Permutation patterns and permutation classes in (enumerative) combinatorics

Mathilde Bouvel (CNRS, LaBRI, Bordeaux)

Institut für Mathematik, Universität Zürich October 16, 2012

6

Several ways to describe permutations

Permutation: Bijection from [1..n] to itself. Set \mathfrak{S}_{n}.

- Graphical description,
- Two lines notation:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 8 & 3 & 6 & 4 & 2 & 5 & 7
\end{array}\right)
$$

- Linear notation:

$$
\sigma=18364257
$$

- Description as a product of cycles:

$$
\sigma=(1)(287546)(3)
$$ or diagram:

Patterns in permutations

Pattern relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Remark: \preccurlyeq is a partial order on $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$

Patterns in permutations

Pattern relation \preccurlyeq :

$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$ since $3157 \equiv 2134$.

Remark: \preccurlyeq is a partial order on $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$

Patterns in permutations

Pattern relation \preccurlyeq :
$\pi \in \mathfrak{S}_{k}$ is a pattern of $\sigma \in \mathfrak{S}_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order isomorphic (\equiv) to π.

Notation: $\pi \preccurlyeq \sigma$.
Equivalently:
The normalization of $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ on [1..k] yields π.

Example: $2134 \preccurlyeq \mathbf{3 1 2 8 5 4 7 9 6}$
 since $3157 \equiv 2134$.

Remark: \preccurlyeq is a partial order on $\mathfrak{S}=\bigcup_{n} \mathfrak{S}_{n}$

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.

32754

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

32754

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

2754

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1

754

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
12

754

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
123

754

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

754

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

54

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
12364

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}
Sort (or try to do so) using a stack satisfying the Hanoi condition.
123645

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.
1236457

Stack sorting and pattern avoidance

The stack sorting operator S
Sort (or try to do so) using a stack satisfying the Hanoi condition.

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.
$\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma$
Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
Stack-sortable permutations are those avoiding the pattern 231

Stack sorting and pattern avoidance

The stack sorting operator \mathbf{S}

Sort (or try to do so) using a stack satisfying the Hanoi condition.

$$
\mathbf{S}(\sigma)=1236457 \longleftarrow 6132754=\sigma
$$

Equivalently, $\mathbf{S}(\varepsilon)=\varepsilon$ and $\mathbf{S}(L n R)=\mathbf{S}(L) \mathbf{S}(R) n, n=\max (L n R)$
First result on permutation patterns [Knuth 68] :
Stack-sortable permutations are those avoiding the pattern 231
■ $\mathbf{S}(231)=213$, and σ containing a pattern 231 is not sortable

- 231 patterns are the only ones that prevent a permutation from being sortable
Counted by the Catalan numbers: there are $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$ permutations of size n that avoid 231, i.e. that are sorted by \mathbf{S}

Pattern avoiding permutations

Permutations avoiding classical patterns

- $A v(\pi)=$ the set of permutations that avoid the pattern π
- $\operatorname{Av}(B)=\bigcap_{\pi \in B} \operatorname{Av}(\pi)$

Generalizations of excluded patterns

- Dashed and bivincular patterns [Babson, Steingrímsson 00]: Add adjacency constraints
- Barred patterns [West 90]: To describe $\mathbf{S} \circ \mathbf{S}$-sortable permutations
- Mesh, decorated patterns [Úlfarsson, Brändén, Claesson 11]:

To describe $\mathbf{S} \circ \mathbf{S} \circ \mathbf{S}$-sortable permutations
Often motivated by the study of sorting operators.
Mostly studied for enumeration:
Sequence $\left|A v_{n}(B)\right|$? Generating function $\sum_{n}\left|A v_{n}(B)\right| z^{n}$?

First enumeration results (for classical patterns)

One excluded pattern:
■ of size 3: [MacMahon 1915] for 123 and [Knuth 68] for 231 $\operatorname{Av}(\pi)$ is enumerated by the Catalan numbers
■ of size 4: Only three different enumerations. Representatives are:

- 1342 [Bóna 97], algebraic generating function
- 1234 [Gessel 90], holonomic (or D-finite) generating function
- 1324 . . remains an open problem

Two excluded patterns:
■ both of size 3: all are known [Simion \& Schmidt 85]
■ one of size 3 and one of size 4: all are known

- both of size 4: most are known

See

```
http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes
```


From pattern avoidance to permutation classes

Permutation class: set of permutations downward-closed for \preccurlyeq.
\mathcal{C} is a class when $\sigma \in \mathcal{C}$ and $\pi \preccurlyeq \sigma \Rightarrow \pi \in \mathcal{C}$
■ Permutations avoiding (classical) patterns form permutation classes: $\operatorname{Av}(B)$ is stable by \preccurlyeq, hence is a class.

