}\left(t^{2} M \operatorname{Set}_{\geq 3}(A)\right)+t M \operatorname{Set}_{\geq 3}(A)
$$

Proposition: The number of cohorts is asymptotically equivalent to $c \cdot \gamma^{n} \cdot n^{-3 / 2}$ where $c \approx 0.455$ and $\gamma \approx 2.4975$.

Proof: Use the "twenty steps" of [Harary, Robinson \& Schwenk 75].
This is an upper bound (conjecturally tight) on the number of Wilf-equivalence classes of classes $\operatorname{Av}(A)$ defined by the avoidance of an arch system A of size n.

Further results: the "main" cohort, and comparison between cohorts

Original motivation for our work

Define the sequence $\left(C^{(n)}\right)$ of generating functions by

$$
C^{(0)}=1 \text { and } C^{(n)}=\frac{1}{1-t C^{(n-1)}} \text { for } n \geq 1
$$

Original motivation for our work

Define the sequence $\left(C^{(n)}\right)$ of generating functions by

$$
C^{(0)}=1 \text { and } C^{(n)}=\frac{1}{1-t C^{(n-1)}} \text { for } n \geq 1
$$

Proposition: The generating function of $\operatorname{Av}(231, \pi)$ is $C^{(n)}$ whenever:

- $\pi=k \ldots 21 \cdot n \ldots(k+2)(k+1)$ for any $1 \leq k \leq n$
[Mansour \& Vainshtein 01]
- π is a "wedge permutation" of size n
[Mansour \& Vainshtein 02]
- $\pi=\lambda_{k} \oplus \lambda_{n-k}$ for any $1 \leq k \leq n$, with e.g. λ_{6}

Our original goal was a uniform (and possibly bijective) proof.

Original motivation for our work

Define the sequence $\left(C^{(n)}\right)$ of generating functions by

$$
C^{(0)}=1 \text { and } C^{(n)}=\frac{1}{1-t C^{(n-1)}} \text { for } n \geq 1
$$

Proposition: The generating function of $\operatorname{Av}(231, \pi)$ is $C^{(n)}$ whenever:

- $\pi=k \ldots 21 \cdot n \ldots(k+2)(k+1)$ for any $1 \leq k \leq n$
[Mansour \& Vainshtein 01]
- π is a "wedge permutation" of size n
[Mansour \& Vainshtein 02]
- $\pi=\lambda_{k} \oplus \lambda_{n-k}$ for any $1 \leq k \leq n$, with e.g. $\lambda_{6}=[\because \quad[\mathrm{O} . \& \mathrm{~B} .13]$

These were proved independently (and analytically).
Our original goal was a uniform (and possibly bijective) proof.

Remark:

$C^{(n)}$ is also the generating function of Dyck path of height at most n.
New results:
We can explain these statements (and more) studying the "main" cohort.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

Remarks:

- This encapsulates all results of previous slides.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
\hookrightarrow There are Motz $_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n}{2 k} C a t_{k}$ objects in the main cohort.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.
\hookrightarrow Because rule (4) defining \sim is useless to explain \sim-equivalences inside the main cohort, the proof of our main theorem gives bijections between $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$ for $A, B \in \mathcal{M}_{n}$.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.

Proof:

- For $A \in \mathcal{M}_{n}, F_{A}=C^{(n)}$ follows from main theorem and $F_{N_{n}}=C^{(n)}$.

The main cohort

Definition: $N_{n}=\ldots \cap \ldots$ is the nested arch system with n arches.
The main cohort (of size n) \mathcal{M}_{n} is the cohort of N_{n}.
Theorem: The arch systems A such that the generating function F_{A} of $\operatorname{Av}(A)$ is $C^{(n)}$ are exactly those of \mathcal{M}_{n}.

Remarks:

- This encapsulates all results of previous slides.
- It also generalizes them to more excluded patterns.
- It provides a bijective explanation of all these Wilf-equivalences.

