
Permutation patterns and permutation classes
in (enumerative) combinatorics

Mathilde Bouvel (CNRS, LaBRI, Bordeaux)

Institut für Mathematik, Universität Zürich
October 16, 2012

Several ways to describe permutations

Permutation: Bijection from [1..n] to itself. Set Sn.

Two lines notation:

σ =

(
1 2 3 4 5 6 7 8
1 8 3 6 4 2 5 7

)
Linear notation:
σ = 1 8 3 6 4 2 5 7

Description as a
product of cycles:
σ = (1) (2 8 7 5 4 6) (3)

Graphical description,
or diagram:

i

σ(i)

Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn

Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn

Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order isomorphic (≡) to π.

Notation: π 4 σ.

Equivalently:
The normalization of σi1 . . . σik on
[1..k] yields π.

Example: 2 1 3 4 4 3 1 2 8 5 4 7 9 6
since 3 1 5 7 ≡ 2 1 3 4.

Remark: 4 is a partial order on S =
⋃
n
Sn

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1 3 2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6
1

3 2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1 3 2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1

3

2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1

3
2

7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1

3

2 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6

1 32 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32 7 5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7

5 4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7
5

4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7
5
4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7
5

4

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

61 32

7

54

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

1 2 3 6 4 5 7

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 41 2 3 6 4 5 7

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
Stack-sortable permutations are those avoiding the pattern 231

Stack sorting and pattern avoidance

The stack sorting operator S

Sort (or try to do so) using a stack satisfying the Hanoi condition.

6 1 3 2 7 5 4 = σS(σ) = 1 2 3 6 4 5 7

Equivalently, S(ε) = ε and S(LnR) = S(L)S(R)n, n = max(LnR)

First result on permutation patterns [Knuth 68] :
Stack-sortable permutations are those avoiding the pattern 231

S(231) = 213, and σ containing a pattern 231 is not sortable

231 patterns are the only ones that prevent a permutation
from being sortable

Counted by the Catalan numbers: there are cn = 1
n+1

(2n
n

)
permutations of size n that avoid 231, i.e. that are sorted by S

Pattern avoiding permutations

Permutations avoiding classical patterns

Av(π) = the set of permutations that avoid the pattern π

Av(B) =
⋂
π∈B

Av(π)

Generalizations of excluded patterns

Dashed and bivincular patterns [Babson, Steingŕımsson 00]:
Add adjacency constraints

Barred patterns [West 90]:
To describe S ◦ S-sortable permutations

Mesh, decorated patterns [Úlfarsson, Brändén, Claesson 11]:
To describe S ◦ S ◦ S-sortable permutations

Often motivated by the study of sorting operators.

Mostly studied for enumeration:
Sequence |Avn(B)|? Generating function

∑
n |Avn(B)|zn?

First enumeration results (for classical patterns)

One excluded pattern:

of size 3: [MacMahon 1915] for 123 and [Knuth 68] for 231
Av(π) is enumerated by the Catalan numbers

of size 4: Only three different enumerations.
Representatives are:

1342 [Bóna 97], algebraic generating function
1234 [Gessel 90], holonomic (or D-finite) generating function
1324 . . . remains an open problem

Two excluded patterns:

both of size 3: all are known [Simion & Schmidt 85]

one of size 3 and one of size 4: all are known

both of size 4: most are known

See
http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes

http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes

From pattern avoidance to permutation classes

Permutation class: set of permutations downward-closed for 4.
C is a class when σ ∈ C and π 4 σ ⇒ π ∈ C

Permutations avoiding (classical) patterns form permutation
classes: Av(B) is stable by 4, hence is a class.

If B is an antichain then B is called the basis of Av(B).

Conversely: Classes can be described by excluded (classical)
patterns. Every class C can be characterized by:
C = Av(B) for B = {σ /∈ C : ∀π 4 σ such that π 6= σ, π ∈ C}

Basis: A class has a unique basis.
A basis may be either finite or infinite.

Remark: First example of infinite basis for the class of
permutations sortable by a double-ended queue [Pratt 73]

The Stanley-Wilf (ex-)conjecture

Theorem:

For every permutation π, n
√
|Avn(π)| converges to a constant cπ.

Conjectured by [Stanley & Wilf 92]; proved by [Marcus & Tardos 04].

What can be said about the growth rate cπ of Av(π)?

First bound on cπ: cπ ≤ 152k
4(k

2

k), where k = |π|
Improved to cπ ≤ 2O(k log k) [Cibulka 09]

Conjecture: cπ ≤ P(k) for some polynomial P

The Arratia conjecture (cπ ≤ (k − 1)2) has been disproved by
[Albert, Elder, Rechnitzer, Westcott & Zabrocki 06]: c1324 ≥ 9.47

Growth rate of a class C = lim sup
n→∞

n
√
|Cn|.