If B is an antichain then B is called the basis of $\operatorname{Av}(B)$.

- Conversely: Classes can be described by excluded (classical) patterns. Every class \mathcal{C} can be characterized by:
$\mathcal{C}=A v(B)$ for $B=\{\sigma \notin \mathcal{C}: \forall \pi \preccurlyeq \sigma$ such that $\pi \neq \sigma, \pi \in \mathcal{C}\}$
Basis: A class has a unique basis.
A basis may be either finite or infinite.
Remark: First example of infinite basis for the class of permutations sortable by a double-ended queue [Pratt 73]

The Stanley-Wilf (ex-)conjecture

Theorem:

For every permutation $\pi, \sqrt[n]{\left|A v_{n}(\pi)\right|}$ converges to a constant c_{π}.
Conjectured by [Stanley \& Wilf 92]; proved by [Marcus \& Tardos 04]. What can be said about the growth rate c_{π} of $\operatorname{Av}(\pi)$?

- First bound on $c_{\pi}: c_{\pi} \leq 15^{2 k^{4}\binom{k^{2}}{k} \text {, where } k=|\pi|}$
- Improved to $c_{\pi} \leq 2^{\mathcal{O}(k \log k)}$ [Cibulka 09]
- Conjecture: $c_{\pi} \leq P(k)$ for some polynomial P
- The Arratia conjecture $\left(c_{\pi} \leq(k-1)^{2}\right)$ has been disproved by [Albert, Elder, Rechnitzer, Westcott \& Zabrocki 06]: $c_{1324} \geq 9.47$

Growth rate of a class $\mathcal{C}=\lim \sup _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$.
Does $\lim _{n \rightarrow \infty} \sqrt[n]{\left|\mathcal{C}_{n}\right|}$ exists?
What growth rates can occur? What can be said about classes of particular growth rates? [Vatter and co authors 10-12+]

The specific and the general perspective

Detailed study of particular classes Results on families of classes

Motivations:

- Systematic study of small patterns,
- or classes arising from other problems (sorting devices,...)

Results:

- Description by excluded patterns
- Enumeration, distribution of statistics

Methods:

- Mostly ad hoc constructions
- Bijections, recursive descriptions,

General idea:

- Description of the structure of permutation classes
- Nice enumeration is a
consequence of nice structure
Typical result:
- Under some sufficient conditions,
\mathcal{C} has some nice property
Possible methods:
- Geometric conditions
- Substitution decomposition
- Encodings ...

Specific results \Leftarrow General method
Study of a particular class \Rightarrow Generalization to a family of classes

Permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$ for $\alpha \in D_{8}$

Symmetries of the square act on permutations:

$$
D_{8}=\{\mathbf{i d}, \mathbf{r}, \mathbf{c}, \mathbf{i}, \mathbf{r} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{r}, \mathbf{i} \circ \mathbf{c}, \mathbf{i} \circ \mathbf{c} \circ \mathbf{r}\}
$$

Reverse

$\mathbf{r}(\sigma)$

Complement
Inverse

$\mathbf{c}(\sigma)$

$\mathbf{i}(\sigma)$

For any $\alpha \in D_{8}$, study permutations sorted by $\mathbf{S} \circ \alpha \circ \mathbf{S}$

- Characterization with (generalized) excluded patterns [West 93] [Albert, Atkinson, B., Claesson \& Dukes 11]
- Enumeration and distribution of statistics [Zeilberger 92] [B. \& Guibert 12]

