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Several ways to describe permutations

Permutation: Bijection from [1..n] to itself. Set Sn.

Two lines notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Linear notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σ(i)



Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn



Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn



Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn



Stack sorting and pattern avoidance
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Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
Stack-sortable permutations are those avoiding the pattern 231

S(231) = 213, and σ containing a pattern 231 is not sortable

231 patterns are the only ones that prevent a permutation
from being sortable

Counted by the Catalan numbers: there are cn = 1
n+1

(2n
n

)
permutations of size n that avoid 231, i.e. that are sorted by S



Pattern avoiding permutations

Permutations avoiding classical patterns

Av(π) = the set of permutations that avoid the pattern π

Av(B) =
⋂
π∈B

Av(π)

Generalizations of excluded patterns

Dashed and bivincular patterns [Babson, Steingŕımsson 00]:
Add adjacency constraints

Barred patterns [West 90]:
To describe S ◦ S-sortable permutations

Mesh, decorated patterns [Úlfarsson, Brändén, Claesson 11]:
To describe S ◦ S ◦ S-sortable permutations

Often motivated by the study of sorting operators.

Mostly studied for enumeration:
Sequence |Avn(B)|? Generating function

∑
n |Avn(B)|zn?



First enumeration results (for classical patterns)

One excluded pattern:

of size 3: [MacMahon 1915] for 123 and [Knuth 68] for 231
Av(π) is enumerated by the Catalan numbers

of size 4: Only three different enumerations.
Representatives are:

1342 [Bóna 97], algebraic generating function
1234 [Gessel 90], holonomic (or D-finite) generating function
1324 . . . remains an open problem

Two excluded patterns:

both of size 3: all are known [Simion & Schmidt 85]

one of size 3 and one of size 4: all are known

both of size 4: most are known

See
http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes

http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes


From pattern avoidance to permutation classes

Permutation class: set of permutations downward-closed for 4.
C is a class when σ ∈ C and π 4 σ ⇒ π ∈ C

Permutations avoiding (classical) patterns form permutation
classes: Av(B) is stable by 4, hence is a class.

If B is an antichain then B is called the basis of Av(B).

Conversely: Classes can be described by excluded (classical)
patterns. Every class C can be characterized by:
C = Av(B) for B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}

Basis: A class has a unique basis.
A basis may be either finite or infinite.

Remark: First example of infinite basis for the class of
permutations sortable by a double-ended queue [Pratt 73]



The Stanley-Wilf (ex-)conjecture

Theorem:

For every permutation π, n
√
|Avn(π)| converges to a constant cπ.

Conjectured by [Stanley & Wilf 92]; proved by [Marcus & Tardos 04].

What can be said about the growth rate cπ of Av(π)?

First bound on cπ: cπ ≤ 152k
4(k

2

k ), where k = |π|
Improved to cπ ≤ 2O(k log k) [Cibulka 09]

Conjecture: cπ ≤ P(k) for some polynomial P

The Arratia conjecture (cπ ≤ (k − 1)2) has been disproved by
[Albert, Elder, Rechnitzer, Westcott & Zabrocki 06]: c1324 ≥ 9.47

Growth rate of a class C = lim sup
n→∞

n
√
|Cn|.

Does lim
n→∞

n
√
|Cn| exists?

What growth rates can occur? What can be said about classes of
particular growth rates? [Vatter and co authors 10-12+]



The specific and the general perspective

Detailed study of particular classes

Motivations:
• Systematic study of small patterns,
• or classes arising from other
problems (sorting devices,. . . )

Results:
• Description by excluded patterns
• Enumeration, distribution of
statistics

Methods:
• Mostly ad hoc constructions
• Bijections, recursive descriptions,
. . .

Results on families of classes

General idea:
• Description of the structure of
permutation classes
• Nice enumeration is a
consequence of nice structure

Typical result:
• Under some sufficient conditions,
C has some nice property

Possible methods:
• Geometric conditions
• Substitution decomposition
• Encodings . . .

Specific results ⇐ General method
Study of a particular class ⇒ Generalization to a family of classes



Permutations sorted by S ◦ α ◦ S for α ∈ D8

Symmetries of the square act on permutations:
D8 = {id, r, c, i, r ◦ c, i ◦ r, i ◦ c, i ◦ c ◦ r}

Reverse Complement Inverse

σ r(σ) c(σ) i(σ)

For any α ∈ D8, study permutations sorted by S ◦ α ◦ S
Characterization with (generalized) excluded patterns
[West 93] [Albert, Atkinson, B., Claesson & Dukes 11]

Enumeration and distribution of statistics
[Zeilberger 92] [B. & Guibert 12]



Permutations sorted by S ◦ r ◦ S

Theorem [Zeilberger 92] [West 93]:
Permutations sorted by S ◦ S are Av(2341, 35̄241), and are

counted by 2(3n)!
(n+1)!(2n+1)!

Theorem [Albert, Atkinson, B., Claesson & Dukes 11]:
Permutations sorted by S ◦ r ◦ S are Av(1342, 31-4-2)

Theorem [B. & Guibert 12]:
Permutations sorted by S ◦ r ◦ S and those sorted by S ◦ S are
enumerated by the same sequence.
Furthermore the tuple of statistics (udword, rmax, lmax, zeil,
indmax, slmax, slmax ◦r) has the same distribution of both sets.
Hence the statistics asc, des,maj,maj ◦r,maj ◦c,maj ◦rc, valley, peak,
ddes, dasc, rir, rdr, lir, ldr are also (and jointly) equidistributed.

Tool: Generating tree



Structure in permutation classes

It is not easy to define structure. . .