Does lim
n→∞

n
√
|Cn| exists?

What growth rates can occur? What can be said about classes of
particular growth rates? [Vatter and co authors 10-12+]

The specific and the general perspective

Detailed study of particular classes

Motivations:
• Systematic study of small patterns,
• or classes arising from other
problems (sorting devices,. . .)

Results:
• Description by excluded patterns
• Enumeration, distribution of
statistics

Methods:
• Mostly ad hoc constructions
• Bijections, recursive descriptions,
. . .

Results on families of classes

General idea:
• Description of the structure of
permutation classes
• Nice enumeration is a
consequence of nice structure

Typical result:
• Under some sufficient conditions,
C has some nice property

Possible methods:
• Geometric conditions
• Substitution decomposition
• Encodings . . .

Specific results ⇐ General method
Study of a particular class ⇒ Generalization to a family of classes

Permutations sorted by S ◦ α ◦ S for α ∈ D8

Symmetries of the square act on permutations:
D8 = {id, r, c, i, r ◦ c, i ◦ r, i ◦ c, i ◦ c ◦ r}

Reverse Complement Inverse

σ r(σ) c(σ) i(σ)

For any α ∈ D8, study permutations sorted by S ◦ α ◦ S
Characterization with (generalized) excluded patterns
[West 93] [Albert, Atkinson, B., Claesson & Dukes 11]

Enumeration and distribution of statistics
[Zeilberger 92] [B. & Guibert 12]

Permutations sorted by S ◦ r ◦ S

Theorem [Zeilberger 92] [West 93]:
Permutations sorted by S ◦ S are Av(2341, 35̄241), and are

counted by 2(3n)!
(n+1)!(2n+1)!

Theorem [Albert, Atkinson, B., Claesson & Dukes 11]:
Permutations sorted by S ◦ r ◦ S are Av(1342, 31-4-2)

Theorem [B. & Guibert 12]:
Permutations sorted by S ◦ r ◦ S and those sorted by S ◦ S are
enumerated by the same sequence.
Furthermore the tuple of statistics (udword, rmax, lmax, zeil,
indmax, slmax, slmax ◦r) has the same distribution of both sets.
Hence the statistics asc, des,maj,maj ◦r,maj ◦c,maj ◦rc, valley, peak,
ddes, dasc, rir, rdr, lir, ldr are also (and jointly) equidistributed.

Tool: Generating tree

Structure in permutation classes

It is not easy to define structure. . .

Example of results about structure:
n
√
|Avn(π)| converges to a constant cπ

Permutation classes of growth rate less than κ ≈ 2.20557
have rational generating function
(κ is the unique positive solution of x3 − 2x2 − 1 = 0)

Under a sufficient condition (?), permutation classes have
finite bases and algebraic generating functions

Algorithmic counterpart to each statement:

Given π, compute the growth rate cπ

Given C of growth rate < κ, compute its generating function

Given C satisfying condition (?), compute its basis and its
generating function

Structure through substitution decomposition and trees

With substitution decomposition, permutations are trees.

[Flajolet & Sedgewick 09]: Trees are easy to study and enumerate.

From a combinatorial specification for a simple variety of trees (i.e.
unambiguous tree grammar), we obtain in a systematic way

a polynomial system for the generating function

efficient random samplers

Specific results: Enumeration of pin-permutations by a rational
generating function [Bassino, B. & Rossin 11]

General results: Classes with finitely many simples are nicely
structured [Albert & Atkinson 05] and its developments

Substitution decomposition: main ideas

Analogous to the decomposition of integers as products of primes

[Möhring & Radermacher 84]: general framework

Applies to relations, graphs, posets, boolean functions, set
systems, . . .

Permutations (almost) fit into this framework

Relies on:

a principle for building objects (permutations, graphs) from
smaller objects: the substitution

some “basic objects” for this construction: simple
permutations, prime graphs

Required properties:

every object can be decomposed using only “basic objects”

this decomposition is unique

Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and

α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.

Simple permutations

Interval (or block) = set of elements of σ whose
positions and values form intervals of integers
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = permutation with no
interval, except the trivial ones: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple

The smallest simples: 12, 21, 2413, 3142

Some fact about simples:

Asymptotically n!
e2

simples of size n

Generating function not D-finite

In many (conjecturally all) permutation
classes they have density 0

[Albert, Atkinson & Klazar 03] [Brignall 08]

Not simple:

Simple:

Substitution decomposition of permutations

Theorem: [Albert, Atkinson & Klazar 03]

Every σ (6= 1) is uniquely decomposed as

12 . . . k[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

k . . . 21[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

Remarks:

⊕-indecomposable: that cannot be written as 12[α(1), α(2)]

Allows to relate the generating function for simples with that
of all permutations

Decomposing recursively inside the α(i) ⇒ decomposition tree

Decomposition tree: witness of this decomposition

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Notations and properties:
• ⊕ = 12 . . . k , 	 = k . . . 21

= linear nodes.
• π simple of size ≥ 4

= prime node.
• No edge ⊕−⊕ nor 	−	.
• Ordered trees.
• These conditions characterize
decomposition trees.