Permutations sorted by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S}$

Theorem [Zeilberger 92] [West 93]:
Permutations sorted by $\mathbf{S} \circ \mathbf{S}$ are $\operatorname{Av}(2341,3 \overline{5} 241)$, and are counted by $\frac{2(3 n)!}{(n+1)!(2 n+1)!}$
Theorem [Albert, Atkinson, B., Claesson \& Dukes 11]:
Permutations sorted by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S}$ are $\operatorname{Av}(1342,31-4-2)$
Theorem [B. \& Guibert 12]:
Permutations sorted by $\mathbf{S} \circ \mathbf{r} \circ \mathbf{S}$ and those sorted by $\mathbf{S} \circ \mathbf{S}$ are enumerated by the same sequence.
Furthermore the tuple of statistics (udword, rmax, Imax, zeil, indmax, slmax, slmax or) has the same distribution of both sets.
Hence the statistics asc, des, maj, maj or, maj oc, maj orc, valley, peak,
ddes, dasc, rir, rdr, lir, Idr are also (and jointly) equidistributed.
Tool: Generating tree

Structure in permutation classes

It is not easy to define structure. . .
Example of results about structure:

- $\sqrt[n]{\left|A v_{n}(\pi)\right|}$ converges to a constant c_{π}

■ Permutation classes of growth rate less than $\kappa \approx 2.20557$ have rational generating function (κ is the unique positive solution of $x^{3}-2 x^{2}-1=0$)
■ Under a sufficient condition (\star), permutation classes have finite bases and algebraic generating functions
Algorithmic counterpart to each statement:

- Given π, compute the growth rate c_{π}
- Given \mathcal{C} of growth rate $<\kappa$, compute its generating function
- Given \mathcal{C} satisfying condition (\star), compute its basis and its generating function

Structure through substitution decomposition and trees

With substitution decomposition, permutations are trees.
[Flajolet \& Sedgewick 09]: Trees are easy to study and enumerate.
From a combinatorial specification for a simple variety of trees (i.e. unambiguous tree grammar), we obtain in a systematic way

- a polynomial system for the generating function
- efficient random samplers

Specific results: Enumeration of pin-permutations by a rational generating function [Bassino, B. \& Rossin 11]

General results: Classes with finitely many simples are nicely structured [Albert \& Atkinson 05] and its developments

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes

- [Möhring \& Radermacher 84]: general framework
- Applies to relations, graphs, posets, boolean functions, set systems, ...
- Permutations (almost) fit into this framework

Relies on:

- a principle for building objects (permutations, graphs) from smaller objects: the substitution
■ some "basic objects" for this construction: simple permutations, prime graphs
Required properties:
■ every object can be decomposed using only "basic objects"
- this decomposition is unique

Substitution for permutations

Substitution or inflation: $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of 2574613

Simple permutation $=$ permutation with no interval, except the trivial ones: $1,2, \ldots, n$ and σ Example: 3174625 is simple

The smallest simples: 12, 21, 2413, 3142
Some fact about simples:

- Asymptotically $\frac{n!}{e^{2}}$ simples of size n
- Generating function not D-finite
- In many (conjecturally all) permutation classes they have density 0
[Albert, Atkinson \& Klazar 03] [Brignall 08]

Simple:

Substitution decomposition of permutations

Theorem: [Albert, Atkinson \& Klazar 03]
Every $\sigma(\neq 1)$ is uniquely decomposed as
■ $12 \ldots k\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
■ $k \ldots 21\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable

- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

Remarks:

- \oplus-indecomposable: that cannot be written as $12\left[\alpha^{(1)}, \alpha^{(2)}\right]$
- Allows to relate the generating function for simples with that of all permutations

Decomposing recursively inside the $\alpha^{(i)} \Rightarrow$ decomposition tree

Decomposition tree: witness of this decomposition

Example: Decomposition tree of $\sigma=101312111411819202117161548329567$

Notations and properties:

- $\oplus=12 \ldots k, \ominus=k \ldots 21$
$=$ linear nodes.
- π simple of size ≥ 4
$=$ prime node.
- No edge $\oplus-\oplus$ nor $\ominus-\ominus$.
- Ordered trees.
- These conditions characterize decomposition trees.
$\sigma=3142[\oplus[1, \ominus[1,1,1], 1], 1, \ominus[\oplus[1,1,1,1], 1,1,1], 24153[1,1, \ominus[1,1], 1, \oplus[1,1,1]]]$

Bijection between permutations and their decomposition trees.
Computation: Linear time algorithm [Uno \& Yagiura 00] [Bui Xuan, Habib \& Paul 05] [Bergeron, Chauve, Montgolfier \& Raffinot 08]

A result about structure in permutation classes

Theorem [Albert \& Atkinson 05]: If \mathcal{C} contains a finite number of simple permutations, then

- \mathcal{C} has a finite basis

■ \mathcal{C} has an algebraic generating function $\left(=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}\right)$
Proof: relies on the substitution decomposition
■ Easy for substitution-closed classes.