Example of results about structure:
n
√
|Avn(π)| converges to a constant cπ

Permutation classes of growth rate less than κ ≈ 2.20557
have rational generating function
(κ is the unique positive solution of x3 − 2x2 − 1 = 0)

Under a sufficient condition (?), permutation classes have
finite bases and algebraic generating functions

Algorithmic counterpart to each statement:

Given π, compute the growth rate cπ

Given C of growth rate < κ, compute its generating function

Given C satisfying condition (?), compute its basis and its
generating function



Structure through substitution decomposition and trees

With substitution decomposition, permutations are trees.

[Flajolet & Sedgewick 09]: Trees are easy to study and enumerate.

From a combinatorial specification for a simple variety of trees (i.e.
unambiguous tree grammar), we obtain in a systematic way

a polynomial system for the generating function

efficient random samplers

Specific results: Enumeration of pin-permutations by a rational
generating function [Bassino, B. & Rossin 11]

General results: Classes with finitely many simples are nicely
structured [Albert & Atkinson 05] and its developments



Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes

[Möhring & Radermacher 84]: general framework

Applies to relations, graphs, posets, boolean functions, set
systems, . . .

Permutations (almost) fit into this framework

Relies on:

a principle for building objects (permutations, graphs) from
smaller objects: the substitution

some “basic objects” for this construction: simple
permutations, prime graphs

Required properties:

every object can be decomposed using only “basic objects”

this decomposition is unique



Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.



Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simples: 12, 21, 2413, 3142

Some fact about simples:

Asymptotically n!
e2

simples of size n

Generating function not D-finite

In many (conjecturally all) permutation
classes they have density 0

[Albert, Atkinson & Klazar 03] [Brignall 08]

Not simple:

Simple:



Substitution decomposition of permutations

Theorem: [Albert, Atkinson & Klazar 03]

Every σ (6= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable: that cannot be written as 12[α(1), α(2)]

Allows to relate the generating function for simples with that
of all permutations

Decomposing recursively inside the α(i) ⇒ decomposition tree



Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:
• ⊕ = 12 . . . k , 	 = k . . . 21

= linear nodes.
• π simple of size ≥ 4

= prime node.
• No edge ⊕−⊕ nor 	−	.
• Ordered trees.
• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Computation: Linear time algorithm [Uno & Yagiura 00] [Bui Xuan,

Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]



A result about structure in permutation classes

Theorem [Albert & Atkinson 05]: If C contains a finite number of
simple permutations, then

C has a finite basis

C has an algebraic generating function (=
∑

n |Cn|z
n)

Proof: relies on the substitution decomposition

Easy for substitution-closed classes.

Otherwise, in the decomposition trees of permutations of C,
propagate the excluded patterns in the subtrees.

This gives a (possibly ambiguous) tree grammar describing C.

Inclusion-exclusion then gives a polynomial system for its
generating function.

The proof is constructive: it should provide an algorithm to
compute the generating function from the simples in C



Related algorithmic questions

Theorem [Albert & Atkinson 05]: If C contains a finite number of
simple permutations, then

C has a finite basis

C has an algebraic generating function (=
∑

n |Cn|z
n)

Algorithmic questions

A. How to determine whether C contains finitely many simples?

B. How to compute these simples?

C. How to compute the tree grammar? the generating function?

First answers

A.&B. Semi-decision procedure from [Schmerl & Trotter 93]:
find simples of size 4, 5, 6, . . . until k and k + 1 for which
there are 0 simples. Huge complexity. . .

C. For each class, go through the proof of [Albert & Atkinson 05]



Finite number of simple permutations: decision (A.)

Theorem [Brignall, Ruškuc & Vatter 08] : It is decidable whether C
given by its finite basis contains a finite number of simples.

Prop. C = Av(B) contains infinitely many simples iff C contains:

1. either infinitely many parallel alternantions

2. or infinitely many simple wedge permutations

3. or infinitely many proper pin-permutations

Decision procedure Complexity

1. and 2.: pattern matching of patterns Polynomial
of size 3 or 4 in the β ∈ B.

3.: • Encode pin-permutations by
words over a finite alphabet
• Decidability with Decidable
automata techniques 2ExpTime



Finite number of simple permutations: improvements (A.&B.)

C = Av(B) with finite basis B

Test whether C contains a finite number of simples:

Method: detailed study of pin-permutations, of their encoding by
words and optimized automata construction following
decomposition trees

If C is substitution-closed [Bassino, B., Pierrot & Rossin 10]

Algorithm in O(n log n) where n =
∑
β∈B
|β|

Otherwise [Bassino, B., Pierrot & Rossin 12+]

Algorithm in O(p2k) where p = max
β∈B
|β| and k = |B|

Compute the set SIC of simples in C [Pierrot & Rossin 12]:

Method: Analyzing the poset of simple permutations (for 4)

Algorithm whose complexity depends on the size of the output



Computation of the tree grammar and consequence (C.)

C = Av(B) with finite basis B. Assume that C contains finitely
many simples, and that their set SIC is given.

Algorithm to compute the unambiguous tree grammar associated
with C: [Bassino, B., Pierrot, Pivoteau & Rossin 12]

Propagate pattern avoidance constraint in subtrees

Replace inclusion-exclusion by disambiguation of the
grammar, introducing pattern containement constraints

⇒ Algorithmic chain from B finite to unambiguous grammar for C

Consequences:

Computes a polynomial system for the generating function

Provides a combinatorial specification for C, hence efficient
random samplers (recursive or Boltzmann method)



What next?

Study average properties of random permutations in permutation
classes, in particular w.r.t. classical permutation statistics

Example:
30 000 permutations
of size 500 in
Av(2413, 1243, 2341,
531642, 41352)
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