σ = 31 4 2[⊕[1,	[1, 1, 1], 1], 1,	[⊕[1, 1, 1, 1], 1, 1, 1], 2 4 1 5 3[1, 1,	[1, 1], 1,⊕[1, 1, 1]]]

Bijection between permutations and their decomposition trees.

Computation: Linear time algorithm [Uno & Yagiura 00] [Bui Xuan,

Habib & Paul 05] [Bergeron, Chauve, Montgolfier & Raffinot 08]

A result about structure in permutation classes

Theorem [Albert & Atkinson 05]: If C contains a finite number of
simple permutations, then

C has a finite basis

C has an algebraic generating function (=
∑

n |Cn|z
n)

Proof: relies on the substitution decomposition

Easy for substitution-closed classes.

Otherwise, in the decomposition trees of permutations of C,
propagate the excluded patterns in the subtrees.

This gives a (possibly ambiguous) tree grammar describing C.

Inclusion-exclusion then gives a polynomial system for its
generating function.

The proof is constructive: it should provide an algorithm to
compute the generating function from the simples in C

Related algorithmic questions

Theorem [Albert & Atkinson 05]: If C contains a finite number of
simple permutations, then

C has a finite basis

C has an algebraic generating function (=
∑

n |Cn|z
n)

Algorithmic questions

A. How to determine whether C contains finitely many simples?

B. How to compute these simples?

C. How to compute the tree grammar? the generating function?

First answers

A.&B. Semi-decision procedure from [Schmerl & Trotter 93]:
find simples of size 4, 5, 6, . . . until k and k + 1 for which
there are 0 simples. Huge complexity. . .

C. For each class, go through the proof of [Albert & Atkinson 05]

Finite number of simple permutations: decision (A.)

Theorem [Brignall, Ruškuc & Vatter 08] : It is decidable whether C
given by its finite basis contains a finite number of simples.

Prop. C = Av(B) contains infinitely many simples iff C contains:

1. either infinitely many parallel alternantions

2. or infinitely many simple wedge permutations

3. or infinitely many proper pin-permutations

Decision procedure Complexity

1. and 2.: pattern matching of patterns Polynomial
of size 3 or 4 in the β ∈ B.

3.: • Encode pin-permutations by
words over a finite alphabet
• Decidability with Decidable
automata techniques 2ExpTime

Finite number of simple permutations: improvements (A.&B.)

C = Av(B) with finite basis B

Test whether C contains a finite number of simples:

Method: detailed study of pin-permutations, of their encoding by
words and optimized automata construction following
decomposition trees

If C is substitution-closed [Bassino, B., Pierrot & Rossin 10]

Algorithm in O(n log n) where n =
∑
β∈B
|β|

Otherwise [Bassino, B., Pierrot & Rossin 12+]

Algorithm in O(p2k) where p = max
β∈B
|β| and k = |B|

Compute the set SIC of simples in C [Pierrot & Rossin 12]:

Method: Analyzing the poset of simple permutations (for 4)

Algorithm whose complexity depends on the size of the output

Computation of the tree grammar and consequence (C.)

C = Av(B) with finite basis B. Assume that C contains finitely
many simples, and that their set SIC is given.

Algorithm to compute the unambiguous tree grammar associated
with C: [Bassino, B., Pierrot, Pivoteau & Rossin 12]

Propagate pattern avoidance constraint in subtrees

Replace inclusion-exclusion by disambiguation of the
grammar, introducing pattern containement constraints

⇒ Algorithmic chain from B finite to unambiguous grammar for C

Consequences:

Computes a polynomial system for the generating function

Provides a combinatorial specification for C, hence efficient
random samplers (recursive or Boltzmann method)

What next?

Study average properties of random permutations in permutation
classes, in particular w.r.t. classical permutation statistics

Example:
30 000 permutations
of size 500 in
Av(2413, 1243, 2341,
531642, 41352)

	Permutation patterns and permutation classes: how it started
	Permutation patterns and permutation classes: how it started

	Specialized results for specific classes
	Specialized results for specific classes

	Structure in permutation classes
	Structure in permutation classes

	Substitution decomposition and decomposition trees
	Substitution decomposition and decomposition trees