- Otherwise, in the decomposition trees of permutations of \mathcal{C}, propagate the excluded patterns in the subtrees.
- This gives a (possibly ambiguous) tree grammar describing \mathcal{C}.
- Inclusion-exclusion then gives a polynomial system for its generating function.

The proof is constructive: it should provide an algorithm to compute the generating function from the simples in \mathcal{C}

Related algorithmic questions

Theorem [Albert \& Atkinson 05]: If \mathcal{C} contains a finite number of simple permutations, then

- \mathcal{C} has a finite basis

■ \mathcal{C} has an algebraic generating function $\left(=\sum_{n}\left|\mathcal{C}_{n}\right| z^{n}\right)$
Algorithmic questions
A. How to determine whether \mathcal{C} contains finitely many simples?
B. How to compute these simples?
C. How to compute the tree grammar? the generating function?

First answers
A.\&B. Semi-decision procedure from [Schmerl \& Trotter 93]: find simples of size $4,5,6, \ldots$ until k and $k+1$ for which there are 0 simples. Huge complexity...
C. For each class, go through the proof of [Albert \& Atkinson 05]

Finite number of simple permutations: decision (A.)

Theorem [Brignall, Ruškuc \& Vatter 08] : It is decidable whether \mathcal{C} given by its finite basis contains a finite number of simples.

Prop. $\mathcal{C}=\operatorname{Av}(B)$ contains infinitely many simples iff \mathcal{C} contains:

1. either infinitely many parallel alternantions
2. or infinitely many simple wedge permutations
3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2.:	pattern matching of patterns of size 3 or 4 in the $\beta \in B$.	Polynomial
$3 .:$	- Encode pin-permutations by words over a finite alphabet • Decidability with automata techniques	Decidable 2ExpTime

Finite number of simple permutations: improvements (A.\&B.)

$\mathcal{C}=A v(B)$ with finite basis B
Test whether \mathcal{C} contains a finite number of simples:
Method: detailed study of pin-permutations, of their encoding by words and optimized automata construction following decomposition trees

■ If \mathcal{C} is substitution-closed [Bassino, B., Pierrot \& Rossin 10] Algorithm in $\mathcal{O}(n \log n)$ where $n=\sum_{\beta \in B}|\beta|$

- Otherwise [Bassino, B., Pierrot \& Rossin 12+] Algorithm in $\mathcal{O}\left(p^{2 k}\right)$ where $p=\max _{\beta \in B}|\beta|$ and $k=|B|$

Compute the set $\mathcal{S I}_{\mathcal{C}}$ of simples in \mathcal{C} [Pierrot \& Rossin 12]:
Method: Analyzing the poset of simple permutations (for \preccurlyeq)

- Algorithm whose complexity depends on the size of the output

Computation of the tree grammar and consequence (c.)

$\mathcal{C}=A v(B)$ with finite basis B. Assume that \mathcal{C} contains finitely many simples, and that their set $\mathcal{S I}_{\mathcal{C}}$ is given.

Algorithm to compute the unambiguous tree grammar associated with \mathcal{C} : [Bassino, B., Pierrot, Pivoteau \& Rossin 12]

■ Propagate pattern avoidance constraint in subtrees

- Replace inclusion-exclusion by disambiguation of the grammar, introducing pattern containement constraints
\Rightarrow Algorithmic chain from B finite to unambiguous grammar for \mathcal{C}
Consequences:
- Computes a polynomial system for the generating function

■ Provides a combinatorial specification for \mathcal{C}, hence efficient random samplers (recursive or Boltzmann method)

What next?

Study average properties of random permutations in permutation classes, in particular w.r.t. classical permutation statistics

Example:

30000 permutations
of size 500 in
$\operatorname{Av}(2413,1243,2341$, 531642, 41352)