Proof:

- For $A \in \mathcal{M}_{n}, F_{A}=C^{(n)}$ follows from main theorem and $F_{N_{n}}=C^{(n)}$.
- Why not for other A ? For A of size n, if $A \notin \mathcal{M}_{n}$ then $C^{(n)}$ dominates F_{A} term by term (and eventually strictly).
\hookrightarrow This follows from results on the comparison of cohorts.

Comparison of cohorts

A, B arch systems. Generating functions F_{A} and F_{B} for $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. Definition: Write $A \leq B$ when F_{B} dominates F_{A} term by term, and $A<B$ when F_{B} dominates F_{A} term by term and eventually strictly.

Comparison of cohorts

A, B arch systems. Generating functions F_{A} and F_{B} for $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$.
Definition: Write $A \leq B$ when F_{B} dominates F_{A} term by term, and $A<B$ when F_{B} dominates F_{A} term by term and eventually strictly.

Proposition: If $A \leq B$ then $|A \leq| B$, and if $A<B$ then $|$| A |
| :---: | .

Proof: Recall the bijective proof for case (1) of main theorem: from a bijection $\operatorname{Av}(A) \rightarrow \operatorname{Av}(B)$, build a bijection $\operatorname{Av}(\overparen{A}) \rightarrow \operatorname{Av}(\sqrt{B})$.
The same construction applies to injections instead of bijections (resp. injections which eventually fail to be surjective).

Comparison of cohorts

A, B arch systems. Generating functions F_{A} and F_{B} for $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$.
Definition: Write $A \leq B$ when F_{B} dominates F_{A} term by term, and $A<B$ when F_{B} dominates F_{A} term by term and eventually strictly.

Proposition: If $A \leq B$ then $|$\begin{tabular}{|c|}
A

 , and if $A<B$ then $|$

A
\end{tabular} .

Proof: Recall the bijective proof for case (1) of main theorem: from a bijection $\operatorname{Av}(A) \rightarrow \operatorname{Av}(B)$, build a bijection $\operatorname{Av}(|A|) \rightarrow \operatorname{Av}(\sqrt{B})$.
The same construction applies to injections instead of bijections (resp. injections which eventually fail to be surjective).

Similar results and proofs for rules (2) and (4 weak).
Corollary: For A of size n, either $F_{A}=C^{(n)}$ or $C^{(n)}$ dominates F_{A} term by term (and eventually strictly).

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs?

Summary of results and open questions

- Main theorem: ~ refines Wilf-equivalence between classes of Catalan objects with one excluded substructure.
- Open: Find a completely bijective proof of main theorem.
- From the proof: Comparison between the enumeration of $\operatorname{Av}(A)$ and $\operatorname{Av}(B)$. More comparisons to be found from more bijective proofs?
- Conjecture: ~ and Wilf-equivalence coincide.
- Stronger conjecture: Given two arch systems A and B both with n arches, either $A \sim B$ or $\left|\operatorname{Av}_{2 n-2}(A)\right| \neq\left|\operatorname{Av}_{2 n-2}(B)\right|$.

Summary of results and open questions

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.

Summary of results and open questions

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $\operatorname{Av}(231, \pi)$, and provides the first bijective proofs.

Summary of results and open questions

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $\operatorname{Av}(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort \mathcal{M}_{n} contains Motz $_{n}$ arch systems. Is this the largest possible cardinality of a cohort?

Summary of results and open questions

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $\operatorname{Av}(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort \mathcal{M}_{n} contains Motz $_{n}$ arch systems. Is this the largest possible cardinality of a cohort?
- Extension to other contexts (e.g. Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).

Summary of results and open questions

(2/2)

- Asymptotic enumeration of cohorts. It is an upper bound (conjecturally tight) on the number of Wilf-classes.
- Study of the main cohort: unifies and generalizes previous results on classes $\operatorname{Av}(231, \pi)$, and provides the first bijective proofs.
- Maximum cardinality of a cohort: We know the main cohort \mathcal{M}_{n} contains Motz $_{n}$ arch systems. Is this the largest possible cardinality of a cohort?
- Extension to other contexts (e.g. Schröder objects and separable permutations [Albert, Homberger, Pantone], ...).
- What about other Catalan posets?

